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Abstract

We give algebraic criteria for distinguishing composition operators among all continuous linear
operators on spaces of continuous functions with topologies generated by seminorms that are
weighted analogues of the supremum norm. In another direction, we also characterize those
self maps of the underlying topological space which induce composition operators on such
weighted spaces, as well as determine conditions on these self maps which correspond to various
basic properties of the induced composition operator. Our results are applied to a question
concerning translation invariance which arises in the context of topological dynamics.

1980 Mathematics subject classification (Amer. Math. Soc): 47 B 38.

If L(T) is a topological vector space of scalar valued functions on a non-void
set T, then each function <p: T —> T induces a natural linear mapping Cv from
L(T) into the vector space F(T) of all scalar valued functions on T defined by

f e L{T). In case the range of Cv is contained in L(T) and Cv: L{T) -> L{T)
is continuous, Cv is said to be a composition operator on L(T). More generally,
if M is any vector subspace of L(T) which happens to be invariant under Cr,
the corresponding map Cv: L(T)/M -> F(T)/M, where C^f + M) = C^f + M
for each / G L(T), is said to be a composition operator on the quotient space
L(T)/M whenever C^ is a continuous map from L(T)/M into L{T)/M.
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Interest in composition operators at least traces back to an article on classi-
cal mechanics by B. O. Koopman [6], but the concept was not singled out for
systematic study until about two decades ago. In view of the early applications
(for example, see [6], [7]), it is not surprising that these investigations initially
focused on the context provided by the classical Z/2-spaces and functional Hilbert
spaces such as H2(D); we refer to the survey by E. A. Nordgren [10] for details.
Composition operators on general Lp-spaces and Banach spaces of analytic func-
tions have also been the subject of considerable attention in a second phase of the
study which has import for such topics as ergodic theory, Markov processes, and
statistical mechanics (for example, see [4], [8]). Spaces of continuous functions
equipped with topologies induced by weighted analogues of the supremum norm
offer yet another context in which composition operators hold interest (for ex-
ample, see [5], [13]). However, while many of the results for Hilbert space carry
over with minor modification to the Lp-spaces or, as the case may be, some
other natural Banach space counterpart (see [10, page 37]), the Hilbert space
case offers much less insight into what might be expected in this third setting,
and only limited progress in that direction has heretofore been realized.

In this paper, we take up the study of composition operators on two related
classes of weighted continuous function spaces with topologies deriving from the
supremum norm; namely, the spaces of type CVo(T^ and CVb(T"). The frame-
work provided by these classes is broad enough to include many of the standard
continuous function spaces encountered in analysis (see [14, page 123] for a par-
tial list of explicit instances), as well as more specialized spaces that arise in
connection, say, with age-dependent population models (see [15]) or the theory
of analytically uniform spaces (see [1]), and our development in the sequel will
thus apply in a wide range of situations. Following a preliminary section, we
begin in Section 2 by characterizing those mappings on the underlying topolog-
ical space T which serve to induce composition operators on the corresponding
weighted spaces CVQ{T) and CVb{T). The problem of identifying composition
operators on CVQ(T) among all continuous linear operators on this space to-
gether with the companion problem for CVb{T) will then be resolved in Section
3, while basic properties of composition operators in the setting at hand will be
considered in the fourth and final section.

1. Preliminaries

In what follows, T will always denote a completely regular Hausdorff space.
Any upper semicontinuous function v: T —> R+ will be called a weight on T. If
V is a set of weights on T such that, given any t € T, there is some v € V for
which v(t) >• 0, we write V > 0. A set V of weights on T is said to be directed
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upward provided tha t , for every pair ui,i>2 G V and each A >- 0, there exists
v G V so t h a t Xvi ^ v (pointwise on T) for i = 1,2. Since there is no loss of
generality, we hereafter assume t h a t sets of weights are directed upward; a set V
of weights on T which additionally satisfies V >- 0 will be referred to as a system
of weights on T.

We will write C(T) to indicate the collection of all scalar valued continuous
functions on T, where the scalar field K G {R, C}; there will be no loss of
generality in tacitly assuming that K = C. Now, taking a system V of weights
on T, we put

CV0{T) = {/ G C{T): vf vanishes at infinity on T for all v G V}

and

CVb{T) = {/ G C{T): vf is bounded for all v G V}.

Obviously, CVo(T) and CVb(T) are vector spaces (over K), while the upper
semicontinuity of the weights yields that CV0(T) C CVb{T). For v G V and
f €C(T), let us now put

Pv(f)=mp{v(t)\f(t)\:teT}.

Then pv can be regarded as a seminorm on either CVb{T) or CVo(T'); and we
assume that each of these two spaces is equipped with the Hausdorff locally
convex topology induced by {pv: v G V}. As a matter of notational convenience,
given v G V, the closed unit ball corresponding to the seminorm pv in either
CV'o(T') or CVb(T) will be denoted by Bv; this ambiguity should occasion no
difficulty since the setting will always be clear from context.

If U and V are two systems of weights on T, we write U =4 V whenever, given
u e U, there exists v €.V such that u ̂  v. In this case, we then clearly have
that CV0{T) C CU0{T) and CVb{T) C CUb{T), as well as that the inclusion
map is continuous in both instances. When U =3 V and V ^ U, consequently,
we say that U and V are equivalent systems of weights on T and indicate this
by writing U ~V.

As noted earlier, many standard spaces of continuous functions can be realized
in the context set forth above (see [14]), and we will pause to consider various
(other) special cases as we go along and the occasion demands. At this point,
however, let us only mention that if v: T —> R+ is any weight satisfying v(t) >- 0
for every t G T, then V = {Xv: A >- 0} is a system of weights on T for which
both CVo(T) and CVb{T) are normed vector spaces with topologies finer than
that of pointwise convergence. In keeping with standard usage, we shall indicate
the special case where v{i) = 1 for each t G T by simply writing CQ{T) and
Cb{T) in place of CV0{T) and CVb{T), respectively.
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2. Functions inducing composition operators

In developing our characterizations of those functions tp: T -+T which induce
composition operators on weighted spaces of type CVQ(T) and CVb(T), we work
under the modest requirement that

(2.a) T is a completely regular Hausdorff space,
(2.b) V is a system of weights on T, and
(2.c) corresponding to each t € T, there exists ft € CVQ{T) such that

ft(t) ± 0;
these basic assumptions will be in force throughout the present section and those
that follow.

Conditions (2.a), (2.b), and (2.c) primarily serve to exclude trivial cases along
with certain (often unnecessary) pathological situations (for example, see [3]).
Of course, (2.c) is automatically fulfilled if T happens to be locally compact.
In view of (2.c), moreover, it readily follows from [9, Lemma 2, page 69] that
if <p: T —• T is any function for which the corresponding composition map
Cr induced on CVQ{T) has its range contained in C(T), then tp is necessarily
continuous. For a continuous function <p:T^>T, furthermore,

V(<p) - {vo<p: veV}

is clearly a system of weights on T.

2 . 1 . LEMMA. If tp: T —* T induces a continuous composition map C^:
CVQ(T) —» CVb(T), then <p is continuous, V(<p) is a system of weights on T, and

PROOF. AS observed above, tp is necessarily continuous whence V(<p) is a
system of weights on T, and so it will suffice to show that V =<: V(<p). To this
end, fixing v E.V, let us choose u 6 V such that C,p(Bu) C Bv; we claim that
v ^ 2u o tp. For this, we take to € T and set s = <p(to)- In case u(s) >• 0, G =
{t € T: u(t) •< 2u(s)} is an open neighborhood of s = <p{to)- Thus, according to
[9, Lemma 2, page 69], there exists / € CV0{T) such that 0 ^ / ^ l,/(s) = 1,
and f(T\G) = 0, and therefore g = (2u(s))"1/ € Bu. Since this yields that
g((p(t))v(t) =̂  1 for every t € T, we conclude that v(to) ^ 2u(<p(t0)). On the
other hand, suppose that u(s) = 0 and v(to) >- 0. If we then put e = v(to)/2
and set G = {t 6 T: u(t) < e}, G would be an open neighborhood of s, and we
could again find / e CV0{T) such that 0 ^ / =<: 1, f(s) = 1, and f(T\G) = 0.
But this would mean that C^(e~1f) € Bv, which is clearly impossible. Having
thus established our claim, the proof is complete.

We now proceed to characterize those mappings <p: T —> T which induce
composition operators on CVj,(T).
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2 . 2 . THEOREM. A function <p: T —> T induces a composition operator C^

on CVb(T) if, and only if, <p is continuous and V =<: V{<p).

PROOF. Since necessity follows from Lemma 2.1, let us suppose that <p is
continuous and V ^. V(<p). Then, given / € CVj,(T) and v e V, if we choose
u € V such that v ^ uo <p, we have that

Pv{f ° <P) =* Puopif O<P)^ Pu{f),

which immediately yields the desired conclusion.
Assuming that <p: T —• T is continuous and V ^ V(<p), the foregoing result

shows that <p would as well induce a composition operator on CVQ(T) if only
CVQ(T) were to be invariant under the composition operator C^: CVj(T) —»
CVt,(T). This need not be the case, however, as can be seen by taking T to be
the natural numbers N with the discrete topology and V to be the set of all
nonnegative constant functions on T, whereby CVQ(T) is the classical Banach
sequence space CQ- For a constant function <p: T —> T, say <p(t) = 1 for every
t € T, it is obvious that V =̂  V(<p), but / o <p e c0 in this case only when
/ : N —• K is a sequence such that / ( I ) = 0.

Something more must therefore be required of a function <p: T —» T if <p is
to induce a composition operator on CVQ{T). For the purpose of formulating
a suitable condition, if v: T —• R+ is any weight on T and e >- 0, we put
N(v,e) = {t e T : v(t) ^ e}. Of course, since v is upper semicontinuous, N(v,e)
is a closed subset of T.

2.3. THEOREM. For a function <p: T —• T, the following are equivalent:
1. ip induces a composition operator on CVQ[T)\
2. ip induces a composition operator C^ on CVb{T) and CVQ{T) is invariant

under Cv;
3. (i) ip is continuous, (ii) V ^ V(ip), and (iii) for each v 6 V, e >- 0, and

compact set K C T, ip~1(K) C\ N(v,e) is compact;
4. (i) <p is continuous, (ii) V ^ V(<p), and (iii) for each v 6 V, e >• 0, and

u € V such that v ^ uoip, ip~1(K)nN(v,e) is compact whenever K is a compact
subset of N(u,e).

PROOF. Let us first assume that 1. holds. In this case, 3(i) and 3(ii) follow
from Lemma 2.1. To see that 3(iii) is also satisfied, fix e >- 0, take v € V,
and let if be a compact subset of T. According to [9, Lemma 2, page 69],
there exists / e CV0(T) such that 0 <;/=<; 1 and f(K) = 1. Since / o <p 6
CVQ(T),C = {t € T: v(t)f(ip(t)) >? e) is compact, and this serves to establish
3(iii) in view of the fact that (p~1(K)nN(v,e) C C. Noting that 4 is an obvious
consequence of 3, we now assume that 4 holds. This being the case, <p induces
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a composition operator Cp on CVj,(T) by Theorem 2.2, and we would further
show that CV0(T) is invariant under Cv. To this end, given / € CV0{T), veV,
and e > 0, let us consider the set F — {t e T: v(t)\f(<p(t))\ £= e}, which we
may suppose to be nonvoid. Next, choosing u € V so that u ^ u o p , we
put K = {t € T : u(*)|/(*)| ^ £}. Then X is compact, <p(F) C K, M =
sup{| /( t ) | : t € K) >- 0, and A" C N(u,e/M). In view of 4.(iii), therefore,
^~ 1 ( / f ) n N(v,e/M) is compact, whereby F must as well be compact since
F C N(v,e/M), and we thus conclude that Cvf 6 CV0(T). Since 2 clearly
implies 1, the argument is now complete.

REMARK. In case ip: T —> T is a (surjective) homeomorphism, for example,
Condition 3.(iii) of Theorem 2.3 is necessarily satisfied, and such a function ip
will therefore induce composition operators on both CVQ(T) and CVt,{T) as soon
as V ^V(<p).

Theorem 2.3 provides some insight into a question that arises in the context of
topological dynamics. The setting is a special case of that under consideration,
and in the remainder of the section we shall take T to be the real line R (with
the usual topology) and V to be a system of weights on R generated by a single
continuous weight v: R —> R+ such that v(t) >• 0 for each I € R (that is,
V = {Xv: A >- 0}). Further, for each w € R, we put <pu(t) = t + u,t € R.
If 7r: R x CVb(R) —» C(R) is the function defined by setting n(u,f) = / o <pu

for u £ R and / € CVb(R), there is a question (for example, see [11, Example
3.2]) as to when w is a dynamical system on the weighted Banach space CVo(R).
For this to be the case, of course, each translation p^: R —• R, w € R, must
necessarily induce a composition operator on CVb(R), and the foregoing remark
asserts that this will occur if V ^ V(<pJ) for each w € R. We now proceed to
show that this condition is also sufficient.

To begin, if V ^ V(<pu) for some u € R, we put

A(w) = inf{A > 0: v =

which is the same as setting A(w) = sup{t;(t)/t;(t + w): f e R}.

2 .4 . LEMMA. IfV^ V{<pu) for every u E R , t/ien i/iere exist 6 ^ 0 and a
function M : R - » R + suc/i t/iof, given w € R, A(r) ^ M(w) whenever r € R ««'</!
|r - w| -< 5.

PROOF. For each n e N, put F n = {r € R: A(r) =$ n}. Since F n is closed in
R for every n G N and R = U^Li ^n, we invoke the Baire category theorem to
obtain m € N for which int(Fm) ^ 0 , and accordingly choose a e Fm and 6 > 0
so that (a -6,a+ 6) C F m . Fixing u € R, we now set M(w) = mA(u - a). For
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r e R such tha t \u> - T\ < 6 and any t e R, we then have t h a t

v{t) _ v(t) v{t + T-u + o)

v(t + r) ~ v(t + T-

=3: X(T - u) + o)\{u -a) ^ M(w),

whereby A(r) =̂  M(w).

As remarked above, if V =$ V(ipu) for each w € R, then n(u>,f) = / o ̂  g

CV0(R) for every w € R and all / e CV0{R).

2 . 5 . LEMMA. Assume that V ^ V(<Pu) for each u € R. Then, given

f e CVo(R), the function n(-,f): R -> CVb(R) ta continuous.

PROOF. We being by fixing w € R and e >- 0. Applying Lemma 2.4, we next

choose Si >- 0 and Af (w) >- 0 so t h a t A(r) ̂  M ( w ) for all r G R with \u> -T\ -<6I.

Since vf G Co(R), moreover, there exists 62 > 0 such tha t

for s , feR such that \s — t\ -< 62, and there also exists to € R+ so that

(2.d) v(t)\f(t)\ -<

when t € R and \t\ >• t0. Finally, setting r) = in{{v(t): \t\ ^ t0}, there exists

63 >- 0 such that if s, t e R with \s\, \t\ ^to + l and |s - t\ -< 63, then

(2.e) \v(s) - V(«)| -< ve/[2(Pv(f)

We now put (5 = min{<$i,<S2,<53,1}, and take r € R so that \T — UJ\ -< 6. For any

t GR, since it follows from either (2.d) or (2.e) that

v(t) v(t)

" v{t

we then have that

<e/2,

as required to complete the proof.

2 . 6 . THEOREM. Given v € C(R) such that v(t) >• 0 for each ( e R , let

V = {Xv: A >- 0} , and consider the function w. R x CVb(R) —• C'(R) defined by

setting 7r(w, f) — f °<pu for w £ R a n d / € C V b ( R ) , w/ iere <pu{t) = t + w, < € R .

T/ie following are then equivalent:

1. 7T is a (/meor) dynamical system on CVo{R);

2.V^ V(<p,j) for every u) € R;

3. CVa(CV0(R)) C CVfc(R) /or eac/i w e R .
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PROOF. Assertion 3 obviously follows from 1., while the implication 2 =>• 1 is

an immediate consequence of Lemma 2.5 and (the remark following) Theorem

2.3 since it clearly satisfies the requisite group properties. In order to show tha t

3 implies 2, let us suppose tha t 2 fails to hold. There would then exist w £ R and

a sequence (tn) in R such tha t v(tn) ^n2v(tn + ijj) for each n € N, and we may

further suppose tha t there exists g € Cb(R) for which g(tn + w) — 1/n, n € N.

If we now set / = g/v, then / € CVb(R). Since

v{tn)\f{tn + w)| > n2g{tn + OJ) = n

for each n G N, however, / o <pu £ CV(,(R), and so the proof is complete.
In bringing the section to an end, we note two examples which help to illustrate

the situation:
(i) If we put v{t) - exp(-|t|) for t € R and take any weR, then V =<: V{<pu)

since v(t) =<: exp(\u\)v(t + w) for allt € R (see [11, Example 3.2]);
(ii) If v(t) = exp(-t2) for ( e R , however, it is obvious that V ^ V(ipu) only

if u = 0.

3. Characterization of composition operators

In view of Condition (2.b), the point evaluation S(t) corresponding to any
t GT defines a continuous linear functional on either CVQ{T) or CVb(T). Thus,
putting A(T) = {S(t): t G T}, we may regard A(T) as a subset of either the
continuous dual CVQ{T)' or CVb(T)'. This observation readily leads to a de-
scription of the continuous composition maps from CVQ(T) into CVb{T) which
parallels a standard result for functional Hilbert spaces (see [10, page 46]).

3 . 1 . THEOREM. For a linear transformation $ : CV0{T) -> CVb(T), there
exists <p:T^>T such that $ = Cv if, and only if, the transpose mapping
$* from CVb{T)' into the algebraic dual CV0{T)* leaves A(T) invariant. In
case $*(A(T)) C A(T), moreover, <p is necessarily continuous, and $ = Cv is
continuous if, and only if, V ^ V(<p).

PROOF. Assume that $ = C^ for some <p: T - • T, if t € T and / € CV0{T).
Then

</,*•(«(*))> = (*(/),«(*)> = (f°<P,W) = (f,&{*>{!))),
whereby $*(6(t)) - 6{<p{t)). Conversely, let us assume that $*(A(T)) C A(T).
For t € T, if we take (p(t) to be the (unique) element of T such that $*(6(t)) —
6{<p(t)) and consider any / € CV0{T), then

*(/)(*) = </,**(«(0)> = (f,t(<P(t))) = f(¥>(t)),

https://doi.org/10.1017/S1446788700031013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031013


[9] Composition operators 311

as desired. Furthermore, as noted previously, <p is continuous since C^: CVQ(T)

—> CVb(T) C C(T), while $ = Cv is continuous exactly when V ^ V(<p) in view

of Lemma 2.1 and Theorem 2.2.

REMARK. If CV0(T) is everywhere replaced by CVb(T) in the s ta tement

of Theorem 3.1, this yields a companion result which can be established by

(essentially) the same argument.

Theorem 2.6 provides one instance where the condition V =<: V(ip) is au tomat -

ically satisfied if Cr: CV0{T) —• CVb{T), and the question arises as to whether

this would always be the case. As we note in the following example, however,

the answer is negative.

3 . 2 . EXAMPLE. Let N* denote the one-point compactification of N, and

consider the compact Hausdorff space T = N* x N*. For each 7 € N*, sett ing

for each (a, (3) € T defines a weight on T; we pu t

V = | A r « 1 : A v 0 ; F C N t , F finite '

Then V is a system of weights on T. As sets, moreover, both CVQ(T) and
CVb(T) coincide with C{T), and thus the conditions (2.a), (2.b), and (2.c)
are all satisfied, while every continuous function <p: T —> T induces a map
Cv: CVQ(T) -> CVb{T). At this point, let us consider the function ip: T -> T
defined by setting <p(a, /?) = (/?, a), (a, /?) € T. Clearly, <p is continuous (indeed,
even a surjective homeomorphism), but it is not the case that V =$ V(<p). In fact,
since Ui(Ar, 1) = 1 for every k € N, we need only observe that, corresponding to
each v € V, there exists k e N for which v(l, k) = 0.

One description of those continuous linear operators on CVo(T) which happen
to be composition operators immediately follows from Theorem 3.1. From several
points of view, however, a characterization entirely in terms of the operator itself
would be preferable. We next give a deeper result which will serve to resolve the
problem in a manner reflecting the classical work in this direction (for example,
see [2, page 142]).

3.3. THEOREM. Let $: CV0{T) —> CVb(T) be a continuous linear operator.
Then there exists <p: T —* T such that $ = Cv if, and only if, the following two
conditions are satisfied:

(i) for each t e T, there exists g € CV0{T) such that ${g){t) £ 0;
(ii) $(/g) = $(/)$(#) whenever f,ge CVQ(T) D Cb(T).
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PROOF. Since (i) and (ii) are obviously necessary, we need only check suffi-
ciency, and so let us assume that both (i) and (ii) are satisfied. In any event,
moreover, we have that A = CVo(T)C\Cb{T) is a selfadjoint subalgebra of Cb(T)
which separates the points of T. Now, fixing t G T, we put

W(t) = {feA:*(f)(t)=0}.

Then W{i) is a vector subspace of CVQ(T), and it follows from (ii) that W(t) is
a module over A. According to (i), furthermore, c\(W(t)) is a proper subset of
CVQ(T). Thus, since we have an instance of the bounded case of the weighted
approximation problem, we conclude from [9, Theorem 1, page 106] that there
exists s € T such that f(s) = 0 for every / G W(t). Suppose that there as well
exists r G T with r^s such that / ( r ) = 0 for all / € W[t). Then, taking geA
so that g(r) = 1, we also choose h G A such that h(r) = 0 and h(s) = 1. Noting
that $(g)(t) ^ 0 in this case, let us now put

Since / e A and $(/)(*) = 0, we have that / G W(t) whence f(r) = 0. This
would imply that $(h)(t) — 0, however, which certainly does not hold, and so
we see that there is a unique element ip(t) € T such that f(<p{t)) = 0 for every
/ G W{i). Consequently, another application of [9, Theorem 1, page 106] even
yields that

c\(W(t)) = {/ € CV0(T): f(<p(t)) - 0}.

In order to show that $(/)(*) = f(<p(t)) for every / G CV0(T), let us fix g e A
such that g(<p(t)) — 1. Setting

we then have that h 6 W(t), and the fact that h(ip{t)) — 0 immediately implies
that ${g){t) - 1. Now, given any / G CV0{T), let us put h = f-f((p{t))g. Then
h € c\(W(t)) since h(ip(t)) = 0, and therefore ®{h)(t) = 0. From this, however,
it follows that $(/)(<) = f(<p{t)), as was required to conclude the proof.

In particular, Theorem 3.3 serves to distinguish the composition operators
among all continuous linear operators on CVQ{T). AS will subsequently be
demonstrated, however, a continuous linear operator $: CVb{T) —> CVb{T)
which satisfies (i) and (ii) of Theorem 3.3 can fail to be a composition oper-
ator on CVb(T) (Example 3.5), and hence something more is needed in this
case.

3 .4 . THEOREM. Let $ : CVb{T) -f CVb{T) be a continuous linear operator.
Then there exists tp: T —> T such that $ = Cv if, and only if, the following two
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conditions are satisfied:
(i) for each t G T, there exists g G CV0(T) such that &{g)(t) ^ 0;
(ii) $(fg) = *(/)*(g) whenever f G CVb(T) and g G CV0{T) n Cb(T).

PROOF. Since necessity is again obvious, let us assume that (i) and (ii) both
hold. According to Theorem 3.3, therefore, there exists ip: T —> T such that
$ ( / ) = / o <p for every / G CV0{T). Now, consider any / G CVb(T), and fix
t G T. Then G = {s G T: \f(s)\ < \f{<p(t))\ + 1} is an open neighborhood of
<p{t), and so there exists g G CVb(r) n C 6 ( T ) such that g(<p{t)) = 1 and g(s) = 0
for every s G T \ G . In view of (ii), since g2 G CV0(T) n Ci,(T), it now follows
that

On the other hand, since / g 2 G CVo{T), we have that

whereby the proof is complete.
We shall conclude the section with two examples. The first shows that condi-

tion (ii) of Theorem 3.4 cannot be replaced by the corresponding condition from
Theorem 3.3, while the second demonstrates that (i) of Theorem 3.4 cannot be
rephrased in terms of functions belonging to CVb{T).

3.5. EXAMPLE. Let T = R+ with the usual topology induced by R, put
v(t) = exp(-t) for t G T, and set V - {Xv: X >- 0}. Fixing p G f3T\T, we now
define an operator $ on CVb(T) by setting

where / G CVb(T), t G T, and (3{fv) denotes the Stone extension of fv to
the Stone-Cech compactification /3T of T. Then $ is clearly a bounded linear
operator on CVb(T). Moreover, given t GT, there exists g G CVQ{T) such that
Q(g)(t) = g(t) ^ 0. Since Cb{T) C CV0(T), we also have that

= f{t)g(t) = *(/)(«)*(»)(*)

for every t G T whenever / , g <E C(,(T) = C6(T) D CVb(T). However, $ is not
a composition operator on CVb(T). To see this, let us suppose that there does
indeed exist some <p: T -> T such that $( / ) = f o <p for each / G CVb(T).
Setting f{t) = exp(t) for t G T, since / G CVb(T) and /(y>(0)) = *(/)(0) = 2,
it would then follow that <p(0) = log2. Thus, for any g G Cb{T), we would have
that

and this contradiction serves to establish our claim.
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3 .6 . EXAMPLE. Let T= {0}U[l,oo) with the relative topology induced by
R, put v(t) = 1 for t € T, and set V = {Xv: X> 0}. Again fixing p £ @T\T, we
now put

*(/)(*) = {
where / e CVh(T) = Cb{T) and /?(/) denotes the Stone extension of / to /?T.
Then $ is obviously a bounded linear operator on CVb{T) such that ${fg) =
$(f)$(g) for all f,g€ CVb(T). Moreover, v € CVb{T) and ®{v)(t) = 1 for each

t € T, but $(g)(0) = 0 for every g € CV0(T) = C0{T), whereby $ is not a
composition operator on CVb(T).

4. Basic properties of composition operators

If we consider the composition map Cp: C(T) —> C(T) induced by a contin-
uous function <p: T —• T, then it is obvious that

- {f &

where N(f) = {t e T: f(t) ^ 0}. Since N(f) is open when / € C{T), we
see that Cv is therefore injective if ip{T) is dense in T. On the other hand, if
even the restriction C<p ICV'o(X') of Cv to some CVQ(T) is injective, then <p{T)
must be dense in T in view of condition (2.c). We collect these straightforward
observations in the following statement.

4 .1 . THEOREM. Let Cv: C(T) -> C(T) be the composition map induced by
a continuous function ip: T —> T, and let V be any system of weights on T for
which (2.c) is satisfied. Then the following are equivalent:

1. <p(T) is dense inT;
2. Cp is injective;
3. Cip\CVb(T) is injective;
4. Cv | CVo(T) is injective.

Some preparation is needed before stating the expected "dual" result.

4.2. LEMMA. Let V be a system of weights on T for which (2.c) is satisfied,
let U be a system of weights on T such that U ^ V, and assume that ip: T —• T
induces a composition map C^,: CVQ(T) —> CU${T). Then ip is injective if, and
only if, Cv{CVo(T)) is dense in CU0{T).

PROOF. Assume, first of all, that C^,{CV0{T)) is dense in CU0{T), and
fix s, t G T with s / t. We now choose g € CVQ(T) SO that g(s) — 0 and
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g(t) = 1, as well as u € U for which u(s), u(t) £= 1. Since g € CUQ{T), there
exists / € CV0(T) such that pu(f o <p - g) -< ±. Thus, \f(<p{s))\ -< 1/2 and
\f{<p{t)) — 1| -< 1/2, whereby <p(s) ^ £>(£)• Conversely, assuming that <p is
injective, A = {f o <p: f £ Cb{T)} is a selfadjoint subalgebra of Cf,(T) which
separates the points of T. Moreover, the vector subspace W = {/ o <p\ f g
CVo{T)} is a module over A. Since we again have an instance of the bounded
case of the weighted approximation problem, the density of C^iCVo^T)) — W in
CUo(T) now follows as an immediate consequence of [9, Theorem 1, page 106],
and the proof is thereby complete.

Given any closed subset F of T, the characteristic function 1^ of F is then a
weight on T; we put

= {A1 F : A > 0; F C T, F finite }.

Then fF is a system of weights on T, and

where w(J?") denotes the topology of pointwise convergence on T. Thus, (2.c) is
trivially satisfied, while &~ is the smallest system of weights on T in the sense
that &~ ̂  U for any system U of weights on T.

4 . 3 . THEOREM. Let C^: C{T) —> C(T) be the composition map induced by
a continuous function ip: T —* T, and let V be any system of weights on T for
which (2.c) is satisfied. Then the following are equivalent:

1. <p is injective;
2. Cv(CV0(T)) is w^)-dense in C(T);
3. CpiCVbiT)) is w{^)-dense in C{T);
4. Cv{C{T)) is w{Sr)-dense inC{T).

PROOF. Since 9~ =$ V, if <p is injective, then 2 holds by Lemma 4.2. The
implications 2 =>• 3 and 3 => 4 are obvious, while another application of Lemma
4.2, this time taking U = V = &~, shows that 4 implies 1.

REMARK. One additional consequence of Lemma 4.2 is the fact that CV0(T)
is always w(J?")-dense in C(T), which follows by setting U = &~ and <p(t) = t,
teT.

In case ip: T —• T happens to induce a composition map Cv: CVo(T) —*•
CVo(T), then taking U = V in Lemma 4.2 gives us that ip is injective if and
only if Cp{CVo{T)) is dense in CVQ{T). Furthermore, even if ip only induces a
composition map Cr: CVb(T) —> CVb{T), it is still the case that (p will be injec-
tive when Cp(CVb(T)) is dense in CVb(T); indeed, 3 of Theorem 4.3 would then
be satisfied in view of the preceding Remark. However, as we next demonstrate,
the converse assertion can fail to hold in this case.
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4 .4 . EXAMPLE. Let T = R with the usual topology, put v{t) = 1 for
t € T, and set V = {Xv: X >• 0}, whereby CVb{T) = Cb{T). If we now put
tp(t) = t a n - 1 t , i € T, then ^ is injective and certainly induces a composition
map Cp: CVb(T) -> CVb{T). Setting /(«) = smt,t € T, let us suppose that
there exists g G Cb(T) such that pv{g o <P - f) < 1/3. Since |ff(vs(fc7r))| -< 1/3
for each k £ N, we have that |<7(TT/2)| =̂  1/3. Similarly, however, we would also
have that \g(v/2) - 1| =<: 1/3, which is a contradiction. Thus, C^{CVb{T)) is not
dense in CVb(T).

Turning to the question as to when a composition map C^: CVb(T) —> CVb{T),
say, will actually be surjective, we begin by noting a necessary condition on the
function p : T->T.

4 .5 . LEMMA. Let Cv: C{T) —> C(T) be the composition map induced by
a continuous function <p: T —> T, and /e< V 6e anj/ system of weights on T
for which (2.c) w satisfied. If CV0{T) C C^(C(T)), fften <p: T -> <p{T) is a
homeomorphism.

PROOF. The fact that >p is injective follows from Theorem 4.3. Now, given
any g e CV0{T), since there exists / € C(T) such that g = fo<p, gop-1 = f\<p{T)
is continuous on <p(T). Consequently, (p~x: <p(T) —> T is continuous in view of
(2.c), and the proof is thus complete.

As Example 4.4 makes plain, however, even when <p: T —+ <p(T) C T is
a homeomorphism which induces a composition map Cv: CVb(T) —> CVb(T),
something else is needed if Cv is to be surjective. The missing ingredient is a
requirement that the range of <p be what one might term "CV(ip""1)6-embedded"
in T. Indeed, we note in passing that if <p: T —• <p(T) C T is a homeomorphism
and V is any system of weights on T for which (2.c) is satisfied, then V((p~1) —
{^o^?"1: v G V} is a system of weights on <p{T) for which (2.c) is satisfied. The
next result extends [2, Theorem 10.3(b), page 141].

4 .6 . THEOREM. Assume that the function <p:T —• T induces a composition
map Cv: CVb{T) -> CVb{T). Then Cv is surjective if and only if

(i) <p: T —* <p(T) is a homeomorphism, and

(ii) given g € CV{tp-l)b{<p{T)), there exists f e CVb(T) such that f\<p(T)

= 9-

PROOF. Assuming that Cv is surjective, (i) then holds by Lemma 4.5. Fur-
ther, given g e CV(^-1) f r ( ip(r)) , v e V, and any t E T, g o <p e C(T) and

\g o <p(t)\v(t) = \g(p(t))\v o <p-\<p{t)) ^ pvov-x (g).

Since this implies that g o ip e CVb{T), there exists / 6 CVb(T) such that
/ o ip = g o ip, which is to say that f\<p(T) = g. Conversely, let us assume

https://doi.org/10.1017/S1446788700031013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031013


[15] Composition operators 317

that (i) and (ii) are bo th satisfied. Fixing g € CVb{T), we then have tha t

g o ip~x £ C(<p(T)). Moreover, given v G V and t G T,

|go^-1(^(i)) | t ;o^-1(^(t)) = \g(t)\v(t)^pv(g),

whereby g o <p~1 G CV(>p~1)b(<p(T)). Thus, according to (ii), there exists / G
CVb{T) so that f\<p(T) — go ip'1, and hence / o <p = g as required.

REMARK. For a homeomorphism tp: T —> ip(T) C T, the foregoing argu-
ment also shows that setting $(/) = / o £>-1 for each / G CVj,(T) actually
defines a topological isomorphism between CVb{T) and CV(ip~1)b{<p(T)), and it
readily follows that <&(CVo{T)) = CF((p~1)o(^(T')). Moreover, in any situation
where a function ip: T —*T induces a composition map Cv: CVQ{T) —» CVo{T),
this latter fact can then be combined with Lemma 4.5 to show that Cv will
be surjective if, and only if, <p: T —> <p(T) is a homeomorphism and >p(T) is
ttCV((p-1 Jo-embedded" in the sense that each g G CV {(p'^o^T)) has an
extension belonging to CVQ(T).

Since they are difficult to verify in practice, the "embedding" conditions of
Theorem 4.6 and its analogue for CVQ{T) (as described in the preceding Remark)
are less than satisfactory. There is a functional analytic approach to surjectivity,
however, which can sometimes offer a way around this problem while simulta-
neously providing additional information. According to Ptak's open mapping
theorem (see [12, page 163]), if CVo(T), say, happens to be B-complete (or
fully complete), and if <p: T —> T induces a nearly open composition operator
Cf,: CV0{T) -> CV0{T) such that C^,{CV0{T)) is dense in CV0(T), then Cv is
necessarily an open surjection. Consequently, when V is a system of weights
generated by a single continuous weight on T, for example, Cp will be (open
and) surjective as soon as Cv: CVQ(T) —> CVQ(T) is a continuous nearly open
operator with dense range. We shall bring the paper to an end by characterizing
those composition maps C^: CVo(T) —> CVo(T) which are nearly open in the
following sense: given any v e V, there exists u € V such that Bu C

4.7 . THEOREM. Assume that the function <p: T —> T induces a composition
map Cp\ CV0(T) —> CVQ{T). Then Cp is nearly open if, and only if, <p is
injective and V(<p) ^ V.

PROOF. Assume that Cp is nearly open. Then, fixing / G CVo(T), let v € V,
choose u € V so that Bu C c\{Cp{Bv)), and put A = pu(/) + l. In this case, there

"exists g € Bv such that go/p e X~1(f-\-Bv), whereby C^Xg) — Xgo<p e f + Bv.
This shows that Cv(CVo(T)) is dense in CVQ(T), and so ip is injective by Lemma
4.2. To show that V(<p) =̂  V, we fix v € V, t € T, and e > 0. Again choosing u G
V so that Bu C d{Cp(Bv)), we now put G = {s G T: u(s) -< u(t)+e/2}. Since G
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is open and t e G, there exists g e CVQ(T) with 0 ^ g ^ 1 for which g(t) = 1 and
g(T\G) = 0 by [9, Lemma 2, page 69]. Setting a = (u(t)+e/2)~1 ,ag(s)u(s) -< 1
for each s G T, and hence ag € Bu. For w E V such that w(<) ^ 1, we can
therefore find f £ Bv so that pw{foip-ag) < a e ^ v ^ ^ J + l)]"1, w m c h means
that | /(p(0) - <*| =$ | / (y W) ~ affWkW ^ ae[2{v{tp(t)) +1)]"1. Consequently,
we have that

- e/2).

Since this gives us that v(ip(t)) ^ a~1+e/2 = u(i)+e, we see that u(̂ >(<)) ^ u(t)
for each i € T, and thus F(^) =<: V.

Turning to the converse, let us now assume that <p is injective and V(<p) ^ V.
We then fix. v €V, choose u £ V so that D O ^ ^ U , and take any / G CVQ(T)

for which pu(f o cp) -< 1. Since £> is injective, another application of Lemma 4.2
yields that Cf,(CVo(T)) is dense in CV0{T). This being the case, it will suffice
to show that / o ^ e c\(Cv(Bv)) in order to establish that Bu C cl(C^(Bu)).
To that end, given w € V, we put i£"i = {i € T: \f(<p{t))\w(t) ^ 1} and
iT2 = {t e T: \f(t)\v{t) > 1}. Then ifi and K2 are both compact. For any
t e T, moreover, since \f(<p(t))\v(<p(t)) =<; \f(<p(t))\u{t) < 1, <p{t) & K2. Thus,
because <p is necessarily continuous, (p(Ki) is compact and ^( / f i ) n K2 = 0 .
Choosing 0 € Cj(T) such that 0 ^ g =̂  1, g-f^) = 1, and g(v5(/fi)) = 0, we now
put h = f - ^ / . Since h € CF 0 (^) and

for every t GT, h € Bv, and so we need only observe that

- h(<p(t))\w(t) = g(<p{t))\f(<p{t))Wt) •< 1

for any t 6 T in order to conclude the argument.
The next result is an immediate consequence of Theorem 4.7 taken together

with Theorem 2.3.

4 .8 . COROLLARY. A function <p: T —> T induces a nearly open composition
operator on CVQ(T) if, and only if, (i) <p is a continuous injection, (ii) V(<p) ~ V,
and (iii) for each v € V, e >- 0, and compact set K C T, (p~i(K) n N(v,e) is
compact.

REMARK. If <p: T —> T induces a nearly open composition map Cv: CV(,(T)
—» CV),(T), then the necessity argument from the proof of Theorem 4.7 can be
adapted (by using Theorem 4.3 in place of Lemma 4.2) to as well show that <p

https://doi.org/10.1017/S1446788700031013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031013


[17] Composition operators 319

must be injective and V(tp) =<: V. As can be seen from Example 4.4, however, the

converse assertion is false. Example 4.4 also shows tha t condition (iii) cannot be

omitted from the s tatement of Corollary 4.8.
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