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We investigate the transport of a passive scalar in a fully developed turbulent
axisymmetric jet at a Reynolds number of Re= 4815 using data from direct numerical
simulation. In particular, we simulate the response of the concentration field to
an instantaneous variation of the scalar flux at the source. To analyse the time
evolution of this statistically unsteady process we take an ensemble average over 16
independent simulations. We find that the evolution of Cm(z, t), the radial integral of
the ensemble-averaged concentration, is a self-similar process, with the front position
and spread both scaling as

√
t. The longitudinal mixing of Cm is shown to be

primarily caused by shear-flow dispersion. Using the approach developed by Craske
& van Reeuwijk (J. Fluid Mech., vol. 763, 2014, pp. 538–566), the classical theory
for shear-flow dispersion is applied to turbulent jets to obtain a closure that couples
the integral scalar flux to the integral concentration Cm. Model predictions using the
dispersion closure are in good agreement with the simulation data. Application of the
dispersion closure to a two-dimensional jet results in an integral transport equation
that is fully consistent with that of Landel et al. (J. Fluid Mech., vol. 711, 2012, pp.
212–258).

Key words: jets, mixing, turbulence simulation

1. Introduction
Shear-flow dispersion (Taylor 1953, 1954b; Aris 1956) is one of the primary sources

of mixing in integral models for passive scalar transport and as such has wide-ranging
practical applications, including contaminant transport in the atmosphere and ocean,
nutrient delivery, the spread of smoke from fires and the discharge of waste effluent
in streams (see, e.g. Fischer et al. 1979). Caused by lateral (cross-stream) gradients
in a mean velocity, shear-flow dispersion was first identified by Taylor (1953), who
examined the transport of a solute in both laminar (Taylor 1953) and turbulent (Taylor
1954b) pipe flow. It was demonstrated that for sufficiently large times (Taylor 1954a)
the effective longitudinal (streamwise) mixing is determined by a balance between
longitudinal advection and radial mixing.

The canonical example of shear-flow dispersion is the release of a passive scalar
into a bounded one-dimensional flow in a pipe or a plane channel (see figure 1).
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FIGURE 1. (Colour online) Longitudinal mixing processes in a pipe flow.

At t= 0, one assumes that the mean scalar concentration c, where the overline denotes
an ensemble average, is uniformly distributed over the pipe for z6 0 and equal to zero
for z> 0. One is typically interested in the integral concentration

Cm(z, t)≡ 2
∫ rd

0
c r dr, (1.1)

where the upper limit of integration rd corresponds to the radial extent of the flow.
Hence, for a pipe of radius rm, rd = rm and Cm = r2

m〈c〉, where 〈 〉 denotes an average
over the cross-section of the pipe. At t = 0 the dependence of Cm on z corresponds
to a Heaviside step function. For time t > 0 the step change in Cm will become
progressively smoother due to three distinct, yet closely related, physical processes.

D1 The diffusive flux −κ∂zc (molecular diffusion).
D2 The ensemble covariance wc−w c (turbulent mixing).
D3 The spatial covariance 〈w c〉 − 〈w〉〈c〉 (shear-flow dispersion).

Here w is the longitudinal velocity and κ is the molecular diffusion coefficient.
Molecular diffusion is a manifestation of an averaging operation over individual
particles in the fluid and is expected to play a negligible role at large scales in
high-Reynolds-number flows. Turbulent mixing is a result of the chaotic motion of
the flow, the covariance wc−w c corresponding to a turbulent scalar flux. Shear-flow
dispersion, on the other hand, is the result of a correlation of the average velocity
w with the average concentration c over space, and enters the problem because
the integral concentration Cm is the primary unknown. When regions of high mean
concentration coincide spatially with regions of high longitudinal mean velocity (see
figure 1), 〈w c〉 6= 〈w〉〈c〉, and one finds a dispersive flux. It should be noticed that
the turbulent scalar flux and the dispersive flux in D2 and D3 are defined relative
to the ensemble average scalar flux, w c, and the spatially averaged flux, 〈w〉〈c〉,
respectively. In many large-scale practical applications, such as open channel flow,
one finds D3 � D2 � D1 (see e.g. Elder 1959). Moreover, Taylor (1953, 1954b)
demonstrated that longitudinal dispersion is inversely proportional to the turbulent
diffusion coefficient associated with the flow, indicating that mixing by turbulence
inhibits shear-flow dispersion. Further details can be found in appendix A, in which
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we summarise the dispersion theory of Taylor (1953) in the context of pipe flow. For
a general introduction to dispersion theory the reader is referred to Chatwin & Allen
(1985).

Taylor’s original analysis of pipe-flow dispersion was subsequently generalised
to pipes of arbitrary cross-section by Aris (1956), who obtained solutions for
the longitudinal moments of the solute concentration and demonstrated that the
longitudinal dispersion coefficient and longitudinal turbulent diffusion coefficient
are additive. Gill (1967) later considered a general series expansion, involving
higher longitudinal derivatives of the mean concentration, to determine the radial
dependence of the concentration. Subsequent work has addressed the way in which
the concentration profile approaches a Gaussian form (Chatwin 1970), the asymptotic
behaviour for small times (Chatwin 1977) and the concentration at large distances
from its centre of mass (Haynes & Vanneste 2014). Following the work of Brenner
(1980b), a generalised Taylor dispersion theory emerged, which was not restricted to
the unidirectional flows on which previous studies had focused. Generalised Taylor
dispersion theory has been applied in a wide range of fields, including sedimentation
(Brenner 1979), flows through porous media (Brenner 1980a) and chemically reacting
flows (Shapiro & Brenner 1986). However, in spite of the many refinements that
have been made to Taylor’s theory of dispersion it has not, to the best of the
authors’ knowledge, been applied explicitly in the analysis of scalar dispersion in
jets. Very recently, dispersion theory was used to develop a closure for longitudinal
mixing in statistically unsteady jets (Craske & van Reeuwijk 2015b). There, the
closure was applied to the mean kinetic energy flux and produced results that were
in good agreement with direct numerical simulation. In this work we study the
canonical problem of scalar dispersion in statistically steady jets and show that the
dispersion theory developed in Craske & van Reeuwijk (2015b) provides an accurate
representation of the dominant mixing processes.

Passive scalar transport in turbulent jets has received significant attention in
the literature (e.g. Paranthoen et al. 1988; Tong & Warhaft 1995; Warhaft 2000).
However, the primary focus has been on steady releases; unsteady releases, for
which shear-flow dispersion is expected to be significant, have received relatively
little attention. An exception is the work by Landel, Caulfield & Woods (2012),
who investigated unsteady scalar transport in a two-dimensional jet, created in
the laboratory by confining the jet to a narrow gap between two parallel plates.
They observed that the core region of the jet, which is primarily associated with
longitudinal advective transport, is surrounded by eddies that are responsible for
mixing. Moreover, this structure was observed to be self-similar with height, which
means that when normalised by suitable length and velocity scales the behaviour
of the jet is independent of its streamwise coordinate. Longitudinal mixing was
attributed to the stretching of fluid that occurs between the core and the eddies.
Using a mixing-length assumption, justified by the self-similarity of the flow, Landel
et al. (2012) formulated an advection–diffusion equation for the transport of the
integral Cm(z, t) of a scalar given by

∂Cm

∂t
+KaM1/2

m
∂

∂z

(
Cm

z1/2

)
=KdM1/2

m
∂

∂z

(
z1/2 ∂Cm

∂z

)
. (1.2)

Here, z is the longitudinal (streamwise) coordinate, Mm is the jet momentum flux, and
Ka and Kd are empirical dimensionless parameters accounting for advection and eddy
diffusivity respectively.
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z

r

FIGURE 2. Definition sketch. The grey area represents regions to which the scalar has
spread at a particular time t and w is the ensemble average longitudinal velocity.

In spite of the fact that mixing-length models can provide only a limited
representation of turbulence (Pope 2000), Landel et al. (2012) show that (1.2) provides
an accurate means of predicting integral scalar concentrations in two-dimensional jets.
However, it is neither clear what physical process determines the value of Ka and
Kd, nor possible to state a priori which parts of the model can be applied to
axisymmetric jets. Furthermore, it is unclear whether the mixing is caused by the
longitudinal turbulent scalar flux or shear-flow dispersion (or both). In this work we
show that for axisymmetric jets, the longitudinal turbulent scalar flux is not able
to account for the observed mixing of the scalar integral, and that it is shear-flow
dispersion that is the predominant cause of the mixing.

The paper is structured as follows. In § 2 we define the problem, introducing the
governing equations and the variables that are of primary interest. In § 3 we describe
the direct numerical simulation (hereafter DNS) used to obtain the data and describe
how the ensemble average was constructed. In § 4 we demonstrate that the scalar
transport can be viewed as a self-similar process by analysing the propagation speed
of the scalar and its longitudinal spreading rate. We explain how Taylor’s model for
shear-flow dispersion in pipes (Taylor 1953) can be applied to jets in § 5, and compare
the resulting dispersion closure with DNS observations in § 6. We apply our dispersion
closure to planar jets in § 7 (additional details are provided in appendix B), which
reveals that it is in one-to-one agreement with the model proposed by Landel et al.
(2012). A summary of the findings and ideas for future work are provided in § 8.

2. Problem definition

A schematic for the flow considered is provided in figure 2. The turbulent jet
is statistically steady, axisymmetric and produces a mean velocity field (u, w) in
coordinates (r, z), where r denotes the radial and z the longitudinal coordinate. For
t < 0, the scalar concentration is equal to zero everywhere. For t > 0, a continuous
release of scalar is activated at the inlet (hereafter referred to as the source), which
produces a front that propagates and spreads as it travels along the jet. Due to
the non-uniform velocity distribution, the scalar will be advected at different rates
depending on its position in the jet: fluid elements in the core regions will tend
to travel faster than elements in the outer region, thereby modifying the radial
distribution of the scalar downstream.
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32 J. Craske, A. L. R. Debugne and M. van Reeuwijk

The motion of the jet is governed by the incompressible Navier–Stokes equations:

∂u
∂t
+ u · ∇u=− 1

ρ
∇p+ ν∇2u, (2.1)

∇ · u= 0. (2.2)

We use cylindrical coordinates (r, φ, z), where r is a radial coordinate, φ is an
azimuthal coordinate and z is a longitudinal coordinate, with corresponding velocity
field u(r, φ, z, t)≡ (u, v, w). The fluid is of constant uniform density ρ, the pressure
relative to a hydrostatic balance is denoted by p and the kinematic viscosity of the
fluid is ν. The passive scalar is governed by the transport equation

∂c
∂t
+ u · ∇c= κ∇2c, (2.3)

where κ is the molecular diffusion coefficient.
In this work the velocity field is statistically stationary and, due to the fact that

the mean azimuthal component of velocity is equal to zero, swirl free. It is therefore
convenient to define the time and azimuthal average velocity u≡ (u(r, z), 0, w(r, z)).
For the scalar concentration c, which is statistically unsteady, we restrict ourselves to
an ensemble and azimuthal average c(r, z, t).

The focus of the present study is on the behaviour of integrals over lateral slices
of the jet. In particular, we define the volume flux Qm(z) and the mean momentum
flux Mm(z):

Qm(z)≡ 2
∫ rd

0
w r dr, Mm(z)≡ 2

∫ rd

0
w2 r dr (2.4a,b)

respectively, where rd denotes the radial extent of the jet, which will be defined
precisely in § 3. In addition to the integral scalar concentration Cm defined in (1.1),
we define the integral mean scalar flux Fm and the integral turbulent scalar flux Ff ,
according to

Fm(z, t)≡ 2
∫ rd

0
w c r dr, Ff (z, t)≡ 2

∫ rd

0
w′c′ r dr. (2.5a,b)

Here, χ denotes an ensemble average and χ ′ a fluctuation from the ensemble average
such that χ ′ = 0. Formally, the integral quantities above are defined in the limit
rd → ∞, but from a practical perspective it is necessary to integrate to a finite
limit. This avoids complications associated with integration limits at infinity (see e.g.
Kotsovinos 1978), allowing one to focus on the fluxes in the jet, rather than the
induced ambient flow. The volume flux Qm and momentum flux Mm can be used
to define characteristic length and velocity scales rm ≡ Qm/M1/2

m and wm ≡ Mm/Qm
respectively. We define a mean concentration cm for the flow from the integral
concentration Cm according to cm ≡Cm/r2

m.
Taking a time and ensemble average of (2.1) and (2.2) for Re ≡ 2M1/2

m /ν � 1,
and integrating over lateral slices of the jet yields the integral jet equations (see e.g.
Rajaratnam 1976; Craske & van Reeuwijk 2015a)

dQm

dz
= 2αM1/2

m ,
dMm

dz
= 0, (2.6a,b)

which express volume conservation and momentum conservation respectively, and
α is the classical entrainment coefficient (see e.g. Morton, Taylor & Turner 1956).
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It is immediately apparent from (2.6a,b) that Qm = 2αM1/2
m (z − zv) for a conserved

momentum flux Mm and a virtual origin zv, the latter corresponding to the location
at which the volume flux is equal to zero.

When molecular transport in the longitudinal direction is neglected, the ensemble
average of (2.3) can be integrated over lateral slices of the jet to give

∂Cm

∂t
+ ∂

∂z
(Fm + Ff )= 0, (2.7)

which is an integral conservation equation for the scalar and is the principal focus of
this work. In particular, our discussion of the problem will focus on the mean and
turbulent dimensionless scalar flux, defined as

θm ≡ Fm

wmCm
, θf ≡ Ff

wmCm
(2.8a,b)

respectively.

3. Simulation details
We simulate an axisymmetric turbulent jet driven by an isolated source of steady

momentum flux M0 and volume flux Q0. The source is located at the centre of the
base of a cuboidal domain of size LxLyLz = 442 × 66 characteristic source radii, r0,
where r0≡Q0/M

1/2
0 . The motion of the jet is governed by the incompressible Navier–

Stokes equations (2.1) and (2.2) in a statistically steady state. To release a passive
scalar into the flow at t= 0 we impose a step change in the scalar flux at the source:

F(z= 0, t)= F0H(t), (3.1)

where H is the Heaviside step function. Equations (2.1)–(2.3) are solved numerically
using NxNyNz = 7682 × 1152 computational cells over a Cartesian grid. The code for
the DNS of (2.1)–(2.3) employs a spatial discretisation of fourth-order accuracy that
conserves volume, momentum and energy. Integration in time is performed using
a third-order Adams–Bashforth scheme (further details can be found in Craske &
van Reeuwijk 2015a). On the vertical and top faces of the domain we impose open
boundary conditions that allow fluid to enter and leave the domain without modifying
the entrainment rate of the jet (Craske & van Reeuwijk 2013). The approximately
circular source at the base of the domain is obstructed by two narrow orthogonal
strips of width ≈2r0/5 whose effect is to reduce the length of the potential core
(see e.g. Craske & van Reeuwijk 2015a). We initiate the turbulence by applying
uncorrelated perturbations of 1 % to the velocities in the first cell above the source.
A constant mean scalar flux is maintained by imposing a Dirichlet boundary condition
on both w and c at the source.

Data for a fully developed statistically steady jet were acquired by running
simulations for a total duration of not less than 6000τ0, where τ0 ≡ Q2

0/M
3/2
0 is

a characteristic time scale relevant to the source. Data from the first 3000τ0 time
units were discarded to eliminate large-scale transient behaviour, before statistics
were obtained over the remaining duration of 3000τ0. To confirm that the integral
scales of the turbulent jet are not influenced by viscous effects we simulate two jets,
L and H, with Reynolds numbers Re ≡ 2M1/2

0 /ν of 4815 and 6810 respectively. For
each of these cases we impose a constant flux F0 of scalar at the source in order
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LxLyLz/r0 NxNyNz Re Sc≡ ν/κ trun/τ0

L 442 × 66 7682 × 1152 4815 0.707 3323
H 442 × 66 7682 × 1152 6810 0.707 3524
H∗ 442 × 66 5122 × 768 6810 0.707 3524
U1–16 442 × 66 7682 × 1152 4815 0.707 331

TABLE 1. Simulation details.

to determine the steady-state concentration statistics. To ensure that the results are
independent of grid resolution we perform a simulation H∗, of reduced resolution,
that uses 5122 × 768 computational cells, but in other respects is identical to H.
In practice, dimensional parameters such as ν and κ are defined by specifying the
dimensionless parameters Re and Sc, where Sc is the Schmidt number. Consequently,
it is convenient to let the inlet velocity be equal to 1 and specify ν = 2M1/2

0 /Re and
κ = ν/Sc. Further details of the simulations can be found in table 1.

Azimuthally averaged data were obtained by partitioning the domain into concentric
cylindrical cells and averaging over all cells lying within a given shell. Therefore, in
the steady-state simulations the mean χ of a quantity χ is obtained from an azimuthal
average, in addition to a time average, and is consequently a function of r and z. To
compute integrals such as Cm, defined in (1.1), and the fluxes Qm,Mm,Fm and Ff (see
§ 2), we define the upper limit of integration rd according to w(rd, z, t)= 0.01 wm(z, t)
(a similar criterion was employed in the analysis of experimental data by Kotsovinos
& List 1977).

During the course of the steady simulations we write a set of 16 complete three-
dimensional field files to disk at time intervals of approximately 250τ0. These field
files are used to obtain independent initial velocity conditions for the simulation of 16
statistically unsteady scalar transport simulations, which we shall refer to as U1–16.
For the scalar field we impose an initial condition of zero concentration uniformly
throughout the domain. An unsteady scalar transport simulation is then created by
imposing a constant flux F0 of scalar at the source.

During each individual unsteady simulation, rather than outputting discretely
sampled instantaneous data, a time average is taken over an interval in time that
is much smaller than the characteristic time scale of the problem. Specifically, we
employ a time interval not exceeding 2τ0, which prevents artificial smoothing of
the front that time averaging would otherwise cause. In the unsteady simulations
the azimuthal direction remains statistically homogeneous, which enables us to take
azimuthal averages. In addition, the reliability of the statistics was further improved
by performing an ensemble average over the 16 unsteady simulations. Therefore, a
mean quantity χ obtained from the unsteady simulations is a function of r, z and t.

The dimensionless radial profiles of the steady scalar field c and the turbulence
fluxes u′c′ and w′c′ are shown in figure 3. The profiles were taken from the range
z/r0 ∈ [28, 55] and are convincingly self-similar. The comparison between cases L
and H in figure 3 supports the view that the large-scale integral statistics are not
significantly influenced by the Reynolds number, and their comparison to case H∗
demonstrates that the results are independent of the spatial grid resolution. For a
validation of the velocity data, including Reynolds stresses and a comparison of
Qm and Mm to plume theory, the reader is referred to Craske & van Reeuwijk
(2015a). From the steady-state simulation data we infer that the entrainment rate
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FIGURE 3. (Colour online) Steady-state self-similar concentration statistics: (a) mean
scalar concentration; (b,c) dimensionless turbulent fluxes. Here, w′c′ corresponds to the
longitudinal turbulent scalar flux and u′c′ to the radial turbulent scalar flux.

α = 0.069, the virtual origin zv = −4.2 r0 and the dimensionless fluxes θm = 0.89
and θf = 0.08. Having demonstrated that the integral statistics such as w′c′ are
approximately independent of the Reynolds number Re, we choose to use case L at
Re = 4815, rather than case H with Re = 6810, to obtain the unsteady data, which
ensures that the scalar field has ample resolution and that the maximum cell Péclet
number, max(u ·1x)/κ , for grid spacing 1x, remains small.

4. Propagation and spreading of the scalar front
4.1. Scaling

Following a step change in the source scalar flux, a disturbance in the integral
concentration Cm propagates and spreads in the longitudinal direction in the form of
a front. The objective of this section is to track the front position, which we denote
z∗(t), and determine the rate at which it spreads. Figure 4 displays the scalar field at
several instants in time. On the left-hand side of each panel is a vertical slice through
the scalar field of a single member of the ensemble and on the right-hand side is the
ensemble and azimuthally averaged scalar field. As the scalar is introduced into the
domain it is mixed by the turbulent jet and transported in the positive z direction.
At each time the scalar field has a similar form, in which the widest part of a given
isoregion lies approximately midway between the origin and its leading edge in z.

A robust criterion for identifying the location of the scalar front is to define z∗
implicitly as

Fm(z∗(t), t)= F∗m, (4.1)

where F∗m ≡ Fm0/2 is the arithmetic mean of the mean steady-state scalar flux Fm0
before and after the step change. The value of Fm0 was obtained from steady-state data
by averaging Fm(z) over the interval z/r0 ∈ [28, 55], and is slightly lower than F0 due
to the contribution from the turbulent scalar flux (i.e. F0 = Fm + Ff ). In addition, we
define the positions z1/4(t) and z3/4(t), which correspond to the longitudinal distances
at which Fm= Fm0/4 and Fm= 3Fm0/4 respectively, and will allow us to quantify the
longitudinal spread of the scalar.

Figure 5 shows typical profiles of Cm and Fm obtained from the ensemble-averaged
simulation data, with circles marking the location of the front z∗. In the region r0�
z� z∗ the concentration field is in a quasi-steady state and the integral concentration
Cm increases linearly in z to a maximum behind the front (figure 5a). Ahead of its
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FIGURE 4. Isoregions of scalar concentration c(r, z, t= ti), at times ti/τ0≈ 37i, i= 1 . . . 8
(a–h), where Re = 4815. Left-hand side: instantaneous radial slice; right-hand side:
azimuthal and ensemble average.
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FIGURE 5. (Colour online) Profiles of (a) the integral concentration Cm and (b) the
integral flux Fm against z/r0, at times ti/τ0≈ 37i, i= 1 . . . 5, with the position of the front
z∗/r0 (E) and the limits of the longitudinal spread of the front z1/4/r0 (A) and z3/4/r0 (C).
The thin line in (b) denotes the function erfc[(z− z∗)/σ ].

maximum, Cm tends to zero smoothly with increasing z/z∗. It is observed that the
propagation speed of the front decreases with increasing t. Evident in the behaviour
of both Cm and Fm is that the longitudinal extent of the front increases in time, which
indicates the presence of some form of longitudinal mixing.

Due to the fact that the velocity in the jet wm ∼ 1/z, one expects disturbances to
propagate according to z∗∼√t. To investigate this we plot (z∗− zv)2 against t− tv in
figure 6, where tv can be regarded as the location of the virtual source in time. Using
the steady-state value of zv, tv = −1.5τ0 was obtained by fitting a straight line to
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FIGURE 6. (Colour online) Position of the scalar front (E) and corresponding linear fit
(solid line), compared with the ‘top-hat’ propagation wm (dashed line). The approximate
extent of the front is indicated by z1/4(t) (A) and z3/4(t) (C). The region between the two
vertical dotted lines corresponds to the time domain that was used to obtain averaged
properties of the front and the self-similar profiles that are shown in figures 7–9.

(z− zv)2, whose agreement with the simulation data in figure 6 confirms the expected
scaling relation. Both zv/r0 and tv/τ0 are small in comparison to the size of the
domain and the total duration of the simulations respectively, and consequently play
an insignificant role in the far-field scaling observed in figure 6. Interestingly, z∗∼√t
corresponds to the classical dispersion scaling, although for planar jets and plumes,
for example, in which wm��∼1/z, one would expect to find a different power-law
scaling. It is noteworthy that the propagation rate of the front appears to be slightly
greater than wm (figure 6, dashed line). Furthermore, from figure 6, z1/4 and z3/4 can
be seen to scale in proportion to

√
t, which suggests that the scaling associated with

the position of the front is identical to that associated with its longitudinal rate of
spread, and that the process is therefore self-similar.

The scalar is released continuously at the source with a constant source flux F0,
therefore ∫ ∞

0
Cm dz= F0t. (4.2)

Since Cm ∝ z in the steady state, we conclude that we can normalise the profiles
of Cm by F∗mt/z∗ in order to observe self-similarity. Profiles of Cm normalised in
this way, plotted against the normalised streamwise coordinate z/z∗, are shown in
figure 7(a). The approximate collapse indicates that, following a step change in the
flux of concentration at the source, the transport of a passive scalar in a jet is indeed
a self-similar process that can be described by the variable z/z∗.

4.2. Longitudinal mixing
To quantify the mixing at the front, we fit the data in figure 5(b) to a function of
the form Fm/F∗m = erfc[(z − z∗(t))/σ ]. This choice is motivated by the fact that it
provides a good approximation to the solution of an advection–diffusion equation if it
is assumed that the characteristic velocity in the vicinity of the front is approximately
constant. The longitudinal spread of the scalar flux σ(t) = √2Det and De is an
effective mixing coefficient. The error function is indicated with a thin line in
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FIGURE 7. (Colour online) (a) Self-similar profiles of Cm for fixed times (grey)
and their average (black); (b) normalised profiles of scalar concentration c/cc; (c)
normalised profiles of mean scalar flux w c/wccc; (d) normalised profiles of turbulent
scalar flux w′c′/wccc. The variables wc and cc are the centreline longitudinal velocity
and concentration respectively. In (a–d) the positions z1/4, z∗ and z3/4 are marked with
A, E and C respectively. The profiles displayed in (b–d) were obtained from a moving
average at either z1/4, z∗ or z3/4, over the time domain indicated in figure 6.

figure 5(b) and exhibits an excellent agreement with the simulation data. From the
definition of the longitudinal positions z1/4 and z3/4, which represent percentiles
of Fm, we infer σ = 1.048(z1/4 − z3/4). The fit allows us to calculate an average
mixing coefficient De = 0.74M1/2

m . In an effort to account for the observed level of
mixing, we assume that the turbulent Schmidt number is approximately unity and
compare the value of De with the uniform turbulent viscosity νT obtained from a
gradient-diffusion hypothesis. Based on the measurements of Hussein, Capp & George
(1994), Pope (2000) reports that in jets νT ≈ 0.033 M1/2

m . (More precisely, Pope (2000)
expresses νT in terms of the centreline velocity wc and the radial location r1/2 at
which w=wc/2 (the jet half-width) as νT ≈ 0.028 wcr1/2. In a Gaussian jet wc = 2wm
and r1/2 = √ln 2/2 rm, hence νT ≈ 0.033 wmrm.) The significant difference between
this estimation and De implies that turbulence alone cannot account for the mixing
observed at the front. An intuitive way of understanding the difference between
νT and De is that it implies that the longitudinal extent of the front (determined
by De) exceeds the radius of the jet (determined by νT). We will demonstrate that
shear-flow dispersion accounts for the difference by examining the way in which the
concentration profile is distorted in the vicinity of the front.

As described in § 1, longitudinal mixing of an integral quantity such as Cm can
occur due to a uniform increase in w′c′ over the radius of the jet (turbulent mixing)
or due to a distortion of the mean concentration profile c (shear-flow dispersion).
Shear-flow dispersion results in a local increase in the correlation 〈w c〉, involving
only mean-flow quantities, and therefore in a local increase in the mean scalar flux.
It is therefore appropriate to examine radial profiles of c and w in the vicinity of the
front, which are shown alongside the fluxes w c and w′c′ in figure 7. The profiles
displayed in figure 7(b–d) are normalised using centreline values cc(z, t) ≡ c(0, z, t)
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FIGURE 8. Evolution of the dimensionless mean scalar flux θm and the turbulent scalar
flux θf . Each grey line corresponds to the behaviour of θ at a fixed point in time, while
the solid black line corresponds to their average, obtained over the time domain indicated
in figure 6. The dashed line denotes the total dimensionless flux θm + θf and the circles
the prediction based on the model (see (5.8)).

and wc(z) ≡ w(0, z) of the mean concentration and the mean longitudinal velocity
respectively. The central observation that can be made from figure 7(b–d) is that as
z/z∗ increases the profiles become narrower. The scalar is transported by advection
to regions of relatively large z/z∗ when it is located close to the centreline of the jet,
where the longitudinal velocities are highest. Consequently, the scalar profile becomes
more peaked with downstream distance, which is evident in figure 7(b). Figure 7(c,d)
shows that the turbulent flux does not scale in exact proportion to the mean flux in
the vicinity of the front. Rather, the turbulent flux appears to increase at large values
of z/z∗, although it continues to make a relatively small contribution to the total flux.

To quantify precisely the relative contribution to the total scalar flux made by
the mean and turbulent flow, we plot the dimensionless scalar fluxes θm and θf

respectively with respect to the normalised downstream distance in figure 8. The grey
curves displayed in figure 8 correspond to different times and exhibit an approximate
collapse with respect to the variable z/z∗, which is consistent with the self-similarity
that was described in § 4.1. In the steady state the radial dependence of the velocity
and concentration profiles is approximately independent of z, which implies that θm

is constant. Consequently, shear-flow dispersion is evident as a departure from the
steady-state value of θm and is seen in figure 8 to be significant over a large extent
of the z/z∗ domain. Figure 8 also indicates that in a quasi-steady state, for which
z/z∗ � 1, the contribution of the dimensionless turbulent flux (θf ) amounts to the
expected 10 %, but rises to 20 % at the front, where z= z∗.

Figure 8 confirms that in the vicinity of z = z∗ the local distortion of the
concentration profile c, evident in figure 7(b), acts in correlation with w to increase
the dimensionless scalar flux θm. In particular, the dimensionless scalar flux ranges
from approximately 1.0 (for z/z∗� 1) to 2.0. It is also evident that θf increases in the
vicinity of z = z∗. Indeed, since θf is an integral quantity, in addition to accounting
for a local increase in the magnitude of the turbulent flux w′c′ (see figure 7d), it
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accounts for a narrowing of the spatial distribution of c′. Hence, it is to be expected
that the behaviours of θm and θf share similar features. We attribute the fact that θf

does not appear to remain in constant proportion to θm to the relatively small increase
in the magnitude of the turbulent flux w′c′. It should be noted that beyond z/z∗, the
fluxes w c, w′c′ and the concentration Cm used in their normalisation approach zero,
which makes it difficult to obtain an accurate estimation of θf and θm from a finite
dataset.

As pointed out previously, fluid located close to r = 0 is transported by relatively
high longitudinal velocities, and can therefore propagate further than fluid located at
the periphery of the jet. It is therefore natural that at large distances from the source
one sees a narrowing of the scalar distribution (see figure 7b). At the leading edge
of the scalar field, we can therefore expect the scalar profile to take the form of a
spike at r = 0. For a Gaussian velocity profile, the largest velocity is found on the
centreline and has a value of 2wm, which implies an upper bound of θm=2. Hence, the
mean scalar flux Fm cannot exceed 2Cmwm. Furthermore, if it is assumed that dz∗/dt≈
wm(z∗)∝ 1/z∗, in accordance with figure 6, then fluid on the jet centreline will reach
z/z∗≈√2. At z/z∗≈√2 in figure 8 we observe that the sum θm+ θf ≈ 2. For z/z∗>√

2, we see a reduction in θf and that θm approaches a value of 2, as expected.

5. A model for shear-flow dispersion in jets

Although shear-flow dispersion was originally developed for pipe flow (Taylor
1953, 1954b), Craske & van Reeuwijk (2015b) demonstrated that it could be usefully
extended to boundary-free shear flow, such as a jet. In this section we will summarise
the key features of the approach and obtain a model for the dispersion of a passive
scalar. In contrast to a jet, the steady-state distribution of a scalar in a pipe is uniform
and bounded in the radial direction. Like jets, however, both the velocity distribution
and the scalar distribution are self-similar, which means that their radial dependence
is invariant in the longitudinal direction. Fundamental to both dispersion in pipe flow
and dispersion in jets is the idea that changes in the mean scalar concentration in
the longitudinal direction can cause a local departure from self-similarity over the
lateral (radial) dimension. Specifically, the departure from self-similarity in the scalar
is caused by lateral gradients in the longitudinal velocity and, in correlation with the
longitudinal velocity, results in a local increase in the scalar flux.

Taylor demonstrated that, to leading order, the radial dependence of the modification
to the uniform concentration is independent of the longitudinal coordinate. Consequently,
one can define a dimensionless function g1(η) to describe the shape of the perturbed
concentration profile, where η ≡ r/rm. Using this notation, the basic dimensionless
steady-state concentration will be denoted g0(η). The functions g0 and g1 apply equally
well to the analysis of pipe flow and jet flow, although for pipe flow the steady-state
scalar concentration is constant, and therefore g0 does not depend on η. The aim is
to establish an expression for the dimensionless concentration

g(η)= g0 + L1g1, (5.1)

where L1 determines the degree to which the concentration profile departs from a
steady state, and is therefore expected to depend in some way on the behaviour of
the scalar in the longitudinal direction. Evidently, if the dimensionless velocity profile
w/wm = f0(η) is known, (5.1) can be multiplied by f0 and integrated with respect to
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η2 (i.e. over a lateral slice of the pipe flow or jet). The resulting integral corresponds
to the dimensionless flux θm ≡ Fm/(wmCm):

θm ≡ 〈 f0g0〉 + L1〈f0g1〉 = θ0 + L1θ1. (5.2)

We define θ0 ≡ 〈f0g0〉 as the dimensionless steady-state scalar flux, and θ1 ≡ 〈f0g1〉 as
the additional flux arising from changes in the shape of g(η). Here, the operator 〈 〉
is a suitable non-vanishing spatial average over η, which for jets we define in § 5.2.
The ultimate aim of a dispersion closure is to obtain an expression for θm in terms of
the integral concentration Cm and its longitudinal derivatives.

Instead of working with the ensemble average scalar concentration c, Craske & van
Reeuwijk (2015b) worked with the dimensionless concentration

C ≡ c/cm0 =Cm(g0 + L1g1), (5.3)

where cm0(z) is the mean steady-state concentration and Cm ≡ cm/cm0. Consequently,
in the steady state C is independent of z in both jets and pipes, making it possible to
recast Taylor’s approach to dispersion in pipe flow in a form that is applicable to jets.
In the following sections we will substitute (5.3) into the longitudinal scalar transport
equation to relate the unknown perturbed profile g1 to ∂zCm.

5.1. Shear-flow dispersion in a pipe
To begin, we describe the classical dispersion problem in a pipe flow using the
notation described above. To understand the evolution of a step change in scalar
concentration in a pipe of uniform radius rm, Taylor employed a frame of reference
moving with the mean velocity 〈w〉 = wm. For pipes, for which θ0 = 1, as the
steady-state concentration is uniform, this coordinate transformation ensures that the
equation governing the cross-sectional average concentration does not contain mean
flux terms. More generally, it is necessary to move at the velocity associated with
the steady-state scalar flux wmθ0 to eliminate the mean flux terms. Taylor subtracted
from the governing equation for scalar transport the evolution equation for the
cross-sectional average concentration, and found, for large times, a leading-order
balance between radial transport of the perturbed scalar profile and longitudinal
advection (see appendix A for details):

L1
κT

η

d
dη

(
η

dg1

dη

)
=−wmr2

m

Cm
(θ0 − f0)

∂Cm

∂z
, (5.4)

where κT is the eddy diffusivity. In particular, (5.4) shows that the longitudinal
gradient of the dimensionless average concentration Cm provides the forcing for the
perturbation in the concentration profile L1g1. The separable form of (5.4) allows one
to infer that

L1 =−wmr2
m

κT

1
Cm

∂Cm

∂z
, (5.5)

to within an arbitrary multiplicative constant, if it is assumed that κT does not
depend on η. Equations (5.4) and (5.5) demonstrate that the amplitude of the
scalar perturbation is proportional to the longitudinal gradient of the dimensionless
concentration, and that g1, and therefore θ1, can, in principle, be determined a priori
by solving an ordinary differential equation when f0 is known.
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5.2. Shear-flow dispersion in an axisymmetric jet
To apply Taylor’s dispersion theory to jets we assume that the decomposition
C = Cm(g0 + L1g1) provides a leading-order representation of the dimensionless
concentration field. The use of the normalised radius η ≡ r/rm(z) allows us to map
the conical geometry of the jet, for which rm = 2αz, onto a cylindrical geometry.
Moreover, the use of the dimensionless concentration C ensures that in the steady
state the amplitude of the scalar perturbation L1= 0, in spite of the fact that cm∼ 1/z,
and therefore allows us to focus on departures from this state. Due to the geometry of
the jet, it is unlikely that the ordinary differential equation satisfied by the perturbation
g1(η) is the same as that which is implied by (5.4) for pipes. However, since we are
primarily interested in the integral quantity θ1≡ 〈f0g1〉, rather than the particular form
of g1(η), we will not attempt to obtain an exact equation for g1(η) in this work.

In the absence of a well-defined edge, we define the cross-sectional average 〈χ〉 of
a quantity χ in the jet according to

〈χ〉 ≡ 2
r2

m

∫ rd

0
χr dr, (5.6)

such that wm = 〈w〉. For axisymmetric jets, a constant eddy viscosity νT can be
expressed in terms of the entrainment coefficient according to νT = αwmrm/3 (see
Craske & van Reeuwijk 2015a). Assuming that the turbulent Schmidt number νT/κT
is approximately unity, we therefore set κT =αwmrm/3. Furthermore, the dimensionless
mean scalar concentration Cm can be defined in terms of integral quantities, such
that Cm ≡ Cm/Cm0, where Cm0 is an integral steady-state concentration. Consequently,
substitution of κT , Cm and the linear dependence of the jet width on z, rm= 2αz, into
(5.5) results in

L1 = 6
(

1− z
Cm

∂Cm

∂z

)
. (5.7)

In the steady state, for which Cm ∼ z, it is clear from (5.7) that L1 = 0. Using (5.2),
the dispersion closure for the dimensionless scalar flux in an unsteady jet can be
expressed as

θm = θ0 + 6θ1

(
1− z

Cm

∂Cm

∂z

)
. (5.8)

As noted previously, instead of calculating g0 and g1 exactly, we treat θ0 and θ1 as
model parameters whose value can be determined from observation. Notable, however,
is the fact that θ0 can be determined from the steady-state data.

6. Model prediction
Substitution of (5.8) into (2.7) results in an advection–dispersion equation given by

∂Cm

∂t
+ (θ0 + 6θ1)

M1/2
m

2α
∂

∂z

(
Cm

z

)
= 6θ1

M1/2
m

2α
∂2Cm

∂z2
. (6.1)

Hereafter we will assume that z and t are coordinates relative to the location of
a virtual source (zv, tv). It is noteworthy that the advection parameter θ0 + 6θ1 (cf.
Ka in Landel et al. 2012) contains a contribution from both θ0 and θ1, which are
parameters that each have a particular physical significance and are precisely defined
integrals. In particular, θ0 depends on steady-state properties of the flow and can
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therefore be estimated a priori. Although θm= θ0 in the steady state, recognising that
the longitudinal turbulent scalar flux θf will affect the relevant advection velocity, we
equate θ0 with the observed steady-state value of θm+ θf ≈ 1.0. To estimate the value
of the parameter θ1, we compare the coefficient of the mixing term on the right-hand
side of (6.1) with the mixing coefficient De that was observed in § 4. Specifically,
we set θ1 = αDe/(3M1/2

m ) = 0.017. The prediction of θm that we obtain using (5.8)
with (θ0, θ1) = (1.0, 0.017) and the observed behaviour of Cm is shown in figure 8.
Although the model appears to overpredict the magnitude of θm, it shows a good
agreement with the variation of θm with respect to z/z∗. In fact, the model shows a
better agreement with the magnitude of θf + θm than θm, which is a consequence of
the estimation of θ1 being based on De, which is influenced by θm and θf .

Having established that the dispersion of a scalar in a jet is a self-similar process
in § 4, we seek a similarity solution to (6.1). We express (6.1) as

∂Cm

∂t
+ λ

∗M1/2
m

2α
∂

∂z

(
Cm

z

)
=De

∂2Cm

∂z2
, (6.2)

with Cm subject to the conditions

lim
z→∞

Cm = 0,
∫ ∞

0
Cm dz= F0t, (6.3a,b)

where F0 is the source flux and λ∗ ≡ θ0 + 6θ1 is a constant that characterises the
propagation speed of the front. Based on the observations reported above, λ∗ ≈ 1.10.
Introducing the similarity variable

λ≡ z2α

tM1/2
m
, (6.4)

we propose a solution for Cm of the form

Cm(z, t)= 2α1/2F0t1/2

M1/4
m

Φm(λ). (6.5)

Transformation of (6.2) according to (6.5) and (6.4) results in

d2Φm

dλ2
− 1

2λ

[
Pe
(

1− λ
λ∗

)
− 1
]

dΦm

dλ
− Pe

4λ2

(
λ

λ∗
− 1
)
Φm = 0, (6.6)

where Pe ≡ λ∗M1/2
m /(2αDe) ≈ 10.99, based on our observations. The transformed

boundary condition and integral constraint become

lim
λ→∞

Φm = 0,
∫ ∞

0

Φm

λ1/2
dλ= 1. (6.7a,b)

Equation (6.6) has the general solution

Φ(λ)= c1 exp
(
−Peλ

2λ∗

)
G
(

1,
Pe
2
+ 1

2
,

Peλ
2λ∗

)
λPe/2 + c2

√
λ, (6.8)

where G is the hypergeometric function. Exact expressions for the constants c1 and c2,
in terms of the parameters Pe and λ∗, are provided in appendix C. Using Pe≈ 10.99
and λ∗ ≈ 1.10, we find c1 =−25.79 and c2 = 1.00.
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FIGURE 9. Comparison of the observed normalised concentration with the analytical self-
similar solution (6.8) with c1=−25.79 and c2= 1.00. The observed profiles were obtained
over the time domain indicated in figure 6.

Figure 9 demonstrates that the similarity solution (6.8) agrees reasonably well
with the observed data. In particular, the model reproduces the shape and the
longitudinal extent of the scalar’s distribution. The model solution appears to slightly
overpredict the peak concentration, and the concentration in the tail of the distribution
at relatively large values of λ. We attribute the latter to higher-order contributions in
the dimensionless scalar flux θm, for which (5.2) does not account (cf. the higher-order
terms for dispersion in a pipe flow considered by Chatwin 1970). However, given
that the model is based on a leading-order representation of the front involving two
parameters, and that the specification of θ0 was made a priori, the agreement is
satisfactory.

7. Planar jets

Although the dispersion model described in this paper has been developed for
axisymmetric jets, it is built from general principles that are equally applicable in the
analysis of planar jets or plumes. Central to the model are the geometric parameters
θ0 = 〈f0g0〉 and θ1 = 〈f0g1〉, which correspond to the dimensionless scalar flux of
the steady state and of the perturbed scalar profile respectively. Both θ0 and θ1 are
functions of the dimensionless longitudinal velocity f0(η), the scalar concentration
g0(η) and the perturbed concentration g1(η). Due to the fact that g1(η) can be
determined a priori by solving an ordinary differential equation involving g0, the
dimensionless perturbation flux θ1 can, in principle, be determined without consulting
unsteady data.

In contrast, Landel et al. (2012), while providing several analytical solutions and
insights from experiments, relied on advection and dispersion parameters (Ka and Kd

respectively), whose relationship with the underlying turbulent scalar flux w′c′ or mean
flow scalar flux w c was not made explicit. However, the validity of both the model
presented by Landel et al. (2012) for dispersion in quasi-two-dimensional jets (1.2),
and the framework we propose is strengthened by the fact that when our dispersion
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closure is applied to planar jets we find (see appendix B)

∂Cm

∂t
+
(
θ0 +π

√
3
4
θ1

)
M1/2

m√
4α

∂

∂z

(
Cm

z1/2

)
= θ1πM1/2

m

√
3

4α
∂

∂z

(
z1/2 ∂Cm

∂z

)
, (7.1)

which is in one-to-one correspondence with (1.2) when

Ka = 1√
4α

(
θ0 +π

√
3
4
θ1

)
, Kd = θ1π

√
3

4α
. (7.2a,b)

It is important to note, however, the fundamental physical difference between a
statistically two-dimensional turbulent planar jet and the quasi-two-dimensional jet
studied by Landel et al. (2012) by confining the jet to the narrow gap between two
parallel plates. Although our treatment in appendix B applies equally well to each
of these cases, one would expect dimensionless parameters such as the entrainment
coefficient α and θ1 to depend on the particular case considered.

Not straightforward to anticipate from (1.2) is that the advection parameter Ka
depends on both θ0 and θ1. Using (7.2), it is useful to compute the values of θ0 and
θ1 that correspond to Ka = 1.65 and Kd = 0.09, as reported by Landel et al. (2012):

θ0(Ka = 1.65,Kd = 0.09)= 0.995 (0.968), (7.3)
θ1(Kd = 0.09)= 0.010 (0.017), (7.4)

where the values of θ0 and θ1 that we report in the present paper are shown in
parentheses, and we have taken α = √2 × 0.068, based on the measurements of
Landel et al. (2012) (the factor

√
2 arising due to the characteristic scales we use to

define α). Whereas Ka and Kd were obtained by fitting to experimental data, θ0 can be
obtained theoretically as the dimensionless scalar flux arising from Gaussian profiles
of w and c of equal spread. On the other hand, θ1 appears to take different values
in axisymmetric jets compared with quasi-two-dimensional jets, which is perhaps not
surprising when one considers that θ1 depends on the lateral mixing provided by
turbulence and the longitudinal scaling of the velocity field.

In planar jets, the dispersion closure used in (7.1) has the form (see appendix B)

θm = θ0 +π
√

3
(

1
2
− z

Cm

∂Cm

∂z

)
θ1. (7.5)

While it may appear inconvenient that (7.5) contains prefactors that differ from those
in the equivalent expression for axisymmetric jets (5.8), the advantage is that the
physical meaning of θ0 and θ1 is unchanged. In principle, one is therefore able to
make predictions a priori about dispersion in planar/quasi-two-dimensional jets in
addition to axisymmetric jets.

8. Conclusions
We have analysed the transport of a passive scalar in a statistically axisymmetric

turbulent jet and found that the longitudinal mixing is primarily the result of
shear-flow dispersion rather than turbulent transport (see, e.g. figure 8). Consequently,
estimations of the amount of longitudinal mixing based exclusively on turbulence that
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do not account for the radial dependence of the mean flow are likely to significantly
underestimate the total longitudinal mixing.

While shear-flow dispersion in turbulent jets is ostensibly different from shear-flow
dispersion in pipe flows, for which the classical theory was first developed (Taylor
1953), there are several similarities. Different from pipe flow is the fact that in a jet
the radial steady-state scalar concentration is non-uniform, and will, according to the
lateral transport properties of the scalar, be concentrated in regions of relatively high
longitudinal velocity. From an integral perspective, this property of the scalar field is
characterised by a constant dimensionless flux parameter θ0. Similar to pipe flow is
the fact that longitudinal changes in an otherwise steady-state scalar field result in a
local perturbation of the scalar’s radial dependence. In jets, the effect of a perturbation
of amplitude L1 on the local scalar flux can be accounted for with the parameter θ1.
Together, θ0 and L1θ1 provide a dispersion closure in an integral model that shows
good agreement with DNS data (figure 9). When applied to planar jets the approach
yields a differential equation that is in one-to-one correspondence with that proposed
by Landel et al. (2012) and provides additional physical insight.

In principle, shear-flow dispersion finds application in any problem in which there
are lateral gradients in a velocity field, and is therefore relevant to a wide range
of situations in industrial and environmental fluid mechanics. In particular, one
should expect to find shear-flow dispersion in both laminar and turbulent free-shear
flows, including turbulent plumes and wakes. The axisymmetric turbulent jet that
we have analysed is relatively simple because it is statistically two-dimensional and
self-similar at relatively large distances from the source. Consequently, the behaviour
of a propagating step change in the integral concentration could be characterised
completely in terms of a similarity variable λ∝ z2/t. However, one expects shear-flow
dispersion to also play a role in more complicated three-dimensional problems such as
plumes that are influenced by a cross-wind and multiple coalescing jets and plumes.
The present study indicates that unless shear-flow dispersion, arising from advection
by the mean flow, is correctly understood and parameterised, longitudinal mixing in
such flows will not be predicted correctly.

Outstanding among issues deserving further attention is a formulation for the
precise way in which the scalar profile is perturbed as a result of a step change
in the longitudinal concentration profile. Such a formulation would allow one to
estimate a dispersion coefficient (cf. θ1 in the present study) for a variety of different
free-shear flows such as planar jets and plumes. A related issue for consideration is
the role of higher-order perturbations to the scalar profile such as those considered
in the context of pipe flow by Taylor (1954a), Gill (1967) and Chatwin (1970).
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Appendix A. Shear-flow dispersion in a pipe
Following Taylor (1953, 1954b), we consider the evolution of a step change in

the dimensionless concentration C ≡ c/cm0 in a pipe or tube of radius rm. Consistent
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with boundary layer theory we neglect second derivatives in the longitudinal direction.
Unlike jets, in pipes the steady-state concentration cm0 is independent of z, and we
can replace c with C in the scalar transport equation:

∂C

∂t
+w

∂C

∂z
= κT

r
∂

∂r

(
r
∂C

∂r

)
, (A 1)

where κT is the (constant) eddy diffusivity and w is the steady-state velocity field.
Taylor (1953) applied a Galilean transform, defining a coordinate system that moves
according to the mean longitudinal velocity or, equivalently, the velocity associated
with the scalar flux:

ξ ≡ z− θ0wmt, τ ≡ t, (A 2a,b)

where θ0 is constant and equal to unity for pipe flow. We assume that the radial
dependence of the velocity field does not vary in the longitudinal direction, such that
w = wmf0(η), where wm = 〈w〉 is the cross-sectional-averaged longitudinal velocity,
η≡ r/rm is a normalised radius and 〈f0〉 = 1. Equation (A 1) transforms according to

∂C

∂τ
+wm(f0 − θ0)

∂C

∂ξ
= κT

r2
mη

∂

∂η

(
η
∂C

∂η

)
. (A 3)

The radial dependence of C can be decomposed into g0(η), which corresponds to
the steady-state radial dependence of the concentration, and g1(η), which accounts for
the leading-order perturbation from g0(η):

C ∼Cm(g0 + L1g1). (A 4)

Here, the variable Cm determines the amplitude of the concentration profile. For pipe
flow, since the steady-state concentration is uniform, it can be assumed that g0 = 1,
without loss of generality, and we define Cm such that the cross-sectional average
〈g1〉 = 0. In (A 4), L1 determines the amplitude of the leading-order perturbation.

Applying the averaging operation 〈 〉 to (A 3) gives an equation for the mean
concentration:

∂Cm

∂τ
+wm〈f0g1〉 ∂

∂ξ
(CmL1)= 0. (A 5)

Subtracting (A 5) from (A 3) yields

g1
∂(CmL1)

∂τ
+wm(f0 − θ0)

∂Cm

∂ξ
+wm

∂CmL1

∂ξ
[(f0 − θ0)g1 − 〈f0g1〉] = κTCmL1

r2
mη

d
dη

(
η

dg1

dη

)
.

(A 6)
Taylor’s key assumption was that for large time (t� r2

m/κT) there exists an asymptotic
balance between the second and fourth terms in (A 6). Noting that ∂ξ = ∂z, one
therefore assumes that

L1
κT

η

d
dη

(
η

dg1

dη

)
=−wmr2

m

Cm
(θ0 − f0)

∂Cm

∂z
, (A 7)

which represents a balance between longitudinal advection and turbulent transport in
the radial direction. Equation (A 7) has a separable form and implies that to within a
constant multiplicative factor

L1 =−wmr2
m

κT

1
Cm

∂Cm

∂z
. (A 8)
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In principle, (A 7) can be inverted to determine the form of the perturbation g1, and
therefore the flux

Fm ≡wmcmr2
m(〈f0g0〉 + L1〈f0g1〉). (A 9)

Defining
θm ≡ Fm/wmcmr2

m, θ0 ≡ 〈f0g0〉, θ1 ≡ 〈f0g1〉, (A 10a−c)

(A 9) can be expressed as θm = θ0 + L1θ1. The parameter θ0 is the basic steady-state
dimensionless scalar flux arising from self-similar profiles of c, and θ1 is the
dimensionless scalar flux arising from a local departure from self-similarity in c.

Appendix B. Shear-flow dispersion in a planar jet
The approach taken in § 5 to obtain a model for shear-flow dispersion in

axisymmetric jets is equally applicable to planar jets. Since planar jets are driven
by line sources of momentum flux of infinite length, we will assume that the scalar
is also released over a line source of infinite length coincident with the source of
momentum flux. For planar jets we define the volume flux, momentum flux and
integral scalar concentration, per unit length, according to

Qm(z)≡ 2
∫ rd

0
w dr, Mm(z)≡ 2

∫ rd

0
w2 dr, Cm(z)≡ 2

∫ rd

0
c dr (B 1a−c)

respectively. Consequently, it is convenient to define top-hat variables rm and wm such
that Qm≡ 2wmrm and Mm≡ 2w2

mrm; hence wm≡Mm/Qm and rm≡Q2
m/(2Mm). For two-

dimensional jets the averaging operator 〈 〉 therefore becomes

〈χ〉 ≡ 1
rm

∫ rd

0
χ dr, (B 2)

which ensures that wm= 〈w〉. Consistent with the definitions above, in the limit rd→
∞, is a Gaussian velocity profile of the form

w=wm

√
2 exp

(
−π

2
η2
)
=wmf0(η), (B 3)

where η≡ r/rm. The two-dimensional steady jet equations are

dQm

dz
= 2α

Mm

Qm
,

dMm

dz
= 0, (B 4a,b)

representing volume conservation and momentum conservation respectively. It should
be noted that the α defined by (B 4a,b) is a factor of

√
2 larger than the value of

α used by Landel et al. (2012), who scale the entrainment velocity on the maximum
velocity, which is equal to

√
2wm. The solution to this system of equations is Qm =

2
√
αzM0, where Mm =M0 is the momentum flux per unit length at the source. In a

steady planar jet there is a balance between the longitudinal transport of mean kinetic
energy and the production of turbulence (for an axisymmetric jet see Craske & van
Reeuwijk 2015a, for details):

d
dz

(
γm

M2
m

Qm

)
= δm

M3
m

Q3
m

, (B 5)
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where γm and δm are the dimensionless energy flux and dimensionless turbulence
production respectively, defined as

γm ≡ 〈w
3〉

w3
m

, δm ≡ 4rm

w3
m

〈
u′w′

∂w
∂r

〉
. (B 6a,b)

Using (B 3), the dimensionless energy flux γm can be expressed as

γm ≡ 〈f 3
0 〉 =

2√
3
. (B 7)

Moreover, invoking a gradient-diffusion hypothesis,

u′w′ =−νT
∂w
∂r
=πνT

wm

rm
ηf0(η), (B 8)

the dimensionless turbulence production can be expressed as

δm =−4π2νT

wmrm
〈f 2

0 η
2〉 =−2π

νT

wmrm
. (B 9)

When (B 5) is combined with (B 4a,b) we find that the relationship between δm, γm
and α is α =−δm/2γm; hence

νT = 2√
3

α

π
wmrm. (B 10)

In two dimensions, setting κT = νT , equation (A 8) therefore becomes

L1 =−π
√

3rm

2α
1

Cm

∂Cm

∂z
. (B 11)

The steady-state integral concentration Cm0 in a planar jet scales according to
√

z.
Therefore, noting that for a planar jet rm = 2αz, substituting Cm ≡ Cm/Cm0 ∼ Cm/

√
z

in (B 11), we find

L1 =π
√

3
(

1
2
− z

Cm

∂Cm

∂z

)
. (B 12)

Substitution of (B 12) and θm = θ0 + L1θ1 into the transport equation for a scalar in a
planar jet,

∂Cm

∂t
+ ∂

∂z

(
θm

M1/2
m√
4αz

Cm

)
= 0, (B 13)

gives

∂Cm

∂t
+
(
θ0 +π

√
3
4
θ1

)
M1/2

m√
4α

∂

∂z

(
Cm

z1/2

)
= θ1πM1/2

m

√
3

4α
∂

∂z

(
z1/2 ∂Cm

∂z

)
, (B 14)

which is the planar version of the axisymmetric dispersion model (6.1), and has a
form that is identical to that which was proposed by Landel et al. (2012) for quasi-
two-dimensional jets.
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Appendix C. Similarity solution constants
For large λ equation (6.8) can be expressed as

Φ(λ)∼
[

c1

(
Pe
2λ∗

)1/2−Pe/2

Γ

(
1
2
+ Pe

2

)
+ c2

]
λ1/2; (C 1)

hence

c2 =−
(

Pe
2λ∗

)1/2−Pe/2

Γ

(
1
2
+ Pe

2

)
︸ ︷︷ ︸

c3

c1, (C 2)

to ensure that Φ→ 0 as λ→∞. The value of the remaining degree of freedom c1 is
determined by the integral constraint (6.7b):

c1 =
{∫ ∞

0

[
exp

(
−Peλ

2λ∗

)
G
(

1,
Pe
2
+ 1

2
,

Peλ
2λ∗

)
λPe/2−1/2 + c3

]
dλ
}−1

. (C 3)

Using the observed values Pe ≈ 10.99 and λ∗ ≈ 1.10, we find c1 = −25.79 and
c2 = 1.00.
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