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ON ADDITIVE MAPS OF PRIME RINGS

MATEJ BRESAR AND BoJAN HvALA

Let R be a prime ring of characteristic not 2, C be the extended centroid of R,
and f: R — R be an additive map. Suppose that [f(z), 2] = 0 for all z € R.
Then there exist A € C and an additive map {: R — C such that f(z) = Az+{(z)
for all z € R. In particular, if f(z)’ = z* for all z € R, then ¢ = 0 and either
A=lorA=-1.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In the present paper we continue the series of papers concerning arbitrary additive
maps of prime rings satisfying certain identities (see, for example (1, 2, 3, 4] and
references given there).

Throughout, R will be a prime ring with extended centroid C, and f: R — R
will be an additive map. Let us mention three results from the recent papers {1, 2, 4]:

(I) I [f(z),z] = 0 for all z € R, then there exist A € C and an additive
map {: R — C such that f(z) = Az +{(z), z € R.
(II) If the characteristic of R is not 2 and f(z)z + zf(z) = 0 for all z € R,
then f =0.
(I11) X [f(z), f(y)] = [z, y] for all z, y € R, then there exists an additive map
¢: R — C such that either f(z) =z +{(z), or f(z) = —z+{(z), z € R.

The main goal of this paper is to prove

THEOREM 1. If the characteristic of R is not 2 and [f(z), 2| =0 forall z € R,
then (f(z), z] = 0 for all = € R. Therefore, there exist A € C and an additive map
¢: R — C such that f(z) = Az + {(z),z € R.

Thus, we consider an identity that is certainly more general then those considered
in (I) and (II). In fact, (II) can be derived at once from Theorem 1. Indeed, assuming
that f(z)z + zf(z) =0, z € R, it follows from Theorem 1 that f(z)z — zf(z) =0
and therefore f(z)z = zf(z) = 0, z € R. Whence f(z)y+ f(y)z =0, z,y € R;
multiplying from the right by f(z) we get f(z)Rf(z) =0, ¢ € R, which yields f =0.

As an application of Theorem 1 we shall obtain
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THEOREM 2. If the characteristic of R is not 2 and f(z)® = 2 for all z € R,
then either f =1 or f = —I, where I is the identity on R.

Clearly, the condition f(z)? = z? is (at least when the characteristic of R is not
2) equivalent to the condition f(z)f(y)+ f(y)f(z) = zy + yz. Therefore, Theorem 2
can be considered as a Jordan analogue of a Lie - type result (III).

2. PROOFS

We shall make extensive use of the following well known result: If ¢;, b; € RC +C
satisfy ) a;zb; = 0 for all z € R, then the a;’s as well as the b;’s are C-dependent,
unless all a; =0 or all b; = 0.

Defining B(z, y) = [f(z), y], we see that [f(z), 2] = O can be written as
B(z, z)z + zB(z, ) = 0, € R. In the next lemma, motivated by some analogous
considerations in [3], we treat a more general situation.

LEMMA. Let n > 2 and suppose that the characteristic of R is different from
2,3,...,n. Let B: Rx...x R— R be a map, additive in each of the n arguments.
Ir

(1) B(z,...,z)z+zB(z,...,z)=0

for all z € R, then 2*"*2B(z, ..., z) = B(z, ..., 2)2?"*?2 =0 for all z € R.
PRrRoOF: Introducing B:Rx...xR—>R by

E(zl, ciey Zp) = Z B(zx(1)s -+ - :c,,(,,))

wESy
and noting that E(z, ..., z) =nlB(z, ..., z), we see that there is no loss of generality
in assuming that B is symmetric (that is, B(21,...,2a) = B(z,,(l), vevs Tr(n)) for

each v € S, ). Now set

B:(y,z)=B (y,...,y, z, ...,z),
——
1 n—

bi(z) =B.~(:cz, :c) t=0,...,mn.
Replacing =z by z + ky, k € N, in (1), we get
kal(:c,y)+...+k"a,,(z,y)=0, z,y€E R, keN

where

@) aster) = (7) Bty 2o+ 2Bl o) + (7 ) Beea(s 2y + 3Bica(3, 2)
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for 1 =1, ...n. Since the characteristic of R is different from 2, ..., n, it follows that
ai(z, y) =0 [5, Lemma 1]. Taking z? for y in (2) and z? for z in (1) we obtain

(3) (’:) (bi(z)z + zbi(z)) + (i " 1) (b:_1(2)2? + 22b;_1(z)) = 0,
(4) bn(z)2? + 22b,(z) = 0.

Next, let us prove by induction on k that

k
k . .
5) (n +71z -~ k) > (z) Hbppr-(e)2* =0, k=1,...,n+1

=0

For k =1 this is just relation (4). Suppose that (5) holds for some k¥ < n+1. Multiply
(5) first from the left and then from the right by z, sum up the identities so obtained,
and use (3) to conclude that (5) holds for k& + 1.

Thus, in the case when k£ =n + 1, we have

n+l1

1 . .
Z (n + ):cz'B(:c, vory )22 —
i=0 t
Since B(z, ..., z) commutes with z%, we get 2"t B(z, ..., z)z?"*2 = 0, proving the
lemma. 0

PROOF OF THEOREM 1: Replacing z by z £y in [f(z), %] = 0 we get

(6) [f(z)a zy + yz] + [f(y)1 z2] =0, z,y€ R

and hence

(M) (=), yz + 2y] + [f(y), 22 + z2] + [f(2), zy + y2] =0, =,y,z€ R.

Pick z € R such that z? = 0. Qur intention is to prove that there exist A, u € C such
that f(z) = Az + p. By (6) we have

(8) (f(2), 2y +yz] =0

for each y € R. Replacing y by yz we obtain f(z)zyz—z2yzf(z) =0, y € R. Therefore,
f(2)z = pz = zf(z) for some u € C. Using this in (8), we get zy(u — f(2)) +
(f(2) — p)yz = 0 for all y € R. Consequently, thereis A € C such that f(z) —p = Az,
as desired.

Define ¢g(z) = [f(z), z] and note that

(9 q(z)z + zq(z) = 0, z € R.
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Suppose that z € R is such that g(z)z* = z*q(z) = 0 for some k£ > 1. Let us
show that this yields g(z)z*~! = z*7¢(z) = 0. Set z = g¢(z)z*~! and note that
22 =zz =2z =0 and f(z) = Az + p for some A, p € C. Substituting zr for y in (7),

where 7 € R, we obtain
[f(=), zra(2)=* "] + Ag(z)=**, 2*r + 2zr2] =0,

that is,
(f(z)z - Azz)rq(z)zk’l —zrg(z)z* 1 f(z) = 0.

Therefore, either g(z)z*~! = 0 or f(z)z—Az? and z are C-dependent. But in the latter
case we clearly have [f(z)z, z] =0, thatis g(z)z = 0. Thus, ¢(z)z*~! = z*~¢(z) =0
in any case.

Note that (9) and the Lemma tell us that g(z)z® = z%g(z) =0 for all z € R. But
then, by the arguments just given, we have g(z)z = z¢(z) = 0 for all z € R. Replacing
z by z £y in g(z)z = 0 we arrive at

q(a:)y + {f(:l?), y]@‘ + [f(y)1 z]z =0, z,y € R.

Multiplying from the right by g¢(z) it follows that ¢(z)yg(z) =0 for all z, y € R, and
hence g(z) = 0. Apply (I) and proof is complete.

PRrOOF OF THEOREM 2: Obviously, [f(z), 2] = 0, so that f(z) = Az + {(z) by
Theorem 1. Therefore, f(z)? = z® can be written as

(10) (3 -1)22 +2X¢(z)z +{(z)’ =0 forallz € R.

Suppose first that A> = 1. Then we have {(z)(2)z + {(z)) = 0, z € R. Thus,
either {(z) = 0 or z lies in the centre of R. Since both the centre of R and the kernel
of { are additive subgroups of R, it follows that either { = 0 or R is commutative. In
any case the result follows immediately.

Thus, the proof will be completed by showing that the possibility A% # 1 cannot
occur.

If A2 # 1, then (10) shows that for any z € R there is a polynomial X2 +aX+f €
C[X] satisfied by z (that is, R is algebraic of bounded degree 2 over C). It is known by
standard PI theory that this is equivalent to the condition that either R is commutative
or R embedsin M,(F') for a field F containing C. Therefore, without loss of generality
we may assume that R is a subring of My(F). Let trz denote the trace of the matrix
z and detz its determinant. We have z? — ztrz + detz = 0. Clearly, if the matrix z
is not scalar and z2 + az + 8 = 0, then @ = —trz and B = det z. According to (10),
for each nonscalar matrix z € R we have

2X¢ {(=)?
SV Ezl) =—trz and ’\2(:3 7

= det z,
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which gives
(11) tr? (z) = ydetz,

where v = 422 (A% — 1)_1 . Let p € R be a scalar matrix. For each nonscalar matrix
z € R the matrix z + p is also nonscalar and so tr?(z + p) = ydet(z + p). Since
tr(z + p) = trz + 2p and det(z + p) = detz + ptrz + p? and since (11) holds for z,
we get

(12) pd—7)trz +p) =0

for all nonscalar matrices z € R. Note that v = 43%(A? — 1)_1 # 4. Thus, we have
either 4 = —trz for all nonscalar z € R, or 4 = 0. If trz = 0 for all such z, then we
clearly have p = 0. If trz # 0, then tr2z # trz and so it follows u = 0 again. These
arguments show that 0 is the only scalar matrix in R, whence (11) holds for all z € R.

If detz = 0 for all z € R, then also trz = 0, which leads to z = 0, contrary to
the primeness of R. Thus, we may assume that detz # 0 for some =z € R. Note that
trz? = tr?z — 2detz and trz® = tr’z — 3trzdet z. Whence, applying (11) we see
that

v det’z = ydetz? =tr?2? = (tr® z — 2det 2)2 = (y —2)? det’z,
v det’z = ydetz® =tr? 2° = (tr®z — 3trzdet :l:)2 = q(y — 3)? det®z.

As detz # 0, it follows that v = (y — 2)° = y(y — 3)>. This gives ¥ = 4, which is
impossible as noticed above. Thus we have proved indeed that A2 = 1. The proof of
Theorem 2 is complete. 0
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