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Abstract. We estimate from below the measure theoretic entropy of the system of
spheres interacting by elastic collisions. We find the asymptotics of the entropy in
the case of two disks on atoms as the radius increases. We establish that high density
leads to large entropy. We introduce a general estimate for Lyapunov exponents in
the case of special symplectic matrices.

Introduction
Let us consider the system of N spheres of radius r in a volume A interacting by
elastic collisions. We fix the total energy of the system to be NE. The dynamics is
described by a measurable flow <&' preserving the microcanonical probability distri-
bution v. The measure theoretic entropy of the flow /!(<£') was shown by Sinai ([Sin
3], [Cher]) to be positive. One may ask what is the connection between this quantity
and the equilibrium statistical mechanics of the system. In this direction Sinai and
Chernov ([Sin 2], [Cher-Sin]) showed that the thermodynamic limit of h(^) exists
for small densities and is connected with the entropy of the infinite system with
respect to the group of time-space translations. More precisely

where the limit is taken as A-»R3 and the density N/volume (A)-*p. Suppose that
the limit exists for all densities. Then we conjecture that

lim h(p, £ ) = +oo.

What we actually establish rigorously is the following estimate when A is a torus

^ 1 sinh"1 VT| Vrel|(> cos i//)"1 dv,

where T is the time between the nearest collision in the past and the nearest collision
in the future, Vrei is the relative velocity of the colliding spheres and ip is the angle
between Vrel and the line through the centers of the colliding spheres, both quantities
correspond to the nearest future collision.

Since it is reasonable to believe that T ~ 1/ TV the estimate does not look impressive
because it yields only a quantity ~JN which is not enough even to establish the
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134 M. Wojtkowski

positivity of the entropy per particle h(p, E). But if we keep the volume A and
the number of spheres fixed a.id increase the effective density by increasing the
radius r then we can expect the average time between collisions to go to zero and
since our estimate is roughly J T~1/2 dv then /j(<t>')-»+oo. If we accept that /i(4>1)
is essentially an additive function of the volume (which is the basis of the existence
of the thermodynamic limit) we must conclude that h(p, £)-»+oo when p->pmax.

Actually we find the mathematics of dense packing so unwieldy that we are unable
to show rigorously that the integral in our estimate indeed goes to infinity when r
approaches its maximal value. We supply only heuristic arguments.

The meaning of the entropy per particle being large for an almost dense packing
of spheres is open to interpretation. One possibility is that this quantity is not
relevant to the statistical mechanics of the dense system.

The plan of the paper is the following. In § 1 we consider two disks on a torus.
Following Sinai [Sin 1] we reduce the system to the billiard system in a plane
domain which for large disks is a unit square with the sides replaced by arcs of
circles with small curvature e. Benettin [Ben] established numerically that the
asymptotics of thejneasure theoretic entropy (Lyapunov exponent) of this billiard
system is const • ~Je as e -» 0. We prove this rigorously and even estimate the constant
to be between 1.91 and 2. This asymptotics is sufficient to cause the entropy of the
system of two disks to go to +oo when the radius r-» rmax. Note that this fact is not
something one can easily see qualitatively. If for example the asymptotics in the
billiard problem were const • e then the entropy in the system of disks would stay
bounded. The trade off is the following: when the disks are large there are many
collisions per unit time but when the time between collisions is small the contribution
from each collision into the entropy is also small. The net effect of making the disks
large is to be computed.

The method we use for the lower bound was developed in [Wojt 2] and for the
upper bound was inspired by a conversation with A. Katok. In the rest of the paper
we generalize the lower bound to the multidimensional case. In §§ 2 and 3 we
develop a general method of estimating from below Lyapunov exponents in the
symplectic case. These sections are independent of the rest of the paper. We develop
there the discrete time version of the method of estimating the measure theoretic
entropy of the geodesic flow in the case of nonpositive curvature from [Ball-Wojt].
The generality of exposition here exceeds the needs of the application to the gas
of hard spheres in § 4 but we hope that in such a general setting the method may
prove useful elsewhere. In § 2 we discuss Q-monotone symplectic operators - they
were essentially introduced in [Wojt 1]. In Appendices A and B we supply some
more technical computations for §§1 and 4 respectively.

1. Two hard disks on a torus
Let us consider the system of two hard disks of unit mass on a torus T2 = R2/Z2.
The torus is flat with unit 'sides' so that the radius of the disk r < v 2/4. The disks
move uniformly until collision and they collide elastically.
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Entropy of hard spheres 135

By qt e U2, qt mod 1, i = 1, 2 we denote the position of the centers of the disks.
The configuration space K of our system is thus

K={(qi,q2)modl\\q2-ql\^2r}.

We introduce new coordinates (u, ,u2) mod i in K by the formula qx = ul — u2,
q2

=ul + u2. The mapping (ux, u2) mod 1 -»(q,, q2) mod 1 is a 4 to 1 covering. The
preimage of K under this mapping is

K = {(u,, u2) mod l | | u 2 - | z | > r for any zeZ2}.

Hence K is the Cartesian product of T2 and the torus with four disks of radius r
removed, which we denote by T2.

The phase space of our system is the tangent bundle of K with obvious iden-
tifications at the boundary. The total energy

and the total momentum u{ are first integrals of the system.
The flow describing the dynamics in the phase space preserves the Lebesgue

measure. Fixing the total energy E we obtain a flow preserving a finite smooth
measure. We are interested in the metric entropy H = H(E, r) of the flow.

With the total energy fixed the total momentum «, can assume values from a disk
of radius \TE. The uniform measure on the sphere u2+u\=E projects onto the
uniform measure on the disk «2< E.

It is not difficult to see that the flow for every fixed ii, is the Cartesian product
of the quasi-periodic flow on T2 with the velocity ti, and the billiard flow in T2

with the speed / = V'E - u\. The phase space for the billiard flow is S,T2 - the circle
bundle over T2 of tangent vectors of length / = v E — u\.

Let h{r) denote the metric entropy of the billiard flow in S,T2 (i.e. with the
speed 1). The entropy of the billiard flow in S,T2 is then equal to lh(r).

Since the entropy of the quasi-periodic flow is zero, then the entropy H(E, r) is
the average value of v £ — u\h(r) with respect to the uniform measure on the disk
u2 < E. Hence we get

rJT
2irh(r) VE -p2 p dp

H(E,r)= °—- = \s[Eh{r).
irE

Our goal is to find the asymptotics of h{r) as r
When r>\, T2 has four connected components, each equal to a plane domain

bounded by four arcs of circles of radius r (see figure l(a)). The entropy h(r) is
equal to the metric entropy of the billiard flow in such a domain. We rescale the
domain so that we get the domain QE inscribed in the unit square Qo (see figure
l(b)). The curvature of the boundaries is

Let g(e) be the entropy of the billiard flow in Qe. Since the change of scale amounts
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136 M. Wojtkowski

to the change in velocity we obtain
g(e) = h(r)er.

We introduceji new parameter T? = ((v/2/4)-r)/(v/2/4). Then £ =
77->0 as r^-Jl/A.

O(T/2) and

FIGURE l(a) FIGURE l(b)

THEOREM 1.

where

lim inf g{e)/\le a a0, lim sup g(e)/Ve < 2.

In = 1.909.

We conjecture that actually

This would imply that h{r)~4/Jr) or H(E, r)~fv/£(l/V^) when r-»V2/4.
Theorem 1 is sufficient to conclude that limr^v7/4 H{E, r) = +00.

Proof. Let us consider the billiard system in QE. The phase space of the system is
the unit tangent bundle of Qe with appropriate identifications at the boundary. As
usual we replace the original billiard flow by the standard section map. Let SE be
the space of unit tangent vectors attached at the boundary of Qe and pointing
inwards. We introduce coordinates (s, cj>) in Sc where s is the arc length parameter
along the boundary and cf>, 0< </> < 77 is the angle which the tangent vector makes
with the boundary. The standard section map T:Se^S, , is the map of the first
return to 2E. The natural invariant measure for T is

dfx = const • sin 4> • ds dcj>.

Let T :2 E ->R+ be the time of the first return i.e. the time till the next reflection at
the boundary.
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Entropy of hard spheres 137

To describe the differential DT we use special linear coordinates (du, dv) in
tangent planes of 1e given by the formulas

du = sin 4> ds,

dv = e ds — d<p.

(These coordinates come from the natural coordinates in the plane orthogonal to
the orbit of our flow.) In these coordinates the matrix of DT at x = (s, </>) has the form

1
2e i +

sin 4>i sin 4

where T(s, cf>) = (s,, <£,). In Appendix B we derive this formula in the multi-
dimensional setting.

Let A(x) = limn^+0O 1/n In ||DXT"||, x e 2 e be the nonnegative Lyapunov exponent
of T. (A(x) is actually constant almost everywhere by the ergodicity of T, cf. [Sin 1],
[Bun-Sin] but our discussion does not depend on this subtle fact.)

Since the matrices DT have all positive entries they map the positive quadrant
into itself and we can use theorem 2 from [Wojt 2] which yields

Is., J i , \ i sin (pi ' sin <pxi j 2 e y Sin

This estimate is also a special case of the multidimensional estimate which we will
prove later (see theorem 4).

T is not continuous but its singularities are mild enough for the Pesin formula
to hold, cf. [Pes], [Led-Str], [Kat-Str]. Actually for the billiard system an equivalent
formula was proved by Sinai [Sin 1]. By the Pesin formula the metric entropy of T
is equal to Js A(x) d/x. Further, by the Abramov formula, the metric entropy g(e)
of the time one map of the flow is equal to

g(e) = ^ k{x)d^l J r{x)dtL.

By the Lebesgue Dominated Convergence Theorem

_, , 2ET
, r sinh

• • • cg(lim inf
e) ,. f Vsin.A, / f
=̂ ->hm -j= d/i / hm T dfx

where the last integrals are taken in the square Qo. It turns out that these integrals
can be computed explicitly and the result is equal to a0. We do it in Appendix A.

To estimate the entropy from above we will use the following obvious fact

I A(x)d M < I ln
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But we will once again change coordinates in the tangent planes to £e:

du = (ae)* du

dv = (ae)~i dv

where a is a constant to be chosen later. In these new coordinates DT has the form

2er

sin

By straightforward computations we obtain

||DT|| = y i + ! +
where

A= e
a sin 4>J sin 4>\

By the Lebesgue Dominated Convergence Theorem,

g(e) f l / f
lim sup —j=-< lim —=ln \\DT\\ d/j. / lim

e->o v e e-*o

= 5

rd/x

7±t)+/i
Now we choose the constant a so that the last quantity has the minimal value i.e.

2- I -
•kS11

d^ \ rdfj,.

We get

The integrals on the right-hand side are taken explicitly in Appendix A and the
result is equal to 2. •

2. Q-monotone symplectic operators
Let V be an n-dimensional euclidean space with the scalar product (-,•). We

introduce the standard symplectic structure in V x V,

o(vi,v2) = (xi,y2)-(x2,y1)

where vt = (*,•, ̂ ) eVxV, i = 1, 2.
Let Sp(V) be the group of linear symplectic operators on V x V. A symplectic

operator S on V x V can be described by a 2 x 2 matrix of linear operators on V.

'A B'

If we put

S =

J =

C D
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Entropy of hard spheres 139

where' / is the identity operator on V then the symplecticity of S is equivalent to
S*JS = J i.e.

C*A = A*C, D*B = B*D and A*D-C*B = I. (1)

We consider additionally the quadratic form Q on V x V

Q(v) = (x,y) where v = (x,y)eVxV
and the 'cone' C = {ueVxV|Q(u)>0}.

Definition. A linear operator S is Q-monotone if Q(Sv)> Q(v) for every ceVxV.

THEOREM 2. Let

'A
5 \C D

be a linear symplectic operator on VxV. Then the following are equivalent:
(a) S is Q-monotone;
(b) SCcC;
(c) A is invertible and BA* > 0 and A*C > 0;

(d) D is invertible and CD* > 0 and D*B > 0.

Proof. (a)=>(b) is obvious.
(b)=>(c) First we will prove that A must be invertible. Suppose that there is xoe V

such that Ax = 0. By symplecticity
D*A-B*C = I

so that B*Cxo= -x0.
Let v = (xo,y)eC i.e. (xo,y)>0, then

Sv = {By, Cxo+Dy)eC.

Hence we get

0< (By, Cxo+ Dy) = -(x0, y) + {D*By, y)

or
{xQ,y)<{D*By,y).

Putting y = ex0, e > 0 we obtain

(xo,xQ)<e{D*Bxo,xo)

for all e > 0, so that x0 = 0.
The operator

4"1 0

0 A*'

is symplectic and preserves Q so that if

/ A - 0\/A B\J I A-*B\
1 \ 0 A*)\C Df \A*C A*DJ

then S,C = SCc=C.
Let us put R = A ' B, P = A*C. We have

R

-P*R
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and since 5, is symplectic, then, by (1), P and R must be self adjoint. If
Q(v) = (x, y)>0 then

0 < Q(Sv) = Q(5, v) = (x, y) + (Ry, y) + (P(x + Ry), x + Ry).

Letting y = 0we get that P = A*C > 0.
If R is not positive semidefinite then there is y0 such that (Ry0, yo)<0. Let x0 be

such that {x0, yo)<O. Consider v = (ex0 — Ry0, y0). We have

Q(v) = e{xo,yo)-(Ryo,yo)>0

for sufficiently small e > 0 and then also Q(Slv)>0. But

<?(S,u) = E<XO, >><>> + e2<ftc0, xo)<0

for sufficiently small e > 0. The obtained contradiction proves that R a 0. Finally
BA* = ARA*>0.

(c)=>(a) Using the above notation

Q(Sv) = Q(S,v) = (x,y) + {Ry, y) + (P(x + Ry), x + Ry)>(x, y)= Q(v)

since P = A*C>0and R = A"1(BA*)/i-1*>0.
In a similar way one can prove that (b)=>(d) and (d)=>(a). •

LEMMA 1. If P > 0 and i?>0 are self-adjoint positive semidefinite operators on V
then PR has only real nonnegative eigenvalues.

Proof. If one of the operators e.g. P is positive definite then PR is similar to

which is self-adjoint and positive semidefinite. The general case follows from the
continuity of the spectrum. •

COROLLARY 1. / /

( B)
VC D)

is symplectic and Q-monotone then C*B has only real nonnegative eigenvalues.

Proo/By Theorem 2, BA*>0 and C*A>0. Hence also A"'B = A-'(BA*)A~'*>0.
Now we can apply Lemma 1 to C*A and A'lB. •

For a symplectic Q-monotone operator

'A

' D)

let w, > u2 s • • • > « „ > 0 be the eigenvalues of C*B. We define

p(S)= II (Snrui + Sui) = exp[ X sinh-*Suj). (2)

Let U:V-*V be a linear operator and gU = {(x, y)e VxV\y = Ux} be the graph of
U. A lagrangian subspace of VxV is an «-dimensional subspace on which w
vanishes. It can be checked directly that gU is lagrangian if and only if U is
self-adjoint. Moreover for a self-adjoint U, gU<= C if and only if t />0 .

If S is symplectic and Q-monotone and U > 0 then SgU is a lagrangian subspace
contained in C. Moreover SgU is the graph of an operator which we denote by SU
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(gSU = SgU). Indeed we have to check that SgU does not contain v = (0, y), y^O.
If it does then S~lv = (x, Ux) and (x, t/x) = 0 so that Ux = 0. Further O = Ax +
BUx = Ax which contradicts the invertibility of A.

Clearly if U>0 then S(7>0. We have

SU = {C + DU)(A + BUr\ (3)

For a self adjoint U>0 the restriction of Q to g(7 and also SgU is a positive
definite quadratic form i.e. a scalar product. By a(U, S) we denote the coefficient
of volume expansion under the action of S from the subspace gU onto SgU, where
both subspaces are equipped with scalar products obtained by restricting Q.

LEMMA 2.

det(A+Bl/)det(C +

Proof. We introduce linear coordinates in gU and Sg(7 by the projection -rrx :̂
V on the first component. The restriction of Q to these subspaces is transformed
by 77, into the quadratic forms (U-, •) and (SU-, •) respectively. The action of S in
these coordinates is given by the formula

Hence, by (3),

a(U,S)=JdetSU\det(A+BU)\/Jdet U

Vdet (A+BU) det (C + DU)

Vdet U

THEOREM 3. Let S be a symplectic Q-monotone linear operator. Then

a(U,S)>p(S) (4)

for every U>0.

Proof. Let

'A~' 0\/A B\_/I R
0 A*)\C Dj ~\P I+PRJ

where R = A~'B>0 and P = A*C>0. We have a(U,S) = a{U,S}) because the
symplectic map

4"1 0
0 A*,

preserves Q. Also C*B = PR so that

\c D)
a n d S, = , rt

Hence it is enough to establish (4) only for
/ R

S \p I + PR)'

P>0, # > 0 . a(U,S) depends continuously on S and so does p(S), This allows
further restriction to the case P > 0 and R > 0.
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Now we can simplify S by the following transformation

/ < V 5 > - o w i R y j R o \ _ / / / \
\ o JR/\P I + PR/\ o V/J-V \T I + T)

where T = JHP*JH has the same eigenvalues as P/? = (V / R)~ 'T>/R. Hence p(5,) =
p(S). Clearly a(U, S) = a(Uu S^ where UX=SR.U-JR. SO finally it is enough to
establish (4) only for

S = \
KT I+T

T>0. For such 5

, n. Vdet ( T + ( / + 7 ) [ / ) d e t ( / + t / ) Vdet ( 7 + U(I+ U)~l) det ( / + [/)
a(U,S)=

Vdet U Vdet U

In general if /4 and B are self-adjoint positive definite operators then

det(A + B)>det A

Hence

det (T+Lf( /+[ / )~ 1 )>det l//det
and further

a(t/, S)>v/det(/+t/)>l.

Similarly

a( t/, S) > Vdet T det ((Vt/)"1 + SU).
The last inequality shows that a(U, S)-»oo when one of the eigenvalues of [/ goes
to 0 or +oo. We conclude that a(U, S) has an absolute minimum at some C/o>0
and a(U0, S)> 1. To find this minimum we will differentiate a(U, S) with respect
to U. It turns out that a(U, S) has a unique critical point which hence must be the
minimum.

LEMMA 3. Let f(U) = ln a(U, S) for U>0 then

D/(Z)=KtrZ[(/+r)~1T+t/]"1+trZ(/+t/)-1-trZt/-1)

where the derivative is taken in the manifold of positive self-adjoint operators U so
that Z is an arbitrary self-adjoint operator.

Proof. If g( U) = In det U then

Using the chain rule we get our formula by straightforward computation. •

It follows from lemma 3 that a(U, S) has a critical point at U if

((/ +T)'1T+ t / )" ' + (7+ f / ) " 1 - [ / " 1 =0 .

Transforming the equation we get

U2 = (I+T)~lT2.

There is a unique positive definite Uo which satisfies this equation. Moreover,

a(U0,S)=s/det({I+T)U0+TUo1+T+(I+T))
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and
(/ + T) Uo = TUo1

so that

) p ( ) •

3. Lyapunov exponents
Let T: X -> X be a measurable transformation of the measurable space X preserving
the probabilistic measure /A and let S: X -> Sp (V) be a measurable map with values
in symplectic operators such that

L ln+ ||5(x)|| d/j.(x)<+oo where ln+ a = max (a, 0).
ix

By the Multiplicative Ergodic Theorem of Oseledec (see [Os], [Rue]), we have
that for /̂ .-almost all xeX the following limit exists

lim {Sk'(x)Sk(x)y/2k = A(x)
fc-*+OC

where

The logarithms of eigenvalues of A are called Lyapunov exponents.
In our symplectic case A is also symplectic. Indeed the symplecticity of Sk means

that

Sk*JSk = J.

Taking into account that Jx = - / we get

J-lSkJ = (Sk*yl and J~1Sk'j = (Sk)'\

It follows that

J-lSk'SkJ = (Sk'Sk)-> and J~\Skt Sk)U2kJ = {Sk'Skyl/2k.

Taking the limit we obtain
J - | A J = A~1

which together with A* = A means that A is symplectic.
We obtain that the non-zero Lyapunov exponents appear in pairs A, -A i.e. the

eigenvalues of A are

e A» < • • • < e"A' < 1 < eA' < e*2 < • • • < e \

where 1 may or may not be one of the eigenvalues. Moreover the multiplicities of
eA| and e~A| are equal and we denote them by dt. Indeed let £,-, i = 0, ± 1 , . . . , ±s
be the eigenspace of the corresponding eigenvalue. If 1 is not an eigenvalue we put
£0 = {0}. We have/£, = £_,.

Let £* = £_,©• • •©£_,.

LEMMA 4. ES®EO is the skew orthogonal complement of E\
Proof. Eh i = 0, ± 1 , . . . , ±5 are mutually orthogonal and JEt = £_,-. It follows that
£, is skew orthogonal to £, if j ^ —i. Consequently £ s © £ 0 is skew orthogonal to
£s and since they have complementary dimensions one is the skew orthogonal
complement of the other. •
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By t h e M u l t i p l i c a t i v e E r g o d i c T h e o r e m , for /n -a lmos t all xeX if a s u b s p a c e
E c V x V i s s u c h t h a t £ s < = £<= ES®EO t h e n

and if £ is such that £ s n £ = { 0 } and £ s © £ 0 © £ = V x V then

lim -ln|det(S'c |E) | = A1d1 + - • - + \sds.
fc^ + OO IC

In other words the exponential rate of volume growth on the subspace E under the
action of Sk is equal to the sum of respectively negative and positive Lyapunov
exponents.

LEMMA 5. For a lagrangian subspace E o /VxV
(a) EscEifandonlyifE<=Es®E0;
(b) £sn£={0} ifandonlyifEs®E0®E=VxV.

Proof, (a) Es c E if and only if the skew orthogonal complement of E\ which by
lemma 4, is equal to Es® Eo, contains the skew orthogonal complement of E, which
by the definition of a lagrangian subspace is equal to E.

(b) £ s n E is the skew orthogonal complement of ES@EO®E. •

LEMMA 6. There is a lagrangian subspace containing Es and the set of lagrangian
subspaces E such that Es n E = {0} is open and dense in the lagrangian grassmanian.

Proof. If Eo = {0} then, by lemma 4, Es is lagrangian. If £0 # {0} then it is a symplectic
subspace. Indeed JE0 = Eo so that the restriction of co to £0 is nondegenerate. Let
L c £ 0 be a lagrangian subspace of the symplectic space £0 then ES@L is a
lagrangian subpace in V x V (actually every lagrangian subspace containing £ s can
be obtained in this way).

The second claim in the lemma follows from the first and from the general fact
that the set of lagrangian subspaces transversal to a particular lagrangian subspace
is open and dense in the lagrangian grassmanian. •

It follows from the above discussion that if we are interested in the sum of the
positive Lyapunov exponents then it is natural to consider volume growth on
lagrangian subspaces only. Note in particular that if there are no zero exponents
then £ s is lagrangian.

We are now able to formulate and prove a fundamental estimate for the sum of
positive Lyapunov exponents in the case of Q-monotone symplectic operators. It
follows easily from the estimate in theorem 3.

T H E O R E M 4. / / S : X - » S p (V) has values in Q-monotone operators then

(A1d1 + - - - + AId5)d/t& l n p ( S ( x ) ) d / i .
J X J X

Remark. This theorem can be applied to a single Q-monotone symplectic matrix

2)-
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It yields the inequality

• • k|s= n (Vi+u.
i = 1

where *>, ,...,*>„ are the eigenvalues of S outside the unit circle and u , , . . . , un are
the eigenvalues of C*B.

Proof. By Lemma 6 there are self-adjoint positive definite operators C/:V->V such
that Es ngU = {0} (it is not difficult to see that it holds actually for every U>0).

(x, x) + (y, y) > (x, y) for every x, ye V so that the standard scalar product on
any subspace gU, U>0, is bigger than the restriction of Q. It follows that

A,d, + - • - + \sds= lim - I n Idet (5k(x)Lu) |>lim s u p - I n a(U, Sk(x)).
fc-.+oo Ic k — +<x> k

By theorem 3,

a(U, Sk(x)) = a(U, S(x))a(S(x) U, S(Tx)) • • •a(Sfc-1(x) U, S(Tk'lx))

>P(S(x)p(S(Tx)) • • • p(S(Tk-lx))).
Hence

1 fc-!

A,d, + - • • + \sds > lim sup - I In p(S(T'x)).
/c-»oc fc , = o

Since a priori we do not know if In p(S(x)) is integrable we cannot use the Birkhoff
Ergodic Theorem. Nevertheless we obtain our estimate from the following general
lemma.

LEMMA 7. Let T: X -* Xpreserve a probabilistic measure /J. on X and f be a measurable
function on X , / > 0 . If for some measurable function g and almost every xe X

then

I f(x) dp. < I
Jx J

f(x) dp. < I g(x)
x

Proof. Let

f/(x)

N

We have 0 < / N ^ / a n d / N is integrable. By the Birkhoff Ergodic Theorem we obtain

/N(x) = \

Hm -"lfN(rx)=f%(x)

and

I f%(x)dp= I / N ( x ) ^ .
Jx Jx

But/$(x)<g(x) so that

/N(x)rfM< g(x)rfM. DD
Jx Jx
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4. Gas of hard spheres
We will consider the system of N identical d-dimensional balls in the (/-dimensional
torus Td =R d /Z d . The radius of a ball r cannot exceed a certain ro=ro(N). We
assume that the balls move uniformly and collide elastically.

Let q{ e Ud, qt mod 1 be the position of the center of the i-th ball and u, e Ud its
velocity, i = 1 , . . . , N. The configuration space Q of our system is

<? = {(«!, • • •, qN) mod 11 \qt - qj + k\ > 2r for every k e l"}

The boundary of Q is piecewise smooth and the smooth pieces are isometric to
pieces of the cylinder {(z1,..., zN)e (Ud)N\ \zx\ = Jlr}. In particular the boundary
of Q has d -1 principal curvatures equal to 1/V2r and the rest are zero.

We fix the total energy of the system NE = i £ i = i v\. The phase space is the bundle
of spheres of radius -ilNE over Q which we denote by F. The dynamics of our
system is described by a flow <&' in F which preserves the Liouville measure v (the
microcanonical probability distribution).

It turns out that the elastic collisions of balls lead to billiard dynamics i.e. 4>'
describes the dynamics of a mass point moving uniformly with speed J2NE in Q
and reflecting elastically from the boundary of Q (at reflection the tangential
component of the velocity is preserved and the normal component is reversed).

We will estimate the measure theoretic entropy h(&) of O1 from below using
Theorem 4.

To that end let us consider the standard section map T: 2 -»2 where 2 consists
of vectors (of length \/2NE) attached at the boundary of Q and pointing inwards.
T is the first return map for the billiard flow <t>'. By T : 2 - » R + we denote the time
of the first return i.e. the time to the next collision. T preserves the natural smooth
measure n (we do not describe it explicitly because we will use the measure v in
the final formula). The measure theoretic entropies of <t>' and T are connected by
the Abramov formula

Now our goal is to describe DT. We begin with introducing convenient coordinates
in the tangent spaces of 2 at p e 2 and Tp e 2. Let rr: 2 -» dQ be the natural projection.

By Lp we denote the tangent space of dQ at ir(p) and by Vp the linear subspace
orthogonal to the vector p. The tangent space of 2 at p can be naturally identified
with LpxVp. Let P :Vp-»l p be the projection along p. We identify LpxVp with
Vp x Vp via the linear operator P x 7: Vp x Vp -» Lp x Vp where I is the identity
operator on Vp. Further we identify Vp and VTp by translating Vp parallely to n( Tp)
and reflecting it in the tangent plane LTp.

After these identifications DpT becomes an operator on V p xV p . The computation
of DPT is performed in Appendix B and the result is the following block operator

I

7TNER

where R is a self-adjoint operator with d-\ nonzero eigenvalues: (rcos i/») ^Vre]
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of multiplicity 1 and r"1 cos i/»| Vrei| of multiplicity d — 2; Vre, = V, — Vj is the relative
velocity of the colliding ith and jth spheres and ip is the angle between Vrel and the
line through the centers of the colliding spheres at the moment of collision. In
particular DpT is a Q-monotone symplectic operator with respect to the standard
syrrrplectic structure in Vp x Vp.

T has singularities but it follows from [Led-Str] (see also [Kat-Str]) that at least
the estimate of the entropy from below in the Pesin formula holds for T. Hence
using theorem 4 we obtain

> ( sinh"1 vVcos i/r)"V|Vrel| + ( d - 2 ) sinh"1 -Jr'1 cos <H Vre,|) d/x.

We keep only the first term in the integral and replace the integration with respect
to dfi by the integration with respect to the microcanonical probability distribution
dv =

sinh"V(r cos <w)-'T|Vrel|d/i

T

= T"1 sinrT\/(rcosi/ 'r1T|Vr e l | dv. (5)

In the last integral we treat r, Vrcl and i/> as functions on the phase space F in the
following sense:

T is the time between the nearest collision in the past and the nearest collision
in the future, Vre] and ip correspond to the nearest future collision.

We cannot show rigorously that the integral (5) goes to +00 as the radius of the
spheres r approaches the maximal radius ro(N). Nevertheless we feel that it is so
beyond reasonable doubt. Here is one way to see it. The integral (5) is bigger than

I T ' s i n h v r ' T | Vr<:i| dp. (6)
IF

Let/(a) = a~'sinlT1Va for a>0. We have/(a) = a~^+ O(l) for small a. It can be
checked that / is a concave function i.e. / " > 0. To estimate from below the integral
(6) we use the Jensen inequality for the function / We get

(r^rl Vrel|)r-
f| VreI| dv^r1 j | Vrel| dvf^r1 j ^ r| Vrel|

2 dv j \^\ V«,| d^. (7)

Clearly \F | Vrel| dv is bounded away from zero uniformly in r< r0. r| Vrel| describes
roughly speaking how far apart two colliding spheres could be at the moment of
the nearest past collision (of some may be different spheres). It is clear that when
r is very close to r0 most of the spheres almost cannot move, so that T\ Vrel| is very
small with large probability. It should be also very small when averaged with respect
to | Vrel| dv and so (7) is very large when r is close to r0.

We believe that for certain values of N (when the spheres are well packed into
the torus) the uniform smallness of T|Vrei| can be established making the above
argument rigorous. When the number of spheres N is such that they can fill the
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torus only with considerable gaps then T\ Vrel| is not uniformly small for r close to
r0 and then the rigorous estimate of (7) seems to be a cumbersome task.

Another nonrigorous way to see that (7) goes to +oo when r->ro(N) is the
following. For large N the time r between consecutive collisions and | Vrsl\ are nearly
independent so that

7 - | V r e l | 2 d i ' ~ Tdv\ | V r e l | 2 ^ ,
J F J F J F

\VTei\
2 dv / \VTei\dv> mm \vt — Vj\2 dv / max |v,• — v}\ dv.

JF I JF J F *-J I JF '-J

The last expression does not depend on r (but it does depend on N). Hence (7) is
large if only the average time between collisions J F r dv is small.

Appendix A
We are going to compute three integrals

a= ——— d/x, b=\ rdf*. and c= yj — d/x.

(we listed them in the order of increasing difficulty).
Since T preserves the measure fx

a= — d/x = — sin cj> ds d<j> / sin 4>dsd(j> = 877/8= 77.
JS osin <p Jxosin cf> / J2o

To compute b and c let us consider the probabilistic measure v in S,<20 preserved
by the billiard flow. In S,Q0 we introduce two systems of coordinates. One is (x, y, ip),
where (x, y) e Qo and ip is the angle with the x-axis. The other one is (5, </>, t), where
(5, <j>) e So and t, 0 < t < r, is the time parameter along the orbit starting at (s, 4>) e 10.
In these coordinates we have

dv = ( 2T7)~ ' dx dy dip = (277)"1 sin 4> ds d<f> dt.

Hence

1 = (2TT)~ 1 sin <p ds d<p dt = (2T7)~ ' r s i n <f> ds d<f> =4TT~1 T dfj,
J s, Q, J 20 J s0

and b = TT/4. Fihally

f n^~ 1 V277 r
c = -\J — dtd\x= ( T s i n ^ ) 2 dv,

where we treat T and <$>x
 a s functions on S,Q0, constant on the billiard orbit between

consecutive reflections.
Using the symmetries of the square Qo we obtain

c = — I (T s ' n <£i) 2 dx dy I dip = J 2 I (r sin <t>t) '
2 dx dy) dip.

For a fixed direction (/> we rotate the coordinate system in QQ so that x becomes
the coordinate along the direction ip and y is the coordinate in the perpendicular
direction. Then T and sin <£, become functions of y alone and for a fixed >', x
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changes in an interval of length T. We get

(Tsin (frx)'1 dxdy =

149

Oo

In the last integral T is a piecewise linear function of y and sin 4>\ is piecewise
constant. By elementary geometry (see figure 2) we obtain

y + sin i/»

in <t>t "J J-sini* V s in i/f c o s 2 i/f

f cosi/'—sin i/* -|

-
Jo COS

("cosi// I

Jcos.-sin, VsTsin 4i cos

Finally by elementary integration
" TT/4

= V2
Jo

/ / 2 \ V?
= ( — + 5)77- I n 2 - \ I n (3+

\ 4 / 6

y k

cos iji — sin i/<

1/cos i

FIGURE 2

Appendix B
We are going to compute the derivative of the standard section map T: 2 ~* 1, of
the billiard flow. The results of this computation are essentially formulated in the
papers [Sin 2], [Sin 3], [Cher], [Cher-Sin] but the detailed derivation is not supplied
there.

DpT is the composition of two linear maps: the first one corresponds to the free
transfer up to the point of reflection, the other one describes the reflection itself.

The free transfer is described by the usual Jacobi equation for the orthogonal
component of the Jacobi field. In our case the metric is flat so that the Jacobi
equation is especially simple

x = y,

y = 0,
where (x,y)eVpxVp.
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If the distance between consecutive collisions is s then the linear map is

or in the block form

/ si

0 I

Hence this linear map is symplectic with respect to the standard symplectic structure
in VpxVp (Vp is equipped with the standard scalar product). The action of this
map on the lagrangian subspaces y= Ux, U* = if is given by U-> U(I + sU)~\

We will not study the action of the linear map corresponding to the reflection on
an individual vector but will rather find out how it acts on lagrangian subspaces of
VpxVp. This action can be described in the following way. At the moment of
reflection we have two rays: one incoming with the direction £o and the reflected
ray with the direction £o • Let us consider a local hypersurface S_ passing through
the point of reflection and orthogonal to £o • The family of rays orthogonal to S_
is infinitesimally described by the operator (/_ of the second fundamental form of
S_ at the point of reflection. The family of unit vectors orthogonal to S_ is a
submanifold in our phase space and its tangent subspace is the graph of t/_ in
^PX^P, which is a lagrangian subspace since C_ is self-adjoint. It is well known
in the geometric optics that if we reflect all the rays of our family in the boundary
of Q we will obtain the family of rays orthogonal to a certain local hypersurface
S+ passing through the point of reflection (and orthogonal to £o )• If we use w 6 LTp

as local coordinates on dQ then we can write the family of incoming unit vectors as

r = £o + £/-Pr1w+o(|w|2)
and the family of reflected vectors as

f = £+U+P?w+O(\w\2),
where U+ is the operator of the second fundamental form of S+ (at the point of
reflection), P,: Vp -» LTp is the projection along |o and P2: VTp -» LTp is the projection
along £o- Note that P^'P, :VP^> VTp is the reflection in lTp which identifies Vp and
VTp. The derivative DT takes the graph of £/_ into the graph of U+. To find the
connection between LL and U+ we will use the fact that £+ is the reflection of £~
in the respective tangent space of dQ. Using again WGLT P as a local coordinate on
dQ we can write the inside unit normal vector to dQ as

n = n0+Kw + O(\w\2),

where K is the operator of the second fundamental form of dQ at the point of
reflection, n0 is the inside unit normal vector of the point of reflection. (In our
special case the operator K is positive semidefinite.)

We have
f = r~2<r, n)n.

Expanding both sides up to the linear terms in w we get

£0
++ U+P?w + - • • = fo + U-PT1 w-2<fo, no>"o

-2<£o, no)Kw -2<fo , Kw)n0-2< U.PTlw, no)no+ • • •.
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Using the fact that

we obtain

U+ = P2XP,U^xP2 + 2{f0, no)KP2-2(ti, KP2-)n0.

We need yet to identify the operator

w-»2<£, no)Kw-2{£, Kw)n0.
The operator

is the projection along n0 which is also equal to P2:LTp-+VTp. Hence finally

U+= P2-1P1[/_P71P2 + 2<^, no)P$KP2.

If we think about U+ and [/_ as acting on the same space VTp we can write

It is not difficult to show that a linear map of a symplectic linear space which takes
lagrangian subspaces into lagrangian subspaces must be symplectic up to a scalar
multiple and if two linear symplectic operators act on lagrangian subspaces in the
same way then they must be equal. Hence the linear map corresponding to the
reflection at the boundary must have the block form

al 0
aR al

where R=2(^,no)P*Kp2.
Taking vectors from {0} x Vp it is easy to establish that actually a = 1. Finally then

D.T =
P

I

R I

si

+ sR

where s = TS/2NE.

For the application in § 4 we will need to know the eigenvalues of R in terms of
positions and velocities of the balls. We rescale the velocities by •J2NE so that the
phase space velocity in Q has length 1. Let (qx,..., qN), q,elRd be the positions
of the balls. In the neighborhood of a collision of two balls, say the first and the
second, we introduce coordinates

*i = (9i - <?2W2, z2 = {qx + q2)/J2, z, = qt for i > 3.

Now the configuration space Q is described locally by the inequality

|z,|>V2r.
In these coordinates

where Vrel = u, - v2 and v = u, + v2 at the collision and

n o = ( e , 0 , . . . , 0 ) ,
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where e = (q1 — i
0. The operator K is

Let y = (y,,..., yN) e VTp (i.e. (y,, Vrel) = 0). Then

(y, «o> ,+

M. Wojtkowski

at the collision. Hence w = ( w , , . . . , wn)eLT piff (wu e)-

' <lo+,«o)b 0 '

Now we can write explicitly the operator

2<fo, no)P*KP2 = 2<fo, no>KP2 - 2<^o,

on V r p .

• >n0

Hence the nonzero eigenvalues of the last operator are (r)"1 cos ip\ Vrc,| with multi-
plicity d-2 and (rcos IA)" ' !^ , ! with multiplicity 1, where i/> is the angle between
Vrei and the line through the centers of the colliding spheres.
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