ON ADDITIVE MAPS OF PRIME RINGS

Matej Brešar and Bojan Hvala

Let R be a prime ring of characteristic not $2, C$ be the extended centroid of R, and $f: R \rightarrow R$ be an additive map. Suppose that $\left[f(x), x^{2}\right]=0$ for all $x \in R$. Then there exist $\lambda \in C$ and an additive map $\zeta: R \rightarrow C$ such that $f(x)=\lambda x+\zeta(x)$ for all $x \in R$. In particular, if $f(x)^{2}=x^{2}$ for all $x \in R$, then $\zeta=0$ and either $\lambda=1$ or $\lambda=-1$.

1. Introduction and statement of the results

In the present paper we continue the series of papers concerning arbitrary additive maps of prime rings satisfying certain identities (see, for example [1, 2, 3, 4] and references given there).

Throughout, R will be a prime ring with extended centroid C, and $f: R \rightarrow R$ will be an additive map. Let us mention three results from the recent papers $[1,2,4]$:
(I) If $[f(x), x]=0$ for all $x \in R$, then there exist $\lambda \in C$ and an additive map $\zeta: R \rightarrow C$ such that $f(x)=\lambda x+\zeta(x), x \in R$.
(II) If the characteristic of R is not 2 and $f(x) x+x f(x)=0$ for all $x \in R$, then $f=0$.
(III) If $[f(x), f(y)]=[x, y]$ for all $x, y \in R$, then there exists an additive map $\zeta: R \rightarrow C$ such that either $f(x)=x+\zeta(x)$, or $f(x)=-x+\zeta(x), x \in R$.
The main goal of this paper is to prove
Theorem 1. If the characteristic of R is not 2 and $\left[f(x), x^{2}\right]=0$ for all $x \in R$, then $[f(x), x]=0$ for all $x \in R$. Therefore, there exist $\lambda \in C$ and an additive map $\zeta: R \rightarrow C$ such that $f(x)=\lambda x+\zeta(x), x \in R$.

Thus, we consider an identity that is certainly more general then those considered in (I) and (II). In fact, (II) can be derived at once from Theorem 1. Indeed, assuming that $f(x) x+x f(x)=0, x \in R$, it follows from Theorem 1 that $f(x) x-x f(x)=0$ and therefore $f(x) x=x f(x)=0, x \in R$. Whence $f(x) y+f(y) x=0, x, y \in R$; multiplying from the right by $f(x)$ we get $f(x) R f(x)=0, x \in R$, which yields $f=0$.

As an application of Theorem 1 we shall obtain

[^0]Theorem 2. If the characteristic of R is not 2 and $f(x)^{2}=x^{2}$ for all $x \in R$, then either $f=I$ or $f=-I$, where I is the identity on R.

Clearly, the condition $f(x)^{2}=x^{2}$ is (at least when the characteristic of R is not 2) equivalent to the condition $f(x) f(y)+f(y) f(x)=x y+y x$. Therefore, Theorem 2 can be considered as a Jordan analogue of a Lie - type result (III).

2. Proofs

We shall make extensive use of the following well known result: If $a_{i}, b_{i} \in R C+C$ satisfy $\sum a_{i} x b_{i}=0$ for all $x \in R$, then the a_{i} 's as well as the b_{i} 's are C-dependent, unless all $a_{i}=0$ or all $b_{i}=0$.

Defining $B(x, y)=[f(x), y]$, we see that $\left[f(x), x^{2}\right]=0$ can be written as $B(x, x) x+x B(x, x)=0, x \in R$. In the next lemma, motivated by some analogous considerations in [3], we treat a more general situation.

Lemma. Let $n \geqslant 2$ and suppose that the characteristic of R is different from $2,3, \ldots, n$. Let $B: R \times \ldots \times R \rightarrow R$ be a map, additive in each of the n arguments. If

$$
\begin{equation*}
B(x, \ldots, x) x+x B(x, \ldots, x)=0 \tag{1}
\end{equation*}
$$

for all $x \in R$, then $x^{2 n+2} B(x, \ldots, x)=B(x, \ldots, x) x^{2 n+2}=0$ for all $x \in R$.
PROOF: Introducing $\widetilde{B}: R \times \ldots \times R \rightarrow R$ by

$$
\widetilde{B}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\pi \in S_{n}} B\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

and noting that $\widetilde{B}(x, \ldots, x)=n!B(x, \ldots, x)$, we see that there is no loss of generality in assuming that B is symmetric (that is, $B\left(x_{1}, \ldots, x_{n}\right)=B\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for each $\pi \in S_{n}$). Now set

$$
\begin{aligned}
B_{i}(y, x) & =B(\underbrace{y, \ldots, y}_{i}, \underbrace{x, \ldots, x}_{n-i}) \\
b_{i}(x) & =B_{i}\left(x^{2}, x\right) \quad i=0, \ldots, n .
\end{aligned}
$$

Replacing x by $x+k y, k \in \mathbb{N}$, in (1), we get

$$
k a_{1}(x, y)+\ldots+k^{n} a_{n}(x, y)=0, \quad x, y \in R, k \in \mathbb{N}
$$

where

$$
\begin{equation*}
a_{i}(x, y)=\binom{n}{i}\left(B_{i}(y, x) x+x B_{i}(y, x)\right)+\binom{n}{i-1}\left(B_{i-1}(y, x) y+y B_{i-1}(y, x)\right) \tag{2}
\end{equation*}
$$

for $i=1, \ldots n$. Since the characteristic of R is different from $2, \ldots, n$, it follows that $a_{i}(x, y)=0$ [5, Lemma 1]. Taking x^{2} for y in (2) and x^{2} for x in (1) we obtain

$$
\begin{align*}
\binom{n}{i}\left(b_{i}(x) x+x b_{i}(x)\right)+\binom{n}{i-1}\left(b_{i-1}(x) x^{2}+x^{2} b_{i-1}(x)\right) & =0 \tag{3}\\
b_{n}(x) x^{2}+x^{2} b_{n}(x) & =0 \tag{4}
\end{align*}
$$

Next, let us prove by induction on k that

$$
\begin{equation*}
\binom{n}{n+1-k} \sum_{i=0}^{k}\binom{k}{i} x^{2 i} b_{n+1-k}(x) x^{2 k-2 i}=0, \quad k=1, \ldots, n+1 \tag{5}
\end{equation*}
$$

For $k=1$ this is just relation (4). Suppose that (5) holds for some $k<n+1$. Multiply (5) first from the left and then from the right by x, sum up the identities so obtained, and use (3) to conclude that (5) holds for $k+1$.

Thus, in the case when $k=n+1$, we have

$$
\sum_{i=0}^{n+1}\binom{n+1}{i} x^{2 i} B(x, \ldots, x) x^{2(n+1)-2 i}=0
$$

Since $B(x, \ldots, x)$ commutes with x^{2}, we get $2^{n+1} B(x, \ldots, x) x^{2 n+2}=0$, proving the lemma.

Proof of Theorem 1: Replacing x by $x \pm y$ in $\left[f(x), x^{2}\right]=0$ we get

$$
\begin{equation*}
[f(x), x y+y x]+\left[f(y), x^{2}\right]=0, \quad x, y \in R \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
[f(x), y z+z y]+[f(y), z x+x z]+[f(z), x y+y x]=0, \quad x, y, z \in R \tag{7}
\end{equation*}
$$

Pick $z \in R$ such that $z^{2}=0$. Our intention is to prove that there exist $\lambda, \mu \in C$ such that $f(z)=\lambda z+\mu$. By (6) we have

$$
\begin{equation*}
[f(z), z y+y z]=0 \tag{8}
\end{equation*}
$$

for each $y \in R$. Replacing y by $y z$ we obtain $f(z) z y z-z y z f(z)=0, y \in R$. Therefore, $f(z) z=\mu z=z f(z)$ for some $\mu \in C$. Using this in (8), we get $z y(\mu-f(z))+$ $(f(z)-\mu) y z=0$ for all $y \in R$. Consequently, there is $\lambda \in C$ such that $f(z)-\mu=\lambda z$, as desired.

Define $q(x)=[f(x), x]$ and note that

$$
\begin{equation*}
q(x) x+x q(x)=0, \quad x \in R . \tag{9}
\end{equation*}
$$

Suppose that $x \in R$ is such that $q(x) x^{k}=x^{k} q(x)=0$ for some $k>1$. Let us show that this yields $q(x) x^{k-1}=x^{k-1} q(x)=0$. Set $z=q(x) x^{k-1}$ and note that $z^{2}=x z=z x=0$ and $f(z)=\lambda z+\mu$ for some $\lambda, \mu \in C$. Substituting $x r$ for y in (7), where $r \in R$, we obtain

$$
\left[f(x), x r q(x) x^{k-1}\right]+\lambda\left[q(x) x^{k-1}, x^{2} r+x r x\right]=0
$$

that is,

$$
\left(f(x) x-\lambda x^{2}\right) r q(x) x^{k-1}-x r q(x) x^{k-1} f(x)=0
$$

Therefore, either $q(x) x^{k-1}=0$ or $f(x) x-\lambda x^{2}$ and x are C-dependent. But in the latter case we clearly have $[f(x) x, x]=0$, that is $q(x) x=0$. Thus, $q(x) x^{k-1}=x^{k-1} q(x)=0$ in any case.

Note that (9) and the Lemma tell us that $q(x) x^{6}=x^{6} q(x)=0$ for all $x \in R$. But then, by the arguments just given, we have $q(x) x=x q(x)=0$ for all $x \in R$. Replacing x by $x \pm y$ in $q(x) x=0$ we arrive at

$$
q(x) y+[f(x), y] x+[f(y), x] x=0, \quad x, y \in R .
$$

Multiplying from the right by $q(x)$ it follows that $q(x) y q(x)=0$ for all $x, y \in R$, and hence $q(x)=0$. Apply (I) and proof is complete.

Proof of Theorem 2: Obviously, $\left[f(x), x^{2}\right]=0$, so that $f(x)=\lambda x+\zeta(x)$ by Theorem 1. Therefore, $f(x)^{2}=x^{2}$ can be written as

$$
\begin{equation*}
\left(\lambda^{2}-1\right) x^{2}+2 \lambda \zeta(x) x+\zeta(x)^{2}=0 \quad \text { for all } x \in R \tag{10}
\end{equation*}
$$

Suppose first that $\lambda^{2}=1$. Then we have $\zeta(x)(2 \lambda x+\zeta(x))=0, x \in R$. Thus, either $\zeta(x)=0$ or x lies in the centre of R. Since both the centre of R and the kernel of ζ are additive subgroups of R, it follows that either $\zeta=0$ or R is commutative. In any case the result follows immediately.

Thus, the proof will be completed by showing that the possibility $\lambda^{2} \neq 1$ cannot occur.

If $\lambda^{2} \neq 1$, then (10) shows that for any $x \in R$ there is a polynomial $X^{2}+\alpha X+\beta \in$ $C[X]$ satisfied by x (that is, R is algebraic of bounded degree 2 over C). It is known by standard PI theory that this is equivalent to the condition that either R is commutative or R embeds in $M_{2}(F)$ for a field F containing C. Therefore, without loss of generality we may assume that R is a subring of $M_{2}(F)$. Let $\operatorname{tr} x$ denote the trace of the matrix x and $\operatorname{det} x$ its determinant. We have $x^{2}-x \operatorname{tr} x+\operatorname{det} x=0$. Clearly, if the matrix x is not scalar and $x^{2}+\alpha x+\beta=0$, then $\alpha=-\operatorname{tr} x$ and $\beta=\operatorname{det} x$. According to (10), for each nonscalar matrix $x \in R$ we have

$$
\frac{2 \lambda \zeta(x)}{\lambda^{2}-1}=-\operatorname{tr} x \quad \text { and } \quad \frac{\zeta(x)^{2}}{\lambda^{2}-1}=\operatorname{det} x
$$

which gives

$$
\begin{equation*}
\operatorname{tr}^{2}(x)=\gamma \operatorname{det} x \tag{11}
\end{equation*}
$$

where $\gamma=4 \lambda^{2}\left(\lambda^{2}-1\right)^{-1}$. Let $\mu \in R$ be a scalar matrix. For each nonscalar matrix $x \in R$ the matrix $x+\mu$ is also nonscalar and so $\operatorname{tr}^{2}(x+\mu)=\gamma \operatorname{det}(x+\mu)$. Since $\operatorname{tr}(x+\mu)=\operatorname{tr} x+2 \mu$ and $\operatorname{det}(x+\mu)=\operatorname{det} x+\mu \operatorname{tr} x+\mu^{2}$ and since (11) holds for x, we get

$$
\begin{equation*}
\mu(4-\gamma)(\operatorname{tr} x+\mu)=0 \tag{12}
\end{equation*}
$$

for all nonscalar matrices $x \in R$. Note that $\gamma=4 \lambda^{2}\left(\lambda^{2}-1\right)^{-1} \neq 4$. Thus, we have either $\mu=-\operatorname{tr} x$ for all nonscalar $x \in R$, or $\mu=0$. If $\operatorname{tr} x=0$ for all such x, then we clearly have $\mu=0$. If $\operatorname{tr} x \neq 0$, then $\operatorname{tr} 2 x \neq \operatorname{tr} x$ and so it follows $\mu=0$ again. These arguments show that 0 is the only scalar matrix in R, whence (11) holds for all $x \in R$.

If $\operatorname{det} x=0$ for all $x \in R$, then also $\operatorname{tr} x=0$, which leads to $x^{2}=0$, contrary to the primeness of R. Thus, we may assume that $\operatorname{det} x \neq 0$ for some $x \in R$. Note that $\operatorname{tr} x^{2}=\operatorname{tr}^{2} x-2 \operatorname{det} x$ and $\operatorname{tr} x^{3}=\operatorname{tr}^{3} x-3 \operatorname{tr} x \operatorname{det} x$. Whence, applying (11) we see that

$$
\begin{aligned}
& \gamma \operatorname{det}^{2} x=\gamma \operatorname{det} x^{2}=\operatorname{tr}^{2} x^{2}=\left(\operatorname{tr}^{2} x-2 \operatorname{det} x\right)^{2}=(\gamma-2)^{2} \operatorname{det}^{2} x \\
& \gamma \operatorname{det}^{3} x=\gamma \operatorname{det} x^{3}=\operatorname{tr}^{2} x^{3}=\left(\operatorname{tr}^{3} x-3 \operatorname{tr} x \operatorname{det} x\right)^{2}=\gamma(\gamma-3)^{2} \operatorname{det}^{3} x
\end{aligned}
$$

As det $x \neq 0$, it follows that $\gamma=(\gamma-2)^{2}=\gamma(\gamma-3)^{2}$. This gives $\gamma=4$, which is impossible as noticed above. Thus we have proved indeed that $\lambda^{2}=1$. The proof of Theorem 2 is complete.

References

[1] M. Brešar, 'Centralizing mappings of rings', J. Algebra 156 (1993), 385-394.
[2] M. Brešar, 'On skew - commuting mappings of rings', Bull. Austral. Math. Soc. 47 (1993), 291-296.
[3] M. Bres̃ar, 'Commuting traces of biadditive mappings, commutativity - preserving mappings and Lie mappings', Trans. Amer. Math. Soc. 335 (1993), 525-546.
[4] M. Brešar and C.R. Miers, 'Strong commutativity preserving maps of semiprime rings', Canad. Math. Bull. (to appear).
[5] L.O. Chung and Jiang Luh, 'Semiprime rings with nilpotent derivatives', Canad. Math. Bull. 24 (1981), 415-421.

University of Maribor

PF, Korošks 160
62000 Maribor
Slovenia

[^0]: Received 6 June 1994
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

