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Abstract
In this paper, we present a sufficient framework to exhibit the sample path-wise asymptotic flocking dynamics of
the Cucker–Smale model with unit-speed constraint and the randomly switching network topology. We employ a
matrix formulation of the given equation, which allows us to evaluate the diameter of velocities with respect to
the adjacency matrix of the network. Unlike the previous result on the randomly switching Cucker–Smale model,
the unit-speed constraint disallows the system to be considered as a nonautonomous linear ordinary differential
equation on velocity vector, which forces us to get a weaker form of the flocking estimate than the result for the
original Cucker–Smale model.

1. Introduction

The jargon flocking describes a phenomenon wherein agents within a self-propelled system organise
themselves into cohesive groups and demonstrate structured motion based on local information and
simple governing principles. After the seminal work by Vicsek et al. [32], the mathematical community
also has shown keen interest in developing mathematical models to elucidate flocking dynamics over the
past decades. Among them, the Cucker–Smale (CS) model, initially introduced in [12], is considered
as one of the most simple and successful mathematical representations of flocking behaviour. Notable
directions include the studies on the CS model on general digraph [16], unit-speed constraint [6], the
impact of considering time delay [4, 14], temperature field [22], collision avoidance [9, 27], emergence
of bi-cluster flocking [11], Riemannian manifold framework [17], the mean-field limit [19], time dis-
cretisation [15], hydrodynamic descriptions [23], hierarchical rooted leadership structures [21, 26, 28,
30] and alternating leaders [20]. We also refer to a comprehensive survey paper [8] for those who may
be interested in this topic.

In this paper, we are interested in generalising the flocking model with the unit-speed constraint
presented in [6] to be more practical. In [6], the unit-speed constrained model was given by the following
second-order ordinary differential equations (ODEs) for the position–velocity configuration {(xi, vi)}N

i=1,
motivated from the well-known CS model:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi

dt
= vi, t > 0, i ∈ [N] := {1, . . . , N},

dvi

dt
= 1

N

N∑
j=1

φ(‖xi − xj‖)

(
vj − 〈vj, vi〉vi

‖vi‖2

)
,

(xi(0), vi(0)) = (x0
i , v0

i ) ∈R
d × S

d−1,

(1.1)
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where N is the number of agents, 〈·, ·〉 is the standard inner product on R
d, and ‖ · ‖ is the standard

�2-norm, respectively. In addition, we assume the communication weight φ:R+ →R+( := [0, ∞)) is
locally Lipschitz continuous function satisfying

0 ≤ φ(r) ≤ φ(0), (φ(r1) − φ(r2))(r1 − r2) ≤ 0, r, r1, r2 ≥ 0.

The manifold S
d−1 denotes a (d − 1)-dimensional unit sphere, which is isometrically embedded to R

d,
that is,

S
d−1 :=

{
x := (x1, . . . , xd)

∣∣∣∣
d∑

i=1

|xi|2 = 1

}
.

Similar to the CS model proposed in [12], the model (1.1) and its variants have garnered considerable
attention. For instance, the study on the bi-cluster flocking was presented in [10], and the exploration
of multi-cluster flocking and critical coupling strength was discussed in [18]. The time-delay effect was
also considered in [5, 7], and considerations regarding the temperature field have been explored in [1, 2].
Moreover, the work in [29] has addressed the system within the context of a general digraph. In [29], the
authors introduced a static network topology into (1.1) and provided a sufficient framework to exhibit
the asymptotic flocking. The objective was to analyse how the connectivity among the system’s agents
influences its behaviour, where the adjacency matrix of the network topology was given by

χij =
{

1, j-th agent conveys information to i-th agent or j = i,

0, otherwise.

Then, they provided a sufficient framework pertaining to initial data and system parameters that facilitate
the emergence of flocking dynamics when the network topology (χij) contains a directed spanning tree.

However, even if the interaction network is expressed as a directed graph, there are still things that
can be done to more realistically model the behaviour of actual flocks. Namely, the interaction network
in (1.1) is assumed to be constant regardless of time, which may be a rather unrealistic assumption
considering that some unpredictable external factors can interfere with the interaction. Since we want
to observe whether the flocking phenomenon occurs asymptotically over infinite time, it is natural to
think of a mathematical model that allows the network to change over time. Beyond the Cucker–Smale
model, the introduction of random effects into the network topology of a multi-agent system has been
explored in various literature, such as the studies on random geometric graphs [3] and random link
failures [24, 25], etc. Among them, we introduce a formulation of a many-body system with a randomly
switching network topology inspired from [13], building upon the structure defined in (1.1). This system
is governed by the Cauchy problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
= 1

N

N∑
j=1

χσ

ij φ(‖xi − xj‖)

(
vj − 〈vj, vi〉vi

‖vi‖2

)
,

(xi(0, w), vi(0, w)) = (x0
i (w), v0

i (w)) ∈R
d × S

d−1,

(1.2)

with the assumptions for N, φ, 〈·, ·〉, ‖ · ‖ and S
d−1 remain consistent with those in (1.1). In [13], the

authors generalised the static network topology to a right-continuous stochastic process

σ : R+ × � → [NG] = {1, 2, . . . , NG}.
Then, χσ denotes the adjacency matrix of Gσ , where each Gi is a directed graph with vertices V =
{β1, . . . , βN}. Due to this right continuity condition, the authors were able to constrain the process σ to
have a piecewise continuous sample path that gives the opportunity to change its value at some random
switching instants 0 = t0 < t1 < t2 < · · · , so that σ (·, ω):[tk, tk+1) → [NG] is constant for each k ∈N∪ {0}.

In this paper, we adopt the above constructions on σ to the proposed system (1.2), and we are mainly
concerned with the following issue:
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What is the probability to emerge the flocking of the system (1.2)?

More specifically, the asymptotic flocking, for which we want to find sufficient conditions in terms
of initial data and system parameters, is defined as follows:

Definition 1.1. Let (�, F , P) be a generic probability space and Z = {(xi, vi)}N
i=1 be the solution process

of the system (1.2).

1. The configuration Z exhibits group formation for w ∈ � if

sup
t∈R+

max
i,j∈[N]

‖xi(t, w) − xj(t, w)‖ < ∞.

2. The configuration Z exhibits asymptotic velocity alignment for w ∈ � if

lim
t→∞

max
i,j∈[N]

‖vi(t, w) − vj(t, w)‖ = 0.

3. The configuration Z exhibits asymptotic flocking for w ∈ � if

sup
t∈R+

max
i,j∈[N]

‖xi(t, w) − xj(t, w)‖ < ∞, lim
t→∞

max
i,j∈[N]

‖vi(t, w) − vj(t, w)‖ = 0.

The rest of the paper is organised as follows. In Section 2, we reformulate the proposed system (1.2)
into a matrix-valued ODE and briefly introduce some theoretical backgrounds related to our work. In
addition, we provide preparatory estimates which will be crucially used to derive the desired flocking
of the system (1.2) in Section 3. In Section 3, we demonstrate several sufficient frameworks concern-
ing initial data and system parameters to exhibit the asymptotic flocking of the system (1.2). Finally,
Section 5 is devoted to summarise the main results of this paper and discuss future work.

Notation. Throughout the paper, we employ the following notation for simplicity:

X := (x1, . . . , xN)T , V := (v1, . . . , vN)T , AV := min
i,j∈[N]

〈vi, vj〉, R+ := [0, ∞),

DZ := max
i,j∈[N]

‖zi − zj‖ for Z = (z1, . . . , zN) ∈ {X, V}, [N] := {1, . . . , N},
Mij := the (i, j)-th entry of M ∈R

m×n, xi := the i-th component of x ∈R
d,

A ≥ B, A, B ∈R
m×n ⇐⇒ Aij ≥ Bij for all i ∈ [m], j ∈ [n].

2. Preliminaries

In this section, we reformulate the system (1.2) into a suitable matrix-valued ODE and introduce some
theoretical backgrounds related to matrix analysis of graphs.

2.1. Graph theory

We first briefly introduce basic notions in graph theory. A direct graph (in short digraph) G =
(V(G), E(G)) consists of a finite set V(G) = {β1, . . . , βN} of vertices and a set E(G) ⊂ V(G) × V(G) of
arcs. If a pair (βj, βi) is contained in E(G), βj is said to be a neighbour of βi, and we denote the neigh-
bour set of the vertex βi by Ni := {j:(βj, βi) ∈ E(G)}. For given digraph G, we define its corresponding
adjacency matrix χ (G) = (χij)(G) as

χij =
{

1 if j ∈Ni ∪ {i},
0 otherwise.

Since it is obvious that this correspondence is a one-to-one, we can say that given a matrix A consisting
of zeros and ones and with diagonal components all equal to one, we can also uniquely determine its
corresponding digraph, which we write it as G(A). A path in a digraph G from βi0 to βip is a finite
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sequence {βi0 , . . . , βip} of distinct vertices such that each successive pair of vertices is an arc of G. The
integer p which is the number of its arcs is said to be the length of the path. If there is a path from βi

to βj, then vertex βj is said to be reachable from vertex βi. We say G contains a spanning tree if there
exists a vertex such that any other vertex of G is reachable from it. In this case, this vertex is said to be
a root.

2.2. Conservation and dissipation law

In this subsection, we show that the system (1.2) has a conservation of each speed of agent and dissipation
of their velocity diameter.

Lemma 2.1. (Conservation of speeds) Suppose that (X, V) is a solution to the system (1.2). Then, it
follows that for each w ∈ �,

‖vi(t, w)‖ = 1, t ≥ 0, i ∈ [N].

Proof. Once we take an inner product vi with (1.2)2, the following relation holds:〈
vj − 〈vj, vi〉vi

‖vi‖2
, vi

〉
= 0, i, j ∈ [N].

Therefore, we have d
dt
‖vi‖2 = 0 for all i ∈ [N], which is our desired result.

This means that the difference in velocities is determined entirely by the angle between them.
However, one can also verify that for each w ∈ �, the maximal angle

AV(t, w) := min
i,j∈[N]

〈vi(t, w), vj(t, w)〉

is monotonically increasing in t ≥ 0, provided that AV(0, w) := min
i,j∈[N]

〈v0
i (w), v0

j (w)〉 is strictly positive.

Lemma 2.2. (Monotonicity of AV) Let (X, V) be a solution to the system (1.2) satisfying

AV(0, w) > 0

for some ω ∈ �. Then, the smallest inner product between heading angles AV(·, w) is monotonically
increasing.

Proof. For fixed t ≥ 0, we denote it, jt ∈ [N] the two indices satisfying

AV(t, w) := 〈vit (t, w), vjt (t, w)〉.
If we define a set S as

S =: {t ≥ 0 | AV(t, w) ≤ 0},
it follows from the condition AV(0, w) > 0 and the continuity of AV(·, w) that there exists T1 ∈ (0, ∞]
satisfying

[0, T1) ∩ S = ∅.

Now, define T := inf S and suppose we have T < ∞. Then, from the continuity of AV , we have

lim
t→T −

AV(t, w) = 0. (2.1)

https://doi.org/10.1017/S0956792524000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000214


European Journal of Applied Mathematics 423

On the other hand, the locally Lipschitz function AV(·, ω) is differentiable at almost every t ∈ (0, T ).
Then, we use (1.2)2 to obtain

dAV

dt
= 〈v̇it , vjt〉 + 〈v̇jt , vit〉

= 1

N

N∑
k=1

χσ

itk
φ(‖xk − xit‖)

(〈vk, vjt〉 − 〈vk, vit〉〈vit , vjt〉
)

+ 1

N

N∑
k=1

χσ

jtk
φ(‖xk − xjt‖)

(〈vk, vit〉 − 〈vk, vjt〉〈vit , vjt〉
)

≥ 0,

where we used
1 ≥ 〈vk, vit〉 ≥ 0 and 〈vk, vjt〉 ≥ 〈vit , vjt〉 ≥ 0,

1 ≥ 〈vk, vjt〉 ≥ 0 and 〈vk, vit〉 ≥ 〈vit , vjt〉 ≥ 0,

in the last inequality. Hence, AV(·, w) is monotonically increasing in [0, T ], which leads a contradiction
to (2.1). Therefore, we have T = ∞ and obtain the monotone increasing property of AV(·, ω).

As a direct consequence of Lemma 2.2, the velocity diameter DV is monotonically decreasing, due
to the relation between DV and AV .

Corollary 2.1. (Monotonicity of DV) Assume that (X, V) is a solution to the system (1.2) with

DV(0, w) <
√

2

for some ω ∈ �. Then, the velocity diameter DV(·, w) is monotonically decreasing in time.

Proof. From Lemma 2.1, we have

‖vi − vj‖2 = 2 − 2〈vi, vj〉.
Therefore, one can obtain the monotone decreasing property of

D2
V = 2 − 2AV

by using Lemma 2.2.

2.3. Matrix formulation

Now, we reorganise the system (1.2) to a matrix formulation. For this, we first fix w ∈ � and

X := (x1, . . . , xN)T , V := (v1, . . . , vN)T ,

and we use the result of Lemma 2.1, that is,

‖vi(t, w)‖ = 1, t > 0, i ∈ [N].

Then, the right-hand side of (1.2)2 can be rewritten as
N∑

j=1

χσ

ij φ(‖xi − xj‖)
(
vj − 〈vj, vi〉vi

)

=
N∑

j=1

χσ

ij φ(‖xi − xj‖)
(
vj − vi

)+
N∑

j=1

χσ

ij φ(‖xi − xj‖)
(
vi − 〈vj, vi〉vi

)

=
N∑

j=1

χσ

ij φ(‖xi − xj‖)
(
vj − vi

)+ 1

2

N∑
j=1

χσ

ij φ(‖xi − xj‖)‖vi − vj‖2vi.
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On the other hand, we also consider the Laplacian matrices

Ll := Dl −Al, 1 ≤ l ≤ NG,

where Al ∈R
N×N and Dl ∈R

N×N are defined as

(Al)ij := χ l
ijφ(‖xi − xj‖), Dl := diag(dl

1, . . . , dl
N), dl

i :=
N∑

j=1

χ l
ijφ(‖xi − xj‖), i, j ∈ [N].

Then, (1.2) can be represented by the following matrix form:⎧⎨
⎩

Ẋ = V ,

V̇ = − 1

N
Lσ V + 1

N
Rσ ,

(2.2)

where the vector Rl is defined as

Rl := (rl
1, . . . , rl

N)T and rl
i := 1

2

N∑
j=1

χ l
ijφ(‖xi − xj‖)‖vi − vj‖2vi, 1 ≤ l ≤ NG.

2.4. Matrix analysis

Now, we review some basic concepts on the matrix analysis to be used in Section 3.

Definition 2.1. Let A ∈R
N×N be a matrix whose entries are all non-negative.

1. A is called a stochastic matrix if its row-sum is one:
N∑

j=1

Aij = 1, i ∈ [N].

2. A is called a scrambling matrix if for i, j ∈ [N], there exists k ∈ [N] such that

Aik > 0 and Ajk > 0.

3. A is called an adjacency matrix of a digraph G = G(A) if

Aij > 0 ⇐⇒ (j, i) ∈ E(G).

In addition, the following ergodicity coefficient μ of A ∈R
N×N also plays a key role in the analysis in

Section 3:

μ(A) := min
i,j∈[N]

N∑
k=1

min (Aik, Ajk).

For instance, one can easily verify the following two facts on the ergodicity coefficient:

1. A ∈R
N×N is a scrambling matrix ⇐⇒ μ(A) > 0.

2. Assume that A, B ∈R
N×N . Then, one has

A ≥ B ≥ 0 =⇒ μ(A) ≥ μ(B).

In what follows, we offer two results concerning stochastic matrices and scrambling matrices, which will
be used to derive the asymptotic flocking of (1.2). The proof of the following lemma starts by applying
the ideas of [15]. An improvement over the result in [15] is that the remaining term B now plays a role
by DB (the diameter between its columns) rather than the Frobenius norm ‖B‖, which allows us to apply
Lemma 2.3 recursively. Consequently, we can lower the order of N by one in the sufficient framework
(F5) − (F6), compared to the result which uses the lemma in [15] directly.
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Lemma 2.3. Let A ∈R
N×N be a non-negative stochastic matrix and let B, Z, W ∈R

N×d be matrices
satisfying

W = AZ + B. (2.3)

Then, for every norm ‖ · ‖ on R
d, we have

DW ≤ (1 − μ(A))DZ + DB,

where DW , DZ and DB are defined as

B := (b1, . . . , bN)T , Z := (z1, . . . , zN)T , W := (w1, . . . , wN)T ,

bi := (b1
i , . . . , bd

i )T , zi := (z1
i , . . . , zd

i )T , zi := (z1
i , . . . , zd

i )T ,

DW := max
i,k∈[N]

‖wi − wk‖, DZ := max
i,k∈[N]

‖zi − zk‖, DB := max
i,k∈[N]

‖bi − bk‖.

Proof. First of all, the condition that A is stochastic matrix implies
N∑

j=1

max{0, aij − akj} +
N∑

j=1

min{0, aij − akj} =
N∑

j=1

(aij − akj) = 0. (2.4)

Then, the direct calculation from (2.3) yields

‖wi − wk‖ =
∥∥∥∥∥

N∑
j=1

aijzj + bi −
N∑

j=1

akjzj − bk

∥∥∥∥∥
=

∥∥∥∥∥
N∑

j=1

(aij − akj)zj + (bi − bk)

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

j=1

(aij − akj)zj

∥∥∥∥∥+ ‖bi − bk‖

= sup
φ∈(Rd )∗
‖φ‖=1

N∑
j=1

(aij − akj)φ(zj) + ‖bi − bk‖

= sup
φ∈(Rd )∗
‖φ‖=1

[
N∑

j=1

max{0, aij − akj}φ(zj) +
N∑

j=1

min{0, aij − akj}φ(zj)

]
+ ‖bi − bk‖

≤ sup
φ∈(Rd )∗
‖φ‖=1

[
N∑

j=1

max{0, aij − akj} max
n∈[N]

φ(zn) +
N∑

j=1

min{0, aij − akj} min
n∈[N]

φ(zn)

]

+ ‖bi − bk‖.

(2.5)

Now, we substitute (2.4) to (2.5) to get

‖wi − wk‖ ≤ sup
φ∈(Rd )∗
‖φ‖=1

N∑
j=1

max{0, aij − akj} max
n,m∈[N]

φ(zn − zm) + ‖bi − bk‖

=
N∑

j=1

max{0, aij − akj} max
n,m∈[N]

‖zn − zm‖ + ‖bi − bk‖

=
N∑

j=1

(
aij − min{aij, akj}

)
max

n,m∈[N]
‖zn − zm‖ + ‖bi − bk‖

≤ (1 − μ(A))DZ + DB,
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where we used the definition of μ(A) and the fact
N∑

j=1

aij = 1

in the last inequality, which implies our desired result.

Lemma 2.4. [33] For each i ∈ [N − 1], let Ai ∈R
N×N be a non-negative matrix whose all diagonal

components are strictly positive and G(Ai) has a spanning tree. Then, A1 · · · AN−1 is a scrambling
matrix.

Finally, we review several properties of state-transition matrix. Let t0 ∈R and A : [t0, ∞) →R
N×N be

a right-continuous matrix-valued function. We consider a linear ODE governed by the following Cauchy
problem:

dξ (t)

dt
= A(t)ξ (t), t > t0. (2.6)

Then, the solution of (2.6) can be written as

ξ (t) = 
(t, t0)ξ (t0), t ≥ t0, (2.7)

where the A-dependent matrix 
(t, t0) is said to be the state-transition matrix, which can be represented
by using the Peano–Baker series [31]:


(t, t0) = IN +
∞∑

k=1

∫ t

t0

∫ s1

t0

· · ·
∫ sk−1

t0

A(s1) · · · A(sk)dsk · · · ds1. (2.8)

Now, fix c ∈R and consider the following two Cauchy problems:
dξ (t)

dt
= A(t)ξ (t),

dξ (t)

dt
= (A(t) + cIN)ξ (t), t > t0. (2.9)

If 
(t, t0) and �(t, t0) are the state-transition matrices for the two linear ODEs in (2.9), respectively, then
the authors of [15] obtained the following relation between 
(t, t0) and �(t, t0):


(t, t0) = exp (−c(t − t0))�(t, t0), t > t0. (2.10)

3. Emergence of stochastic flocking

In this section, we present the sufficient framework for the flocking model with unit-speed constraint
and randomly switching network topology to exhibit asymptotic flocking. Recall that the model we are
interested in this paper is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
= 1

N

N∑
j=1

χσ

ij φ(‖xi − xj‖)

(
vj − 〈vj, vi〉vi

‖vi‖2

)
,

(xi(0, w), vi(0, w)) = (x0
i (w), v0

i (w)) ∈R
d × S

d−1.

(3.1)

3.1. Sufficient frameworks

In this subsection, we describe suitable sufficient frameworks in terms of initial data and system parame-
ters to guarantee the asymptotic flocking of the system (3.1). For this, motivated from the methodologies
studied in [13], we provide
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• (F1) There exists a probability space (�, F , P) and a sequence of independent and identically
distributed (i.i.d) random variables τi:� →R, i ∈N such that

∃ m, M > 0, P(m ≤ τi ≤ M) = 1, i ∈N.

• (F2) Define the sequence of random variables {tn:� →R}n∈N∪{0} as

tn =
{

0 n = 0,∑n
i=1 τi n ≥ 1.

Then for each ω ∈ � and n ∈N, the sample path σ (·, ω) satisfies

σ (t, ω) = σ (tn(ω), ω) ∈ [NG], ∀ t ∈ [tn(ω), tn+1(ω)),

and this implies that the process σ is right continuous. In addition, we use the following notation for
simplicity:

σtn (ω) := σ (tn(ω), ω), ω ∈ �, n ∈N∪ {0}.
• (F3) {σtn :� → [NG]}n∈N∪{0} is the sequence of i.i.d random variables, where

Pl := P(σtn = l) > 0 for all l ∈ [NG] and n ∈N∪ {0}.
• (F4) The union of all admissible network topologies {G1, . . . , GNG} contains a spanning tree with

vertices V = {β1, . . . , βN}.
• (F5) There exist R > 1 and n̄ ∈N such that

r := R

min
1≤l≤NG

{− log (1 −Pl)} <
1

M(N − 1)φ(0)
,

NG∑
l=1

(1 −Pl)
n̄ ≤ 1 − 1

R
,

(
mφ(0) exp (−φ(0)Mn̄)(N − 1)−rMφ(0)

N

)N−1

≤ log 2,

• (F6) There exist M > 0 and a sufficiently large number D∞
X > 0 such that for P− almost every w ∈ �,

DV(0, w) < min

{
N log M

(N − 1)φ(0)MC0

,
√

2

}
, DX(0, w) + MC0DV(0, w) < D∞

X ,

where we set

C :=
(

mφ(D∞
X ) exp (−φ(0)Mn̄)(N − 1)−rMφ(0)

N

)N−1

,

C0 := M(N − 1)
∞∑

l=1

[(
n̄ + r log l(N − 1)

)
exp

(
−C

(
l1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)]
.

Here, conditions (F1) − (F4) mean that the interaction network is randomly and repeatedly deter-
mined after a period of time within an appropriate range, and the probability of each network topology
being selected is the same regardless of time. Each of these network topologies may not have suffi-
cient connectivity, but the fact that the union of graphs that can be selected contains some spanning
tree allows all agents to send or receive information without being isolated in the long run. In addition,
(F5) − (F6) quantitatively represents the initial conditions to ensure the flocking phenomenon. In sum-
mary, these mean that the essential supremum of the initial velocity diameter (= ess supω∈�DV(0, ω))
has to be sufficiently small.

Note that for σt(w) ∈ [NG], the adjacency matrix χ
σt(w)
ij is defined by

χσt(w)
ij =

{
1, if (j, i) ∈ E(Gσt(w)),

0, if (j, i) /∈ E(Gσt(w)),
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and in particular, we have

(βi, βi) ∈ E(Gk), i ∈ [N],

which makes each vertex βi in the graph Gk ‘seems’ to have a self loop.

Remark 3.1. If we consider the network topology as a graph which connects each pair of points suffi-
ciently close to each other (as in the Vicsek model), it is natural to assume that the scale of time interval
τi ∈ [m, M] between network switching becomes smaller when the number of particles N becomes larger.
For example, it is widely known that the mean free time of gas molecules in a fixed volume of space is
proportional to 1/N.

3.2. Asymptotic flocking dynamics

First of all, we will consider the union of the network topology on time intervals of the form [a, b), which
we denote

G([a, b))(w) :=
(
V ,

⋃
t∈[a,b)

E(Gσ (t,w))

)
.

In addition, we also define a sequence {nk = nk(n̄)}k∈N∪{0} as

nk(n̄) := kn̄ +
k∑

l=1

�r log l�, k ∈N∪ {0},

where �a� denotes the largest integer less than or equal to a. Then, the following lemma provides a lower
bound estimate of the probability to the random digraph

ω �→ G([tnk , tnk+1 ))(w)

to have a spanning tree for all k ∈N∪ {0}.
Lemma 3.1. Let (X, V) be a solution process to (3.1) satisfying (F1) − (F5). Then, the following
probability estimate holds:

P

( ∞⋃
k=0

{
w : G([tnk , tnk+1 ))(w) has a spanning tree

})
≥ exp

(
− R2 log R

(R − 1)2

NG∑
l=1

(1 −Pl)
n̄−1

)
.

Proof. Since {σtn}n∈N∪{0} is a i.i.d sequence of random variables, we have

P
(
w : G([tnk , tnk+1 ))(w) does not contain a spanning tree

)
≤ P

(
w : ∃ l ∈ {1, . . . , NG} such that σtnk+i (w) �= l for all 0 ≤ i < nk+1 − nk

)

≤
NG∑
l=1

P
(
w : σtnk+i (w) �= l for all 0 ≤ i < nk+1 − nk

)

=
NG∑
l=1

(1 −Pl)
nk+1−nk =

NG∑
l=1

(1 −Pl)
n̄+�r log (k+1)� ≤

NG∑
l=1

(1 −Pl)
n̄ ≤ 1 − 1

R
.
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Then, the probability to contain a spanning tree is

P

( ∞⋃
k=0

{
w : G([tnk , tnk+1 ))(w) has a spanning tree

})

≥
∞∏

k=0

(
1 −

NG∑
l=1

(1 −Pl)
n̄+�r log (k+1)�

)

≥
∞∏

k=0

exp

(
−R log R

R − 1

NG∑
l=1

(1 −Pl)
n̄+�r log (k+1)�

)

= exp

(
−R log R

R − 1

NG∑
l=1

(1 −Pl)
n̄

∞∑
k=0

(1 −Pl)
�r log (k+1)�

)
,

(3.2)

where we used the following relation for x ∈ [0, 1 − 1
R
]:

1 − x ≥ R− Rx
R−1 = exp

(
−R log R

R − 1
x

)
.

In addition, since we have

1 < R = min
1≤l≤NG

{−r log (1 −Pl)} = −r max
1≤l≤NG

log (1 −Pl),

the convergence of p-series yields
∞∑

k=0

(1 −Pl)
�r log (k+1)� ≤

∞∑
k=0

(1 −Pl)
r log (k+1)−1

= 1

1 −Pl

∞∑
k=0

1

(k + 1)−r log (1−Pl)

<
1

1 −Pl

· −r log (1 −Pl)

−r log (1 −Pl) − 1

≤ 1

1 −Pl

· R

R − 1
,

(3.3)

where we used

(1 −Pl)
r log (k+1) = (1 −Pl)

r log (k+1) = exp (r log (k + 1) log (1 −Pl)) = (k + 1)r log (1−Pl),
∞∑

k=0

1

(k + 1)−r log (1−Pl)
< 1 +

∫ ∞

1

1

x−r log (1−Pl)
dx

= 1 + 1

−r log (1 −Pl) − 1

[
− 1

x−r log (1−Pl)−1

]∞

1

= 1 + 1

−r log (1 −Pl) − 1
,

in the equality and the second inequality, respectively. Finally, we apply the inequality (3.3) to (3.2) to
obtain the desired result:

P

( ∞⋃
k=0

{
w : G([tnk , tnk+1 ))(w) has a spanning tree

})
≥ exp

(
− R2 log R

(R − 1)2

NG∑
l=1

(1 −Pl)
n̄−1

)
.
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Now, we recall the matrix formulation of (3.1). According to (2.2), the matrix formulation of (3.1)
was given as ⎧⎨

⎩
Ẋ(1) = V (1),

V̇ (1) = − 1

N
Lσ (X(1))V (1) + 1

N
Rσ (X(1), V (1)).

(3.4)

Here, we take into account the homogeneous part of (3.4), which becomes

V̇ (2) = − 1

N
Lσ (X(1))V (2). (3.5)

If we denote the state-transition matrix corresponding to (3.5) as 
, then it follows from (2.7) that for
a ≥ b ≥ 0,

V (2)(a) = 
(a, b)V (2)(b). (3.6)

Then, we have the following explicit form of the solution to (3.4):

V (1)(a) = 
(a, b)V (1)(b) + 1

N

∫ a

b


(a, s)Rσs (X
(1)(s), V (1)(s))ds. (3.7)

In the following lemma, we present a lower bound estimate of the ergodicity coefficient for the state-
transition matrix 
 when the sample path (X, V)(ω) satisfies

G([tnk , tnk+1 ))(w) has a spanning tree for every k ∈N∪ {0}, (3.8)

to apply Lemma 2.3 to (3.7). For this, we assume some a priori conditions for a moment; there exists a
non-negative number D∞

X ≥ 0 and a positive number M > 1 such that

◦ sup
t∈R+

DX(t, w) ≤ D∞
X < ∞,

◦ (N − 1)2φ(0)M

N
sup
k∈N

k∑
l=1

(
n̄ + r log (N − 1) + r log l

)
DV(tn(k−1)(N−1) ) ≤ log M.

(3.9)

Then, the following lemma allows to analyse the flocking dynamics of (3.1).

Lemma 3.2. Let w ∈ � be an event satisfying (3.8), and assume the sample path (X, V)(ω) of the system
(3.1) satisfies (F1) − (F5) and (3.9)1. Then, we obtain the following assertions:

1. For every k ∈N∪ {0}, the ergodicity coefficient of 
(tnk(N−1) , tn(k−1)(N−1) ) satisfies

μ(
(tnk(N−1) , tn(k−1)(N−1) )) ≥
(

mφ(D∞
X )

N

)N−1

exp
(−φ(0)

(
tnk(N−1) − tn(k−1)(N−1)

))
.

2. For every T1 ≥ T2 ≥ 0, 
(T1, T2) is a stochastic matrix.

Proof. (1) We employ the method used in [13]. First, for k ∈N∪ {0} and q ∈ [N − 1], we denote {kqa}Nq+1
a=1

the unique integer-valued increasing sequence such that

n(k−1)(N−1)+q−1 = kq1 < · · · < kqNq+1 = n(k−1)(N−1)+q,

σt = σtkqa
�= σtkqa+1

, ∀ t ∈ [tkqa
, tkqa+1

), a ∈ [Nq],

and we use the following notation for simplicity:

gqa := σtkqa
∈ [NG], ∀ a ∈ [Nq].

Now, we apply (2.6)–(2.10) to write the state-transition matrix for (3.5)–(3.6) in terms of Laplacian
matrix Ll. Since φ is monotonically decreasing and χ l

ij ∈ {0, 1}, the condition (3.9)1 implies

φ(‖xi − xj‖) ≥ φ(D∞
X ) and 0 ≤ dl

i ≤ Nφ(0), i, j ∈ [N].

https://doi.org/10.1017/S0956792524000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000214


European Journal of Applied Mathematics 431

Then, we have

− 1

N
Lgqa

= 1

N

(
Agqa

−Dgqa

)≥ 1

N
Agqa

− φ(0)IN , (3.10)

where each (i, j)-th entry of the matrix Agqa
is given as

(Agqa
)ij :=

{
χ

gqa
ij φ(D∞

X ), i �= j,

φ(0), i = j.

Thus, if �(tkqa+1
, tkqa

) is the state-transition matrix corresponding to − 1
N
Lgqa

+ φ(0)IN , the relation (2.10)
yields


(tkqa+1
, tkqa

) = exp (−φ(0)(tkqa+1
− tkqa

))�(tkqa+1
, tkqa

),

and we apply (F1) and (3.10) to the Peano–Baker series representation for �(tkqa+1
, tkqa

) to obtain

�(tkqa+1
, tkqa

) = IN +
∞∑

k=1

∫ tkqa+1

tkqa

∫ s1

tkqa

· · ·
∫ sk−1

tkqa

k∏
b=1

(
− 1

N
Lgqa

(sb) + φ(0)IN

)
dsk · · · ds1

≥ IN +
∞∑

k=1

∫ tkqa+1

tkqa

∫ s1

tkqa

· · ·
∫ sk−1

tkqa

(
1

N
Agqa

)k

dsk · · · ds1

= IN +
∞∑

k=1

1

k! (tkqa+1
− tkqa

)k

(
1

N
Agqa

)k

=
∞∑

k=0

1

k! (tkqa+1
− tkqa

)k

(
1

N
Agqa

)k

= exp

(
1

N
(tkqa+1

− tkqa
)Agqa

)

≥ exp
(m

N
Agqa

)
.

(3.11)

Therefore, the state-transition matrix 
(tkqNq+1
, tkq1

) = 
(tn(k−1)(N−1)+q, tn(k−1)(N−1)+q−1) has a following lower
bound:


(tkqNq+1
, tkq1

) =
Nq∏

a=1


(tkqa+1
, tkqa

)

≥ exp (−φ(0)(tkqNq+1
− tkq1

))
Nq∏

a=1

exp
(m

N
Agqa

)

≥ m

N
exp (−φ(0)(tkqNq+1

− tkq1
))

Nq∑
a=1

Agqa

≥ m

N
φ(D∞

X ) exp (−φ(0)(tkqNq+1
− tkq1

))Aq,

(3.12)

where Aq is the adjacency matrix of G([tkq1
, tkqNq+1

)) for each q ∈ [N − 1]. Accordingly, we multiply (3.12)
for q = 1, 2, . . . , N − 1 and obtain


(tnk(N−1) , tn(k−1)(N−1) )

=
N−1∏
q=1


(tn(k−1)(N−1)+q, tn(k−1)(N−1)+q−1)

≥
(m

N

)N−1

φ(D∞
X )N−1 exp

(−φ(0)(tnk(N−1) − tn(k−1)(N−1) )
) N−1∏

q=1

Aq.

(3.13)
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Since G(Aq) contains a spanning tree for each q ∈ [N − 1], Lemma 2.4 implies that
∏N−1

q=1 Aq is a
scrambling matrix and, in particular,

μ

(
N−1∏
q=1

Aq

)
≥ 1.

Therefore, we apply A ≥ B ≥ 0 =⇒ μ(A) ≥ μ(B) to (3.13) to obtain

μ(
(tnk(N−1) , tn(k−1)(N−1) )) ≥
(m

N

)N−1

φ(D∞
X )N−1 exp

(−φ(0)
(
tnk(N−1) − tn(k−1)(N−1)

))
.

(2) Observe that the constant vector V (2) = [1, . . . , 1]T can be a special solution to (3.5)2 whatever X(1)

is. Then, by (3.6), one has

[1, . . . , 1]T = 
(T1, T2)[1, . . . , 1]T , ∀ T1 ≥ T2 ≥ 0.

Finally, we combine the above relation and the non-negativity of �(T1, T2) obtained from the Peano–
Baker series representation as (3.11) to see that


(T1, T2) = exp (−φ(0)(T1 − T2))�(T1, T2) ≥ 0

is a stochastic matrix, which is our desired result.

Then, we apply Lemma 3.2 to (3.1)2 to obtain the velocity alignment of the system (3.1) under a priori
assumptions for some well-prepared initial data.

Lemma 3.3. (Velocity alignment) Let w ∈ � be an event satisfying (3.8), and assume the sample path
(X, V)(ω) of the system (3.1) satisfies (F1) − (F5) and (3.9)1. If we further assume

DV(0, w) <
√

2,

the following inequality holds for all t ∈ [tnk(N−1) , tn(k+1)(N−1) ) and k ∈N∪ {0}:

DV(t, w) ≤ MDV(0, w) exp

(
−C

(
(k + 1)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)
,

where C is the constant defined in (F6), that is,

C :=
(

mφ(D∞
X ) exp (−φ(0)Mn̄)(N − 1)−rMφ(0)

N

)N−1

.

Proof. In this proof, we suppress w-dependence to simplify the notation. For every t ∈ [tn(k−1)(N−1) , tnk(N−1) ),
we apply the explicit formula (3.7) to obtain

V(tnk(N−1) ) = 
(tnk(N−1) , tn(k−1)(N−1) )V(tn(k−1)(N−1) ) + 1

N

∫ tnk(N−1)

tn(k−1)(N−1)


(tnk(N−1) , s)Rσs (s)ds.

Since 
(tnk(N−1) , tn(k−1)(N−1) ) is a stochastic matrix (∵ Lemma 3.2), we apply Lemmas 2.3 and 3.2 to get the
following estimate for DV :

DV(tnk(N−1) )

≤ (
1 − μ(
(tnk(N−1) , tn(k−1)(N−1) ))

)
DV(tn(k−1)(N−1) ) + DB

≤
(

1 −
(m

N

)N−1

φ(D∞
X )N−1 exp

(−φ(0)
(
tnk(N−1) − tn(k−1)(N−1)

)))
DV(tn(k−1)(N−1) ) + DB

=: I + DB,

where the matrix B is defined as

B := 1

N

∫ tnk(N−1)

tn(k−1)(N−1)


(tnk(N−1) , s)Rσs (s)ds.
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In what follows, we estimate I and DB one by one.
• (Estimate of I): By using (F1) and the definition of nk(n̄), we have

I ≤
(

1 −
(

mφ(D∞
X )

N

)N−1

exp

(
−φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

�r log l�
)))

× DV(tn(k−1)(N−1) ).

• (Estimate of DB): Since DB is the maximum distance between row vectors of B, one can easily verify
that

DB ≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

D
(tnk(N−1) ,s)Rσs (s)ds.

Then, since 
(tnk(N−1) , s) is stochastic, we apply Lemma 2.3 to the integrand D
(tnk(N−1) ,s)Rσs (s) to obtain

DB ≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

D
(tnk(N−1) ,s)Rσs (s)ds

≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

(1 − μ(
(tnk(N−1) , s)))DRσs (s)ds

≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

DRσs (s)ds.

Hence, it suffices to find an upper bound for DRσs (s), where the matrix Rσs (s) is given by

Rσs := (rσs
1 , . . . , rσs

N )T and rσs
i := 1

2

N∑
j=1

χσs
ij φ(‖xi − xj‖)‖vi − vj‖2vi.

To do this, we use Lemma 2.1, φ( · ) ≤ φ(0), χσs
ij ∈ {0, 1} and Corollary 2.1 that for s ∈ [tn(k−1)(N−1) , tnk(N−1) ),

‖rσs
i ‖ ≤ 1

2

N∑
j=1

χσs
ij φ(‖xi − xj‖)‖vi − vj‖2vi ≤ 1

2

N∑
j=1

φ(0)‖vi − vj‖2‖vi‖

≤ 1

2

N∑
j=1

φ(0)‖vi − vj‖2 = 1

2

∑
1≤j≤N

j �=i

φ(0)‖vi − vj‖2

≤ 1

2

∑
1≤j≤N

j �=i

φ(0)D2
V(s)

≤ 1

2

∑
1≤j≤N

j �=i

φ(0)DV(tn(k−1)(N−1) )
2

= (N − 1)

2
φ(0)DV(tn(k−1)(N−1) )

2.
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Therefore, the diameter DB has the following upper bound:

DB ≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

DRσs (s)ds

≤ 1

N

∫ tnk(N−1)

tn(k−1)(N−1)

(N − 1)φ(0)DV(tn(k−1)(N−1) )
2ds

= N − 1

N
φ(0)(tnk(N−1) − tn(k−1)(N−1) )DV(tn(k−1)(N−1) )

2

≤ N − 1

N
φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

�r log l�
)

DV(tn(k−1)(N−1) )
2.

Thus, we combine two estimates of I and DB to obtain

DV(tnk(N−1) )

≤
(

1 −
(

mφ(D∞
X )

N

)N−1

exp

(
−φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

�r log l�
)))

× DV(tn(k−1)(N−1) )

+ N − 1

N
φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

�r log l�
)

DV(tn(k−1)(N−1) )
2

≤
(

1 −
(

mφ(D∞
X )

N

)N−1

exp

(
−φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

r log (k(N − 1))

)))

× DV(tn(k−1)(N−1) )

+ N − 1

N
φ(0)M

(
(N − 1)n̄ +

k(N−1)∑
l=(k−1)(N−1)+1

r log (k(N − 1))

)
DV(tn(k−1)(N−1) )

2

=
(

1 −
(

mφ(D∞
X )

N

)N−1

exp

(
−φ(0)M(N − 1)

(
n̄ + r log (k(N − 1))

)))
DV(tn(k−1)(N−1) )

+ (N − 1)

N
φ(0)M

(
(N − 1)

(
n̄ + r log (k(N − 1))

))
DV(tn(k−1)(N−1) )

2

=
(

1 −
(

mφ(D∞
X ) exp (−φ(0)Mn̄)

N

)N−1

(k(N − 1))−rM(N−1)φ(0)

)
DV(tn(k−1)(N−1) )

+ (N − 1)2

N
φ(0)M

(
n̄ + r log (k(N − 1))

)
DV(tn(k−1)(N−1) )

2

=
[

1 + (N − 1)2

N
φ(0)M

(
n̄ + r log (N − 1) + r log k

)
DV(tn(k−1)(N−1) )

−
(

mφ(D∞
X ) exp (−φ(0)Mn̄)(N − 1)−rMφ(0)

N

)N−1

k−rM(N−1)φ(0)

]
DV(tn(k−1)(N−1) )

≤ exp

(
(N − 1)2

N
φ(0)M

(
n̄ + r log (N − 1) + r log k

)
DV(tn(k−1)(N−1) )

)
× exp

(−Ck−rM(N−1)φ(0)
)

DV(tn(k−1)(N−1) ),

where we used the following relation in the last inequality:

(1 + α) − x ≤ exp (α − x), ∀x ≥ 0.
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By iterating the above process, we apply the a priori condition (3.9)2 to obtain the following inequality
for t ∈ [tnk(N−1) , tn(k+1)(N−1) ):

DV(t) ≤ DV(0) exp

(
(N − 1)2

N
φ(0)M

k∑
l=1

(
n̄ + r log (N − 1) + r log l

)
DV(tn(k−1)(N−1) )

)

× exp

(
−C

k∑
l=1

l−rM(N−1)φ(0)

)

≤ MDV(0) exp

(
−C

(k + 1)1−rM(N−1)φ(0) − 1

1 − rM(N − 1)φ(0)

)
,

where we used
k∑

l=1

l−rM(N−1)φ(0) ≥
∫ k+1

1

x−rM(N−1)φ(0)dx = (k + 1)1−rM(N−1)φ(0) − 1

1 − rM(N − 1)φ(0)

in the last inequality, which completes the proof.

Remark 3.2. In [13], the authors used a similar argument to provide a sufficient framework for the
Cucker–Smale model to exhibit asymptotic flocking. For the Cucker–Smale model, the DB term in
Lemma 3.3 does not exist, so that the sufficient framework does not need to constrain the upper bound
of initial DV with respect to n̄. Therefore, it was possible to take n̄ → ∞ to show that the probability to
exhibit asymptotic flocking is 1 for some well-prepared initial data and system parameters. In the model
(3.1), however, the sufficient framework needs to constrain DV with respect to n̄ (via C0 in this paper)
due to the existence of this DB term (see Lemma 2.3).

From Lemma 3.3, we can estimate the decay rate of velocity diameter DV in terms of M, m, M, r, N.
Therefore, we can determine a suitable sufficient condition in terms of initial data and system parameters
to make the assumption (3.9)2 imply the assumption (3.9)1.

Lemma 3.4. (Group formation) Let w ∈ � be an event satisfying (3.8), and assume the sample path
(X, V)(ω) of the system (3.1) satisfies (F1) − (F5) and (3.9)2. If we further assume

DV(0, w) <
√

2,

DX(0, w) + MC0DV(0, w) < D∞
X ,

(3.14)

the first a priori assumption (3.9)1 also holds, that is,

sup
t∈R+

DX(t, w) ≤ D∞
X ,

where C0 is the constant defined in (F6).

Proof. First, we define S as

S =: {t > 0 | DX(s, w) ≤ D∞
X , ∀ s ∈ [0, t)},

and claim:

t∗ := sup S = +∞.

To see this, suppose that the contrary holds, that is, t∗ < +∞. Since DX is continuous in t and (3.14)
implies DX(0, ω) < D∞

X , we have t∗ > 0 and

DX(t∗−, w) = D∞
X .

https://doi.org/10.1017/S0956792524000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000214


436 H. Ahn and W. Shim

Then, we integrate the result of Lemma 3.3 on t ∈ [0, t∗] and apply (3.14) to obtain

DX(t, w) ≤ DX(0, w) +
∫ t∗

0

DV(s, w)ds

≤ DX(0, w) +
∫ ∞

0

DV(s, w)ds

≤ DX(0, w) + MDV(0, w)
∞∑

k=0

[
(tn(k+1)(N−1) − tnk(N−1) )

× exp

(
−C

(
(k + 1)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

))]

≤ DX(0, w) + MM(N − 1)DV(0, w)
∞∑

k=0

[(
n̄ + r log (k + 1)(N − 1)

)

× exp

(
−C

(
(k + 1)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

))]

= DX(0, w) + MC0DV(0, w) < D∞
X .

By taking t → t∗, this inequality yields

DX(t∗−, w) = lim
t→t∗−

DX(t, ω) ≤ DX(0, w) + MC0DV(0, w) < D∞
X ,

which contradicts to DX(t∗−, w) = D∞
X . Therefore, we can conclude t∗ = +∞, which is our desired

result.

Finally, we show that the condition (F6) implies the assumption (3.9)2, so that the asymptotic flocking
occurs for ω ∈ � satisfying (3.8).

Lemma 3.5. Let w ∈ � be an event satisfying (3.8), and assume the sample path (X, V)(ω) of the system
(3.1) satisfies (F1) − (F6). Then, the assumption (3.9)2 holds, that is,

(N − 1)2φ(0)M

N
· sup

k∈N

[
k∑

l=1

(
n̄ + r log l(N − 1)

)
DV(tn(l−1)(N−1) )

]
≤ log M.

Proof. First, define S as a subset of N satisfying

S =:

{
k

∣∣∣∣∣ (N − 1)2φ(0)M

N

k∑
l=1

(
n̄ + r log l(N − 1)

)
DV(tn(l−1)(N−1) ) ≤ log M

}
.

Since (F6) immediately implies 1 ∈ S , we can define s∗ =: sup S ∈N∪ {∞}. Then, we claim

s∗ = +∞.

To see this, suppose we have s∗ < +∞. Then,

J := (N − 1)2φ(0)M

N

s∗+1∑
l=1

(
n̄ + r log l(N − 1)

)
DV(tn(l−1)(N−1) ) > log M. (3.15)
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On the other hand, we can apply Corollary 2.1, Lemma 3.3 and (F6) to get

J ≤ (N − 1)2φ(0)MMDV(0)

N

×
(

s∗∑
l=1

(
n̄ + r log l(N − 1)

)
exp

(
−C

(
l1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)

+ (
n̄ + r log (s∗ + 1)(N − 1)

)
exp

(
−C

(
(s∗)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

))
.

(3.16)

By using 1 − rM(N − 1)φ(0) ∈ (0, 1) and C ≤ log 2 in (F5), we have
∞∑

l=s∗+1

(
n̄ + r log l(N − 1)

)
exp

(
−C

(
l1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)

≥ (
n̄ + r log (s∗ + 1)(N − 1)

)
exp

(
−C

(
(s∗)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)

×
∞∑

l=s∗+1

exp

(
−C

(
l1−rM(N−1)φ(0) − (s∗)1−rM(N−1)φ(0)

)
1 − rM(N − 1)φ(0)

)

≥ (
n̄ + r log (s∗ + 1)(N − 1)

)
exp

(
− C

(
(s∗)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)

×
∞∑

l=s∗+1

exp ( − C(l − s∗))

≥ (
n̄ + r log (s∗ + 1)(N − 1)

)
exp

(
− C

(
(s∗)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)
×

∞∑
l=1

2−l

= (
n̄ + r log (s∗ + 1)(N − 1)

)
exp

(
− C

(
(s∗)1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)
.

(3.17)

Therefore, we combine (3.16) and (3.17) to obtain

J ≤ (N − 1)2φ(0)MMDV(0)

N

×
[ ∞∑

l=1

(
n̄ + r log l(N − 1)

)
exp

(
− C

(
l1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)]

< log M,

which leads a contradiction to (3.15). This implies that s∗ must be infinity, which means the assumption
(3.9)2 holds.

Now, we are ready to state our main result. By combining Lemmas 3.1–3.5, we can deduce the
following result.

Theorem 3.1. (Probability of asymptotic flocking) Suppose that (X, V) is a solution process of the
system (3.1) satisfying (F1) − (F6). Then, we have

P (w ∈ �: (X, V)(ω) exhibits asymptotic flocking) ≥ exp

(
− R2 log R

(R − 1)2

NG∑
l=1

(1 −Pl)
n̄−1

)
.

Proof. Lemma 3.1 shows that the probability to satisfy (3.8) is greater than or equal to

exp

(
− R2 log R

(R − 1)2

NG∑
l=1

(1 −Pl)
n̄−1

)
. Then, we apply Lemmas 3.3–3.5 to obtain the desired result.
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To check whether this result is meaningful, we can compare the expected behaviour of the trivial
solution with the result in Theorem 3.1. On the one hand, one can easily verify that the solution of (3.1)
becomes the uniform linear motion of all agents with the same velocities when the event ω satisfies
DV(0, ω) = 0. On the other hand, the following corollary shows that the probability to exhibit asymptotic
flocking converges to 1 when sup

ω∈�

DV(0, ω) converges to 0, which implies that the result in Theorem 3.1

is consistent with the uniform linear motion of the trivial solution.

Corollary 3.1. Suppose that (X(n), V (n)) is a sequence of the solution process of the system (3.1) satisfying
(F1) − (F5) and

sup
n∈N

ess supω∈�DX(n) (0, ω) < ∞, lim
n→∞

ess supω∈�DV(n) (0, ω) = 0. (3.18)

Then, we have
lim
n→∞

P
(
w ∈ �: (X(n), V (n))(ω) exhibits asymptotic flocking

)= 1.

Proof. Note that the initial velocity diameter DV(0, ω) only affects to (F6). To meet the condition (F6),
we set

M = e, D∞
X = sup

n∈N
ess supω∈�DX(n) (0, ω) + 1

φ(0)
.

Then, (F6) holds true for (X(n), V (n)) if

sup
ω∈�

DV(n) (0, ω) < min

{
1

eφ(0)C0

,
√

2

}
, (3.19)

where C0 is the number determined by n̄:

C =
(

mφ(D∞
X ) exp ( − φ(0)Mn̄)(N − 1)−rMφ(0)

N

)N−1

,

C0 = M(N − 1)
∞∑

l=1

[(
n̄ + r log l(N − 1)

)
exp

(
− C

(
l1−rM(N−1)φ(0) − 1

)
1 − rM(N − 1)φ(0)

)]
.

In fact, every sufficiently large n̄ is allowed in the condition (F5), and C0 = C0(m, M, φ, D∞
X , n̄) can be

considered as an increasing function with respect to n̄. By using the condition (3.18), one can see that
for every sufficiently large n̄, there exists n0 ∈N such that (3.19) holds for all n ≥ n0. Therefore, we apply
Theorem 3.1 to get

lim inf
n→∞

P
(
w ∈ �: (X(n), V (n))(ω) exhibits asymptotic flocking

)
≥ lim

n̄→∞
exp

(
− R2 log R

(R − 1)2

NG∑
l=1

(1 −Pl)
n̄−1

)

= 1,

which implies our desired result.

4. Numerical simulation

In this section, we performed a numerical simulation of the Cauchy problem (3.1), especially for cases
where theoretical predictions are relatively easy due to the simple structure of the interaction network.

Consider a system with three points, as shown in Figure 1, where particle 2 only affects particles 1
and 3, and no other interaction exists. Additionally, assume the following deterministic initial data so
that we can control the simulation results more easily:

x1(0) = (0, 1), x2(0) = (0, 0), x3(0) = (0, −1),

v1(0) = ( cos ε, sin ε), v2(0) = (1, 0), v3(0) = ( cos ε, − sin ε), ε ∈ (0, 1).
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Figure 1. Interaction network.

Then, we have ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dv1

dt
= 1

3
χσ

12φ(‖x1 − x2‖) (v2 − 〈v1, v2〉v1) ,

dv2

dt
= 0,

dv3

dt
= 1

3
χσ

32φ(‖x3 − x2‖) (v2 − 〈v3, v2〉v3) ,

(4.1)

and the derivative of the inner product of velocities can be calculated as follows:
d

dt
〈vi, v2〉 = 1

3
χσ

i2φ(‖xi − x2‖)(1 − 〈vi, v2〉2), i = 1, 3. (4.2)

By using the primitive 
(x) = ∫ x

0
φ(y)dy, the following simple inequality can be obtained from (4.2):

d

dt
‖vi − v2‖ = 1

2‖vi − v2‖
d

dt
‖vi − v2‖2

= 1

2‖vi − v2‖
d

dt
(2 − 2〈vi, v2〉)

= − 1

3‖vi − v2‖χσ

i2φ(‖xi − x2‖)(1 − 〈vi, v2〉2)

= − 1

12
χσ

i2φ(‖xi − x2‖)‖vi − v2‖(4 − ‖vi − v2‖2)

≤ − 1

12
χσ

i2(4 − ‖vi − v2‖2)φ(‖xi − x2‖)(vi − v2) ·
(

xi − x2

‖xi − x2‖
)

= − 1

12
χσ

i2(4 − ‖vi − v2‖2)
d

dt

(‖xi − x2‖).

(4.3)

If there was no random selection of digraph G and χσ
12 ≡ χσ

32 ≡ 1 for all t, (4.3) yields

d

dt

(
log

2 + ‖vi − v2‖
2 − ‖vi − v2‖ + 1

3

(‖xi − x2‖)

)
≤ 0, (4.4)

and if initial data satisfies
1

3

∫ ∞

‖xi(0)−x2(0)‖
φ(x)dx > log

2 + ‖vi(0) − v2(0)‖
2 − ‖vi(0) − v2(0)‖ , (4.5)
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we have

lim sup
t→∞

1

3

(‖xi(t) − x2(t)‖) ≤ log

2 + ‖vi(0) − v2(0)‖
2 − ‖vi(0) − v2(0)‖ + 1

3

(‖xi(0) − x2(0)‖)

<
1

3
lim
x→∞


(x),

which implies the existence of the finite upper bound D∞
X of ‖xi − x2‖. Then, one can apply (4.3) to

obtain
d

dt
log ‖vi − v2‖ = − 1

12
φ(‖xi − x2‖)(4 − ‖vi − v2‖2)

≤ − 1

12
φ(D∞

X )(4 − ‖vi(0) − v2(0)‖2),

which shows the exponential convergence of ‖vi − v2‖, so that the asymptotic flocking emerges. If
‖xi(0) − x2(0)‖ = 1 and φ(x) = 1

(1+x2)2 , the left-hand side (4.5) is

1

3
·
[

1

2

(
x

x2 + 1
+ arctan x

)]∞

1

= π − 2

24
� 0.047566,

and (4.5) is equivalent to

2 − 4

1 + exp
(

π−2
24

) > ‖vi(0) − v2(0)‖ = 2 sin
ε

2
⇐⇒ ε < 0.0475618xxx.

Below, Figure 2 shows the trajectories of three particles when χσ
12 ≡ χσ

32 ≡ 1, ‖xi(0) − x2(0)‖ = 1 and
φ(x) = 1

(1+x2)2 . To perform the numerical experiment, we simply used the first order Euler method and
plotted trajectories for a total of 100,000 s with a time interval �t = 0.1 s. Although the horizontal axis
in the plot is the x-coordinate rather than time, it can be seen as if the y-coordinates are drawn according
to time, since the velocities of the three particles are close to (1, 0). From these results, we can see that
our theoretical prediction of the sufficient conditions for flocking to occur is nearly optimal, even with
numerical errors.

On the other hand, the least connected way for the union of graphs to have a spanning tree is that
NG = 2 and P1 + P2 = 1, where G1 and G2 only contain one edge (2 → 1) and (2 → 3), respectively. In
this case, since each χσ

ij is a component of Gσ ’s adjacency matrix, the sum of χ
σ (t,ω)
12 and χ

σ (t,ω)
32 must be 1

for all t and ω. However, even if all constants are set, it is very difficult to estimate the exact value of C0

in (F6) because the series C0 converges at a very slow rate. For example, if we have N = 3, P1 = P2 = 1
2

and m = M = 0.05, then the conditions we get from (F5) are

r = R

log 2
<

1

0.05 · 2 · 1
,

1

2n̄−1
≤ 1 − 1

R
,

(
0.05 · 1 · exp (−1 · 0.05 · n̄) · 2−r·0.05·1

3

)2

≤ log 2,

where the last conditions holds for every r > 0 and n̄ ∈N. If we set R = 5 log 2, any integer n̄ ≥ 2 satisfies
the condition (F5), and at this time, the probability guaranteed in Theorem 3.1 can be maximised by
choosing the largest n̄ which satisfies (F6).

In Figure 3, we show the trajectories of three particles when χ
σtn
12 = 1 − χ

σtn
32 is a nth sample from

the distribution Bernoulli( 1
2
) and ‖xi(0) − x2(0)‖ = 1, φ(x) = 1

(1+x2)2 as in Figure 2. Unlike in Figure 2,
we cannot explicitly find the exact value of ε at which the long-time behaviour starts to change, but at
least, we can see that the distance between points diverges to infinity at ε = 0.04 and asymptotic flocking
occurs at ε = 0.02.

The first feature that can be seen from the repeated experimental results at ε = 0.02 is that asymptotic
flocking occurs with a higher probability than predicted by theory. Although not shown in Figure 4, in
practice, flocking never failed to occur even once during the experiments. The second feature is that the
diameters of the three points always converged to a value of (approximately) 4.5, regardless of whether
particle 1 or particle 3 moved further away from particle 2. In fact, this is somewhat natural, since the
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Figure 2. Trajectories of three particles, χσ
12 ≡ χσ

32 ≡ 1.

more times the interaction is turned off, the further away from particle 2 it is, and the sum of χσ
12 and χσ

32

is identical to the constant 1 in this system.
In Figure 5, we vary the size of M = m while keeping all other conditions the same and plot their

trajectories. From these three experiments, we can say that flocking tends to be harder to guarantee
for larger M = m. In fact, this has some theoretical interpretation: the particle that has its interaction
turned off for time M will move away from the other particle for a long time without interaction, and the
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Figure 3. Trajectories of three particles, χ
σtn
12 = 1 − χ

σtn
32

i.i.d∼ Bernoulli( 1
2
).

two particles that have already moved away will not be able to interact enough to reduce their velocity
difference to cause flocking. Therefore, to guarantee flocking for M > 0, the interaction must be stronger
than in the deterministic example in Figure 2, and this tendency increases as M increases. The sufficient
condition (F5) we presented also has an upper bound on the value of M that can cause flocking, which
is M <

log 2
2

in the current setting. Although flocking actually occurred even at a larger M = 0.5, it can
be clearly confirmed that the presence of M affects whether flocking occurs.
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Figure 4. Three different simulations at ε = 0.02.
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Figure 5. Three different simulations at different M.
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Figure 6. Three different simulations at ε = 0.022.
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Finally, we present experimental results that prove that flocking can either occur or not occur depend-
ing on sampling and that calculating the probability of flocking occurring as in our paper is indeed an
appropriate form of outcome. In Figure 6, we ran three experiments with all parameters set the same
as in Figure 4 except for ε, which was set to 0.022. Although flocking occurs under relatively lenient
conditions compared with the sufficient conditions (F1) − (F6) we have presented, we are open to the
possibility that this is not just a technical limitation but also a special property of the examples used in
our numerical experiments.

5. Conclusion

In this paper, we presented a sufficient framework concerning initial data and system parameters to
exhibit the asymptotic flocking of the Cucker–Smale model with a unit-speed constraint and randomly
switching topology. For this, we used the explicit form of the given dynamical system by using the state-
transition matrix of its homogeneous counterpart. Then, we used the relation between the ergodicity
coefficient and the diameter of velocity to show that the asymptotic flocking occurs when the event
that the union of the network topology in some time interval contains a spanning tree occurs infinitely
many times. Subsequently, we provided a lower bound estimate of the probability of such an event,
which therefore becomes the lower bound of probability to exhibit asymptotic flocking. In particular, we
verified that the probability to exhibit asymptotic flocking converges to 1 when the sufficient framework
(F1) − (F5) holds and sup

ω∈�

DV(0, ω) converges to 0.
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