A PRESENTATION FOR A GROUP OF INTEGER MATRICES

вү N. SMYTHE

ABSTRACT. Let Λ_n be the kernel of the map from $GL(n, \mathbb{Z})$ to $GL(n, \mathbb{Z}_2)$ induced by the quotient map $\mathbb{Z} \to \mathbb{Z}_2$. We give a presentation for Λ_n .

The kernel of the map from $GL(n, \mathbb{Z})$ to $GL(n, \mathbb{Z}_p)$ is of some interest in *K*-theory. We give here a presentation for this group in the case p = 2; we denote the group by Λ_n . Since a general presentation for $GL(n, \mathbb{Z})$ and coset representatives for $GL(n, \mathbb{Z}_2)$ are known (see Coxeter and Moser [1]), a presentation can of course be obtained by using the Reidemeister-Schreier algorithm for any particular value of *n*. However it is not clear how to do this for general *n*; and in any case the presentation derived in this way is enormous and essentially useless for deriving properties of the group.

1. Generators and canonical form. The group Λ_n consists of $n \times n$ integer matrices of determinant ± 1 with odd entries on the diagonal, even entries off diagonal. Let Γ_n be the subgroup of Λ_n consisting of matrices whose diagonal entries are congruent to 1 modulo 4; also let A_i be the diagonal matrix with entry -1 in the *i*th position, +1 elsewhere, and let P_n be the subgroup of Λ_n generated by A_1, A_2, \ldots, A_n . Clearly Λ_n is generated by $\Gamma_n P_n$, the subgroup Γ_n is normal in Λ_n , P_n is an elementary 2-group of rank n, and Λ_n is a semi-direct product of Γ_n and P_n . Finally it should be noted that $A_1A_2 \cdots A_n = -I$ is the central element of $GL(n,\mathbb{Z})$, and the group $\Lambda_n^+ = \Lambda_n \cap SL(n,\mathbb{Z})$ is the semidirect product of Γ_n and the subgroup of P_n generated by A_1A_2 , A_1A_3, \ldots, A_1A_n .

Let B_{ij} denote the matrix which is the identity except for an entry 2 in the (i, j) position. Then Γ_n is generated by $\{B_{ij}: 1 \le i, j \le n, i \ne j\}$. Moreover we can write each element of Γ_n as a word in these generators in a canonical way:

THEOREM 1. Each element of Γ_n has a unique expression as a product

 $(\beta_{12}\beta_{13}\cdots\beta_{1n})(\beta_{23}\beta_{24}\cdots\beta_{2n})\cdots(\beta_{n-1n})(\delta_{n-1n}\cdots\delta_{12})$

where β_{ij} is a reduced word in the free group $\langle B_{ij}, B_{ji} \rangle$ of degree zero in the generator B_{ij} , i < j, and δ_{ij} is a power of B_{ij} , i < j.

Received by the editors, June 11, 1980 and in revised form, January 22, 1981.

¹⁹⁸⁰ AMS Classifications 20FO5, 20H25.

N. SMYTHE

Proof. Let M be any matrix in Γ_n . Left multiplication of M by B_{12} adds twice the second row of M to the first, and left multiplication by B_{21} adds twice the first row to the second. Hence by left multiplication by elements of $\langle B_{12}, B_{21} \rangle$ we can successively reduce the absolute values of the first two entries in the first column of M. Since the first entry remains odd, there is an element $\beta_{12} \in \langle B_{12}, B_{21} \rangle$ such that $\beta_{12}^{-1}M$ has a zero in the (2, 1) position; furthermore, we may assume that β_{12} has degree zero in B_{12} . Proceeding down the first column, we produce elements $\beta_{1i} \in \langle B_{ij}, B_{j1} \rangle j \le n$ of degree zero in B_{1j} , so that

$$M' = \beta_{1n}^{-1} \beta_{1n-1}^{-1} \cdots \beta_{12}^{-1} M$$

has first column consisting of zeros except in the leading entry, which then must be 1. By right multiplication by suitable powers of B_{1n}, \ldots, B_{12} the first row of M' can then be cleared, giving

$$M = (\beta_{12}\beta_{13}\cdots\beta_{1n})M''(\delta_{1n}\cdots\delta_{12})$$

with

$$M'' = \begin{pmatrix} 1 & 0 \\ 0 & M^* \end{pmatrix},$$

 M^* an $(n-1) \times (n-1)$ matrix in Γ_{n-1} .

We may assume by induction that

$$M'' = (\beta_{23} \cdots \beta_{2n}) \cdots \beta_{n-1n} \delta_{n-1n} \cdots \delta_{23}$$

uniquely.

Suppose that M can also be written

$$M = (\gamma_{12}\gamma_{13}\cdots\gamma_{1n})M'''(\varepsilon_{1n}\cdots\varepsilon_{12})$$

where $\gamma_{ij} \varepsilon \langle B_{1j}, B_{j1} \rangle$, γ_{1j} of degree zero in B_{1j} , ε_{1j} being a power of B_{1j} and $M'' \in \langle B_{ij}, B_{ji} : 2 \le i < j \le n \rangle$.

Then

$$\gamma_{1n}^{-1}\cdots\gamma_{12}^{-1}\beta_{12}\cdots\beta_{1n}=M'''\varepsilon_{1n}\cdots\varepsilon_{12}\delta_{12}^{-1}\cdots\delta_{1n}^{-1}(M'')^{-1}$$

The right hand side is a matrix of the form

$$\begin{pmatrix} 1 & v \\ 0 & M^{**} \end{pmatrix}$$

where v is a $1 \times (n-1)$ row of integers. From the form of the left hand side it is then immediate that

$$\gamma_{12}^{-1}\beta_{12} = \begin{pmatrix} a & b \\ & 0 \\ 0 & c \\ & 0 \\ 0 & I \end{pmatrix}$$

The only matrices in $\langle B_{12}, B_{21} \rangle$ of this form are powers of B_{12} , and since by assumption the degree of B_{12} in the product is zero (the group $\langle B_{12}, B_{21} \rangle$ is well-known to be free), we have $\beta_{12} = \gamma_{12}$. Similarly $\beta_{1i} = \gamma_{1i}$ for each *j*.

June

Finally, applying the same argument to the resulting equation

$$\varepsilon_{1n}\cdots\varepsilon_{12}\delta_{12}^{-1}\cdots\delta_{1n}^{-1}=(M'')^{-1}M=\begin{pmatrix}1&0\\0&\overline{M}\end{pmatrix}$$

we see that $\varepsilon_{1i} = \delta_{1i}$ and M''' = M''. The product form for M is therefore unique.

2. **Relations for** Γ_n . It is straightforward to verify that the following relations hold in Γ_n :

(a) $B_{ij} \leftrightarrow B_{ik}$ (b) $B_{ji} \leftrightarrow B_{ki}$ (c) $[B_{ij}, B_{jk}] = B_{ik}^{2}$ (d) $[B_{ij}B_{kj}, B_{ji}B_{jk}^{-1}] = (B_{ik}B_{ki}^{-1})^{2}, [B_{ji}B_{jk}, B_{ij}B_{kj}^{-1}] = (B_{ik}B_{ki}^{-1})^{2}$ (e) $B_{ij} \leftrightarrow B_{kl}$

whenever *i*, *j*, *k*, *l* are distinct indices. Here " $X \leftrightarrow Y$ " means X commutes with Y, and $[X, Y] = XYX^{-1}Y^{-1}$; in (d) one may assume i < j < k.

THEOREM 2. The above form a complete set of relations for Γ_n .

Proof. That the relations (a), (b), (c), (d) present the group Γ_3 can be verified using the Reidemeister-Schreier algorithm, using for example the presentation for $GL(3,\mathbb{Z})$ given in Coxeter and Moser [1]. The calculation is tedious, but can be done by hand; it has been verified by computer.

(A direct proof that these relations suffice to enable the reduction of any word in Γ_3 to canonical form should be possible, but my attempts at this lead to unsolved problems in number theory involving primes having 2 or -2 as a primitive root; partial results which are obtainable however certainly help greatly in the hand reduction of the enormous Reidemeister–Schreier presentation to the given one.)

We shall assume the inductive hypothesis that Γ_n has the above presentation for $3 \le n < N$. In order to prove the result for Γ_N , it suffices to show that every word in the generators B_{ij} can be reduced to the canonical form by means of the relations. Let G_N be the group actually presented by the relations; for any set of integers $\{i_1, i_2, \ldots, i_r\}$ with $i_1 < i_2 < \cdots < i_r$ let

 $\langle i_1, i_2, \ldots, i_r \rangle$ denote the subgroup of G_N generated by all $B_{i_i i_k}$;

 $\Delta(i_1, i_2, \dots, i_r)$ denote the subgroup of G_N generated by those $B_{i_j i_k}$ with $i_j < i_k$;

 $[i_1, i_2]$ denote the subgroup of $\langle i_1, i_2 \rangle$ consisting of words of degree zero in $B_{i_1i_2}$; (Note $\langle i_1, i_2 \rangle$ is free since its image in Γ_N is free).

Then $G_N = \Gamma_N$ if

$$G_N = [1, 2][1, 3] \cdots [1, N][2, 3] \cdots [N-1, N] \Delta(N-1, N) \cdots \Delta(1, 2)$$

The right hand side is

$$[1,2][1,3]\cdots [1,N]\langle 2,3,\ldots,N\rangle\Delta(1,N)\Delta(1,N-1)\cdots\Delta(1,2)$$
(1)

1982]

N. SMYTHE

by the induction assumption. (From the diagram

$$\begin{array}{ccc} G_{N-1} \longrightarrow G_N \longrightarrow \Gamma_N \\ & \parallel & \parallel \\ & \Gamma_{N-1} \xrightarrow{\quad \text{embedding} \quad} & \Gamma_N \end{array}$$

we may identify (2, 3, ..., N) in G_N with G_{N-1} .)

Since the theorem is true for N = 3, we note that

$$\langle i, j, k \rangle = [1, j][i, k][j, k]\Delta(i, j, k)$$
 for all $i < j < k$
= $[i, k][i, j][j, k]\Delta(i, j, k)$

(a) Canonical form for $\Delta(1, 2, ..., N)$.

Let Δ_i denote the subgroup of G_N generated by $\{B_{ij}: j > i\}$. Then Δ_i is an abelian group (in fact free abelian of rank N-i) and is normal in $\Delta(i, i+1, ..., N)$ since

$$\begin{cases} B_{kl}B_{ij}B_{kl}^{-1} = B_{ij} & \text{if } i, j, k, l \text{ are all distinct} \\ & \text{or if } i = k \text{ or } j = l \\ B_{jk}B_{ij}B_{jk}^{-1} = B_{ik}^{-2}B_{ij} & \text{if } i < j < k \end{cases}$$

Hence

 $\Delta(1, 2, \dots, N) = \Delta_{N-1} \Delta_{N-2} \cdots \Delta_1$ = $\Delta(N-1, N) \cdots \Delta(1, N) \Delta(1, N-1) \cdots \Delta(1, 2).$

(b) Again from these relations we find that the subgroup $\langle B_{ij}, B_{kj} \rangle$ is normal in $\langle B_{ij}, B_{kl}, B_{ik}, B_{ki} \rangle$, and similarly $\langle B_{ij}, B_{ik} \rangle$ is normal in $\langle B_{ij}, B_{ik}, B_{jk}, B_{kj} \rangle$; and further

(i) $\Delta(i, j)[i, k] \subset [i, k]\Delta(k, j)\Delta(i, j)$ for i < k < j(ii) $\Delta(i, j)[j, k] \subset [j, k]\Delta(i, k)\Delta(i, j)$ for i < j < k(iii) $\Delta(i, j)[k, i] \subset [k, i]\Delta(k, j)\Delta(i, j)$ for k < i < j(iv) $\Delta(i, j)[k, j] \subset [k, j]\Delta(i, k)\Delta(i, j)$ for i < k < j

(v) $\Delta(i, j)[i, k] \subset [i, k][j, k] \Delta(i, j)$ for i < j < k

From these we can quickly deduce

(vi) $\Delta_1 \cdot \langle 2, 3, \dots, N \rangle \subset \langle 2, 3, \dots, N \rangle \cdot \Delta_1$ (vii) $\Delta_1 \cdot [1, k] \subset [1, k] \langle 2, 3, \dots, n \rangle \cdot \Delta_1$

(C) Canonical form for G_N .

Now let w be any word in the generators of G_N of length k say. By induction on k, we may assume that the initial section of w is already in canonical form, so

 $w \in [1, 2] \cdots [1, N] \langle 2, 3, \ldots, N \rangle \Delta_1 \cdot B_{ii}^{\nu}$ for some i, j, ν .

By (a) above, if j < i then $\Delta_1 \cdot B_{ji}^{\nu}$ can be put in canonical form, so that w lies in the group (1).

[June

Thus we may assume that i < j; then $B_{ii}^{\nu} \in [i, j]$ and using (b) we see that $w \in [1, 2][1, 3] \cdots [1, N] \langle 2, 3, \dots, N \rangle [i, j] \langle 2, 3, \dots, N \rangle \Delta_1.$ Case 1. i > 1Then $(2, 3, \ldots, N)[i, j] \subset (2, 3, \ldots, N)$ and we are done. Case 2. i = 1, j = 2Then $(2, 3, \ldots, N)[1, 2] = [2, 3] \cdots [2, N](3, 4, \ldots, N)\Delta_2 \cdot [1, 2]$ (by inductive hypothesis) $\subset [2, 3] \cdots [2, N] \langle 3, 4, \dots, N \rangle [1, 2] \Delta (1, 2, \dots, N)$ by b(iii) $\subset [2, 3] \cdots [2, N] [1, 2] (3, 4, \dots, N) \Delta(1, 2, \dots, N)$ Now $[2, k][1, 2] \subset (1, 2, k) \subset [1, k][1, 2][2, k] \Delta_2 \Delta_1$ hence $[2, 3] \cdots [2, N] [1, 2] \subset [2, 3] \cdots [2, N-1] \cdot [1, N] [1, 2] [2, N] \Delta_2 \Delta_1$ $\subset [1, N] \cdot [2, 3] \cdot \cdot \cdot [2, N-1] [1, 2] \cdot \langle 2, 3, \dots, N \rangle \Delta_1$ $\subset [1, N][2, 3] \cdots [2, N-2][1, N-1][1, 2]$ $\times [2, N-1]\Delta_2\Delta_1(2, 3, \ldots, N)\Delta_1$ $\subset [1, N][1, N-1] \cdot [2, 3] \cdots [2, N-2]$ $\times [1, 2] \cdot \langle 2, 3, \ldots, N \rangle \Delta_1$ $\subset [1, N][1, N-1] \cdots [1, 2](2, 3, \dots, N) \Delta_1$ Finally $[1, 2] \cdots [1, N] [1, N-1] \cdots [1, 2] \subset [1, 2] \langle 1, 3, \dots, N \rangle [1, 2]$ $\subset [1, 2][1, 3] \cdots [1, N]$ $\times \langle 3, 4, \ldots, N \rangle \Delta (1, 3, 4, \ldots, N) \cdot [1, 2]$ $\subset [1, 2][1, 3] \cdots [1, N][1, 2](2, 3, \dots, N) \Delta_1$ $\subset [1, 2][1, 3] \cdots [1, N-1] \cdot [1, 2]$ $\times [1, N] \langle 2, 3, \ldots, N \rangle \Delta_1$ $\subset [1, 2][1, 3] \cdots [1, N-2] \cdot [1, 2][1, N-1]$ $\times [2, N-1] \Delta (2, N-1) \Delta_1 [1, N]$ $\times \langle 2, 3, \ldots, N \rangle \Delta_1$ $\subset [1, 2] \cdots [1, N-2][1, 2] \cdot [1, N-1][1, N]$ $\times \langle 2, 3, \ldots, N \rangle \Delta_1$ by b(vii)

Hence w lies in the group (1).

Case 3.
$$i = 1, j > 2$$

Then
 $(2, 3, ..., N)[1, j] = [2, 3] \cdots [2, N](3, 4, ..., N)\Delta_2 \cdot [1, j]$
 $\subset [2, 3] \cdots [2, N](3, 4, ..., N)[1, j] \cdot \Delta_1 \Delta_2$ by b(iii)
 $\subset [2, 3] \cdots [2, N](1, 3, 4, ..., N)\Delta_2 \Delta_1$
 $\subset [2, 3] \cdots [2, N][1, 3] \cdots [1, N](3, 4, ..., N)\Delta(1, 2, ..., N)$

And

220

$$[2, 3] \cdots [2, N][1, j] = [2, 3] \cdots [2, j-1][2, j][1, j][2, j+1] \cdots [2, N]$$

$$\subset [2, 3] \cdots [2, j-1] \cdot [1, j][1, 2]$$

$$\times [2, j] \Delta_2 \Delta_1 \cdot [2, j+1] \cdots [2, N]$$

$$\subset [1, j] \cdot [2, 3] \cdots [2, j-1][1, 2] \langle 2, 3, \dots, N \rangle \Delta_1$$

Finally

$$[1, 2] \cdots [1, N][1, j] \in [1, 2] \cdots [1, N-1] \cdot [1, j][1, N][j, N]\Delta(j, N)\Delta_1$$

$$\subset [1, 2] \cdots [1, N-2][1, j][1, N-1][j, N-1]\Delta(j, N-1)\Delta_1$$

$$\times [1, N][j, N]\Delta(j, N)\Delta_1$$

$$\subset [1, 2] \cdots [1, N-2][1, j][1, N-1][1, N]\langle 2, 3, \dots, N \rangle \Delta_1$$

$$\vdots$$

$$\subset [1, 2] \cdots [1, N]\langle 2, 3, \dots, N \rangle \Delta_1$$

Hence

 $w \in [1, 2] \cdots [1, N] \langle 2, 3, \dots, N \rangle \Delta_1 \cdot [2, 3] \cdots [2, j-1] [1, 2] \langle 2, \dots, N \rangle \Delta_1$

and then by Case 2, w lies in the group (1). This completes the proof of Theorem 1.

3. **Presentation for** Λ_n . The presentation for Λ_n can now be derived from the presentation for Γ_n and the action of P_n on the generators:

$$A_i B_{jk} A_i = \begin{cases} B_{jk} & \text{if } i, j, k \text{ are distinct} \\ B_{jk}^{-1} & \text{if } i = j \text{ or } i = k \end{cases}$$

Thus we have Λ_n is the group with generators $A_i, B_{ij}, 1 \le i, j \le n, i \ne j$, and relations:

(a) $B_{ij} \leftrightarrow B_{ik}$ (b) $B_{ji} \leftrightarrow B_{ki}$ (c) $[B_{ij}, B_{jk}] = B_{ik}^{2}$ (d) $[B_{ij}B_{kj}, B_{ji}B_{jk}^{-1}] = (B_{ik}B_{ki}^{-1})^{2}, [B_{ji}B_{jk}, B_{ij}B_{kj}^{-1}] = (B_{ik}B_{ki}^{-1})^{2}$ (e) $B_{ij} \leftrightarrow B_{kl}$ June

A GROUP OF INTEGER MATRICES

- (f) $A_i^2 = 1$ (g) $A_i \leftrightarrow A_j$ (h) $A_i B_{ij} A_i = B_{ij}^{-1}$ (i) $A_i B_{ji} A_i = B_{ji}^{-1}$
- (j) $A_i \leftrightarrow B_{ik}$

for distinct indices *i*, *j*, *k*, *l*. For the group Λ_n^+ , as a quotient group of Λ_n , add the relation

(k) $A_1 A_2 \cdots A_n = 1$.

Reference

1. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 14, Springer 1972.

Australian National University and University of British Columbia