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ON ADDITIVE MAPS OP PRIME RINGS

MATEJ BRESAR AND BOJAN HVALA

Let R be a prime ring of characteristic not 2, C be the extended centroid of R,
and / : R —> R be an additive map. Suppose that [/(x), x7] = 0 for all x £ R.
Then there exist A G C and an additive map (: R —> C such that / (x) = AX+£(SE)
for all x € R. In particular, if f[x)3 = z ' for all x £ R, then £ = 0 and either
A = l or A = - 1 .

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In the present paper we continue the series of papers concerning arbitrary additive
maps of prime rings satisfying certain identities (see, for example [1, 2, 3, 4] and
references given there).

Throughout, R will be a prime ring with extended centroid C, and / : R —> R

will be an additive map. Let us mention three results from the recent papers [1, 2, 4]:

(I) If [f(x),x] = 0 for all x G R, then there exist A G C and an additive
map (,: R^>C such that f(x) = Xx + ((x), x G R.

(II) If the characteristic of R is not 2 and f(x)x + xf(x) = 0 for all x G R,
then / = 0.

(Ill) If [f[x), f(y)] = [x, y] for all x, y G R, then there exists an additive map
C: R -> C such that either f(x) -x + ((x), or /(x) - -x + C(x), x G R.

The main goal of this paper is to prove

THEOREM 1. IS the characteristic of R is not 2 and [f(x), x2] = 0foraJlxER,
then [f{x), x] = 0 for all x G R. Therefore, there exist A G C and an additive map
£: R^C such that f(x) = Xx + C(z), x e R.

Thus, we consider an identity that is certainly more general then those considered
in (I) and (II). In fact, (II) can be derived at once from Theorem 1. Indeed, assuming
that f(x)x + xf(x) = 0, x G R, it follows from Theorem 1 that f(x)x - xf(x) = 0
and therefore f(x)x = xf(x) = 0, x G -R. Whence f(x)y + f(y)x — 0, x, y G R;
multiplying from the right by f(x) we get f(x)Rf(x) = 0, x G R, which yields / = 0.

As an application of Theorem 1 we shall obtain
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THEOREM 2 . If the characteristic of R is not 2 and f(x)2 - x2 for all x £ R,
then either f = I or f = — I, where I is the identity on R.

Clearly, the condition f(x) = x2 is (at least when the characteristic of R is not
2) equivalent to the condition f(x)f(y) + f(y)f(x) = xy + yx. Therefore, Theorem 2
can be considered as a Jordan analogue of a Lie - type result (III).

2. PROOFS

We shall make extensive use of the following well known result: If a,-, b{ £ RC + C

satisfy J^ajX&j = 0 for all x £ R, then the Oj's as well as the bi's are C-dependent,
unless all aj = 0 or all 6,- = 0.

Denning B(x, y) = [f(x), y], we see that [f(x),x2] — 0 can be written as
B(x, x)x + xB(x, x) = 0, x e R. In the next lemma, motivated by some analogous
considerations in [3], we treat a more general situation.

LEMMA. Let n ^ 2 and suppose that the ciaracteristic of R is different from

2 , 3 , ..., n. Let B: R x ... x R -* R be a. map, additive in each of the n arguments.

If

(1) B(x, ..., x)x + xB(x, ...,x) = 0

for all xe R, then x2n+2B(x, ...,x)= B(x, ..., x)x2n+2 = 0 for all x £ R.

PROOF: Introducing B: R x ... x R -> R by

B(xu ..., xn) =

and noting that B(x, ..., x) = n\B(x, ..., x), we see that there is no loss of generality
in assuming that B is symmetric (that is, B(x\, . . . , xn) = B{xv^, . . . , sT(n)) f° r

each 7T £ Sn). Now set

Bi{y, x) = B I y , . . . , y , x, . . . , x J ,

bi(x) = Bi(x2, x) t = 0, . . . , n .

Replacing x by x + ky, k £ N, in (1), we get

kai(x, y) + ... + Wonix, y)=0, x,y€R,keN

where

(2) ai(x, y)= r.\(Bi{y, x)x + xBi(y, x)) + (. " i J ( 5 i _ 1 ( y , x)y + yB^y, x))
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for i = 1, ...n. Since the characteristic of R is different from 2, . . . , n, it follows that
Oi(x, y) — 0 [5, Lemma 1]. Taking x2 for y in (2) and x2 for x in (1) we obtain

(3)

(4) bn(x)x2+x2bn(x) = O.

Next, let us prove by induction on fc that

w („+1 - ft) E (J).-w*(.>.»-M = o, * = i „+1.
\ / ,=o x '

For fc = 1 this is just relation (4). Suppose that (5) holds for some fc < n + 1 . Multiply

(5) first from the left and then from the right by x, sum up the identities so obtained,

and use (3) to conclude that (5) holds for fc + 1.

Thus, in the case when fc = n + 1, we have

t=0

Since B(x, ..., x) commutes with x2 , we get 2n+1B(x, ..., x)x2n+2 = 0, proving the

lemma. U

PROOF OF THEOREM 1: Replacing x by x ± y in [f(x), x2] = 0 we get

(6) [/(*), xy + yx] + [/(y), x2} = 0 , x, y G R

and hence

Pick z G R such that z2 = 0. Our intention is to prove that there exist A, fj, G C such
that f(z) = Xz+fj,. By (6) we have

(8) [f(z),zy + yz]=0

for each y G R. Replacing y by yz we obtain f(z)zyz — zyzf(z) — 0, y G R. Therefore,
f(z)z — fiz = zf(z) for some /x G C. Using this in (8), we get zy(fi - f(z)) +
(/(z) — /x)yz = 0 for all y G R. Consequently, there is A G C such that f(z) - fi — Xz,
as desired.

Define q(x) — \f(x), x] and note that

(9) q(x)x + xq{x) = 0, x G R.
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Suppose that x G R is such that q(x)xk — xkq(x) = 0 for some k > 1. Let us
show that this yields q(x)xk~1 = xk~1q(x) - 0. Set z = q{x)xk~1 and note that
z2 = xz = zx = 0 and f(z) = Xz + fi for some A, /i € C. Substituting xr for y in (7),
where r G R, we obtain

[/(*), zrgC*)**-1] + \{q(x)xk-1, x2r + xrx] = 0,

that is,
(f(x)x - Xx2)rq{x)xk-1 - xtq^x^1 f(x) = 0.

Therefore, either ^(zja:*"1 = 0 or f(x)x-Xx2 and x are C-dependent. But in the latter
case we clearly have [f(x)x, x] — 0, that is q(x)x — 0. Thus, ^(a;)^*"1 = xk~1q(x) = 0
in any case.

Note that (9) and the Lemma tell us that g(a:)s;6 = x6q(x) — 0 for all x G R. But
then, by the arguments just given, we have q(x)x — xq(x) — 0 for all x G R. Replacing
x by x ± y in q(x)x = 0 we arrive at

\* = 0, z, y G R.

Multiplying from the right by q(x) it follows that q(x)yq(x) — 0 for all a;, y G R, and
hence g(x) = 0. Apply (I) and proof is complete. U

PROOF OF THEOREM 2: Obviously, [f(x), x2] = 0, so that f(x) - Xx + £(a:) by
Theorem 1. Therefore, f(x)2 — x2 can be written as

(10) (A2 - l)x2 + 2XC(x)x + C(x)2 = 0 for aU x G R.

Suppose first that A2 = 1. Then we have <(x)(2Ax + ((x)) = 0, x G R. Thus,
either C(x) = 0 or a; lies in the centre of R. Since both the centre of R and the kernel
of £ are additive subgroups of R, it follows that either £ = 0 or R is commutative. In
any case the result follows immediately.

Thus, the proof will be completed by showing that the possibility A2 ^ 1 cannot
occur.

If A2 ^ 1, then (10) shows that for any x G R there is a polynomial X2 +aX + /3 G
C[X] satisfied by x (that is, R is algebraic of bounded degree 2 over C) . It is known by
standard PI theory that this is equivalent to the condition that either R is commutative
or R embeds in M2 (F) for a field F containing C. Therefore, without loss of generality
we may assume that R is a subring of M2{F). Let trsc denote the trace of the matrix
x and deta; its determinant. We have x2 — x t r z + detx = 0. Clearly, if the matrix x
is not scalar and x2 + ax + /3 = 0, then a = — t rx and /? = de tx . According to (10),
for each nonscalar matrix x G R we have
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which gives

(11) tr2(z) = 7detz,

where 7 — 4A2 (A2 — l) . Let fj, E R be a scalar matrix. For each nonscalar matrix
x & R the matrix x + y, is also nonscalar and so tr2 (x + fi) = 7 det (x + /x). Since
tr (x + n) — tr x + 2/i and det (x + /x) = det x + /t tr x + fi2 and since (11) holds for x,
we get

(12) M ( 4 - 7 ) ( t r x + M ) = 0

for all nonscalar matrices x 6 R. Note that 7 = 4A2(A2 — l) ^ 4 . Thus, we have
either /x = — tr x for all nonscalar x £ i?, or /x = 0. I f t rx = 0 for all such x, then we
clearly have /x — 0. If tr x ^ 0, then tr 2x J^ tr x and so it follows /x = 0 again. These
arguments show that 0 is the only scalar matrix in R, whence (11) holds for all x 6 R.

If det x = 0 for all x € R, then also trx = 0, which leads to x2 = 0, contrary to
the primeness of R. Thus, we may assume that detx ^ 0 for some i £ i j , Note that
trx2 = tr2x — 2 detx and t rx3 = tr3x — 3 trx detx. Whence, applying (11) we see
that

7 det2x = 7 det x2 = tr2 x2 = (tr2 x - 2 det x)2 = (7 - 2)2 det2x,

7det3x = 7detx3 = tr2 x3 = (tr3 x - 3 trx det x)2 = 7(7 - 3)2 det3x.

As det x ^ 0, it follows that 7 = (7 - 2)2 = 7(7 - 3)2. This gives 7 = 4, which is
impossible as noticed above. Thus we have proved indeed that A2 = 1. The proof of
Theorem 2 is complete. D
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