

Weeds

VOLUME 6 OCTOBER 1958 NUMBER 4

Journal of the Weed Society of America

Weeds

Issued Quarterly by the Weed Society of America

K. P. BUCHHOLTZ, Editor, Dept. of Agronomy, Univ. of Wisconsin, Madison, Wisconsin.

W. C. JACOB, Business Manager, Dept. of Agronomy, Univ. of Illinois, Urbana, Illinois.

EDITORIAL COMMITTEE

O. C. LEE, Dept. of Botany and Plant Pathology, Purdue Univ., Lafayette, Indiana.

R. A. PETERS, Dept. of Plant Science, Univ. of Connecticut, Storrs, Connecticut.

W. C. ROBOCKER, Crops Research Division, ARS, USDA, State College of Washington, Pullman, Washington.

E. G. RODCERS, Dept. of Agronomy, Univ. of Florida, Gainesville, Florida.

WEEDS is a quarterly journal published by the Weed Society of America. Editorial offices are located at the University of Wisconsin, Madison, Wisconsin. Printing is by the W. F. Humphrey Press Inc., Geneva, New York. Subscription price is \$6.00 yearly for four issues: single copies \$1.50. Address all communications regarding subscriptions, advertising and reprints to W. C. Jacob. Department of Agronomy, University of Illinois, Urbana, Illinois. Inquiries concerning information on manuscripts and other material for publication should be addressed to the Editorial Offices. All checks, money orders and other remittances should be made payable to the Weed Society of America.

> Entered as second-class matter at the post office at Urbana, Illinois with additional entry at Geneva, New York.

Table of Contents

	Page
The Challenges of Modern Weed Control. W. B. Ennis, Jr.	363
Studies on the Absorption and Translocation of Amitrol (3-Amino-1,2,4-triazole) by Nut Grass (Cyperus rotundus L.). Otto Andersen	370
The Effect of Surfactants on Foliar Absorption of 3-Amino-1,2,4-triazole. V. H. Freed and Marvin Montgomery	386
A New Method for Evaluating Potential Algicides and Determination of the Algicidal Properties of Several Substituted-urea and s-Triazine Compounds. L. L. Jansen, W. A. Gentner, and J. L. Hilton	390
Control of Weeds in Late Sown Flax Plots with MCPA and TCA. W. E. Sackston	300
A Study of Factors which Influence Effectiveness of Amitrol and Dalapon on Common Cattail F. L. Timmons J. W. Weldon and W. O. Lee	406
The Comparative Toxicities of Four Phenylurea Herbicides in Several Soil Types, T. I. Sheets.	413
The Effect of Various Factors on the Movement of CIPC in Certain Soils. W. Hurtt, I. A. Meade, and P. W. Santelmann.	425
Persistence and Penetration of Monuron in Asparagus Soils. E. M. Rahn and Robert E. Bavnard. Ir.	432
A Simplified Logarithmic Plot Sprayer, Boysie E. Day	441
A Technique for Studying the Relationship of Herbicide Spray Character- istics to Phytotoxicity, W. L. Anliker and M. J. Morgan	447
Variability in Susceptibility to Injury by DNBP. D. E. Davis and H. H. Funderburk, Jr.	454
The Combined Effect of an Herbicide and Disease on the Emergence of Peanut Seedlings. Lytton W. Boyle, Ellis W. Hauser, and Jack T. Thompson	461
Correlation and Cooperation Between Agencies in Weed Control in Minne- sota, Sig, Bjerken	465
Regulatory Work in Kansas. Jake R. Ubel	468
Erratum	471
News and Notes	471
Sustaining Members	viii
Index Volume 6	473
Bibliography of Weed Investigations, January to March, 1958	479

Advertisers Index

ii
v
v
⁄i
ii
; ;

ATLACIDE: Safer chlorate weed killer...widely used for non-selective eradication of bindweed, Canada thistle, quack grass, Johnson grass and other tough perennials. Kills roots...discourages regrowth. Applied dry or dissolved in water for use as a spray.

ATLACIDE – 2,4-D: A combination of Atlacide and 2,4-D acid. Particularly recommended for Canada thistle control.

CHLOREA: A non-separating combination of sodium chlorate, borate and monuron in powder form. Kills weeds and grasses. Combines the proven effectiveness of chlorate on deep-rooted weeds with the soilsurface action of monuron on shallow-rooted grasses and annual seedling growth. Lasting residual effect inhibits new growth. Does not create a fire hazard when used as directed. Applied dry or as a watermixed spray. For industrial, railroad and certain agricultural uses.

CHLOREA GRANULAR Similar to Chlorea, but a granular material. No mixing or diluting..."pellets" are easy to apply by hand or with mechanical spreader.

CHLORAX "40": A composition of sodium chlorate and borate...for

weed and grass control. Has lasting residual effect. Does not create a fire hazard. Applied dry or as a spray.

CHLORAX LIQUID: Similar to Chlorax "40"...in liquid form.

ATLAS "A": A 40% sodium arsenite solution (4 lbs. arsenic trioxide per gal.). Destroys submersed vegetation and algae in ponds and lakes. Controls crabgrass, chickweed and clover in turf. Used as general weed killer and to kill trees and stumps. Also used to kill potato vines prior to harvesting.

SODIUM ARSENITE: A powder containing 75% arsenic trioxide. Used for the same purposes as Atlas "A". Applied dry or as a spray.

2,4-D & 2,4,5-T WEED KILL-ERS: A complete line...available as 2,4-D Amine and 2,4-D Ester liquids; 2,4-D Ester dusts; Low Volatile 2,4,5-T and Brush Killer.

METHOXONE: Contains 2 pounds of MCP sodium salt per gallon Used for weed control in small grains, flax, rice and grass. Controls same weeds as 2,4-D; considered safer for selective spraying.

Chloro IPC • IPC Liquid & Dust

Write for Weed Control Booklets

CHIPMAN CHEMICAL COMPANY, INC. Chicago, Ill. BOUND BROOK, N. J. Portland, Ore. Palo Alto, Calif. Pasadena, Tex. Bessemer, Ala.

Manufacturers of Weed Killers Since 1912

Supplied in a full range of interchangeable orifice tip and strainer sizes to meet every capacity requirement. Tee-Jet Spray Nozzles for Weed Control by spraying make it possible to take maximum advantage of the chemical and sprayer unit. TeeJet nozzles are precision built and provide a flat spray with uniform distribution. Atomization is properly controlled to give coverage with an absolute minimum of driftage. Patented tip design, with set-back orifice opening protects precision orifice from accidental damage. TeeJet spray nozzles are built for use on spray booms and portable sprayers.

OFF-CENTER SPRAY NOZZLES

Spraying Systems Spray Nozzles with TeeJet tips are supplied in a variety of special body types to meet any unusual spraying requirement. For example, one type of off-center spray nozzle with swivel body provides a flat spray up to 35 feet wide for spraying areas with a single nozzle, that are not accessible with a boom.

SUPPLEMENTARY EQUIPMENT

Complete accessories relating to nozzle use are supplied. These include strainers, special nozzle fittings, and hand valve equipment.

TEEJET SPRAY NOZZLE female pipe connection

TEEJET

NOZZLE male pipe

connection

SPRAY

INTER-CHANGE-ABLE ORIFICE TIPS flat and cone spray types

TeeJet Spray Nozzles are supplied for Weed Control... as well as all other types of agricultural spraying. For complete information and reference data write for Catalog 30.

SPRAYING SYSTEMS CO. Engineers and Manufacturers

3296 RANDOLPH STREET

BELLWOOD, ILLINOIS

HELPS

FOREST TREE SEEDLINGS

GET OFF TO A BETTER START

In numerous tests throughout the country, formulations with CRAG Mylone soil fumigant have given excellent control of weeds, nematodes, and soil fungi in forest tree seed beds. Seedlings have a better chance to grow without interference from these pests.

When formulated, Mylone is an easy-to-handle powder that can be applied to the soil with a fertilizer spreader or as a drench. Application should be made at least three weeks before seeds are planted, except tobacco seed. Soil mixing is not necessary; no plastic cover is needed over the bed.

Formulations of CRAC Mylone are now commercially available for use in certain ornamental propagating beds, tobacco seed beds, and in tomato, pepper, egg plant, lettuce, and cabbage seed beds. It is also sold for weed and dry rot control in gladiolus in Florida. Experimental work is continuing with other crops.

Write to the address below for formulations in test quantities or more information. Names and addresses of commercial formulators are also available.

> "Crag", "Mylone", and "Union Carbide" are trade marks of Union Carbide Corporation.

UNION

CARBIDE

FORMULATIONS CONTAINING MYLONE NOW AVAILABLE FOR VEGETABLE SEED BEDS

A commercial label has been accepted for Mylone pre-planting use in seed beds of certain vegetables. Growers can now use it for the control of weeds, nematodes, and soil fungi in tomato, pepper, cabbage, egg plant, and lettuce seed beds.

CRAG Agricultural Chemicals

Union Carbide Chemicals Company

Division of Union Carbide Corporation 180 South Broadway, White Plains, New York

For Agriculture and Industry ...

Du Pont UREA HERBICIDES

offer new economies and efficiency in killing weeds, grass and brush

"KARMEX" for weed control in asparagus, sugar cane, pineapple, potatoes, grapes, alfalfa, citrus and other crops. Also for irrigation and drainage ditch weed control. Available in two formulations: "Karmex" W monuron and "Karmex" DW diuron.

KARMEX® DL for pre-emergence weed control in cotton.

TELVAR® for industrial weed and grass control. Also in certain areas, it is recommended for brush control. "Telvar" W monuron and "Telvar" DW diuron. The urea herbicides, products of Du Pont research, kill vegetation through the roots. Their efficiency is demonstrated by the relatively low dosages required to do the job. They can be easily applied, are non-flammable, non-volatile, non-corrosive and extremely low in toxicity.

Better Things for Better Living Through Chemisiry

E. I. DUPONT DE NEMOURS & CO. (INC.) GRASSELLI CHEMICALS DEPT.

WILMINGTON 98. DELAWARE

1. UREABOR®

A nonselective, granular complex of sodium borate and substituted urea. Low application rates are a feature. Apply with the special new PCB Spreader for best results.

2. DB[®] Granular

A combination of 2,4-D and sodium borates. Kills deep-rooted, noxious weeds. Low application rates for maximum control with the utmost economy; use the PCB Spreader. (Not intended for control of grass.)

3. POLYBOR-CHLORATE®

Highly soluble; for spray or dry application. It gives a quick knockdown; destroys top growth and roots. A general nonselective herbicide.

4. Concentrated BORASCU®

A nonselective, granular material. Apply by hand or with a mechanical spreader. Long residual action.

Nonselective Herbicides

for Dependable Action

United States Borax & Chemical Corporation PACIFIC COAST BORAX COMPANY DIVISION

630 Shatto Place, Los Angeles 5, Calif.

look to

Now Eptam[®] offers the farmer a truly selective herbicide

Eptam (EPTC) not only gives excellent control of most grassy weeds, but it is also effective against nutgrass. This highly selective herbicide controls many broadleaf weeds as well, including pigweed and purslane. Eptam is now registered for use on field and sweet corn, beets, flax, snap beans, forage legumes, strawberries and ornamentals. It can be applied at any time before the weeds emerge. For additional information, write us at 380 Madison Avenue, New York 17.

New York • San Francisco • Houston • Omaha • Los Angeles • Tampa North Portland • Weslaco • Lubbock • Harvey • North Little Rock ©Eptam is Stauffer Chemical Company's trade-mark (registered in principal countries) for ethyl-di-n propylhiolcarbamate, a selective herbicide. American Chemical Paint Co., Ambler, Pennsylvania

American Smelting & Refining Co., Central Research Laboratories, South Plainfield, New Jersey

Asplundh Tree Expert Company, Jenkintown, Pennsylvania

Association of American Railroads, Chicago, Illinois

Chemical Insecticide Corp., Metuchen, New Jersey

Chipman Chemical Company, Bound Brook, New Jersey

- Crag Agricultural Chemicals Division, Union Carbide Chemicals Co., White Plains, New York
- Deere and Company, Product Research Dept., Moline, Illinois

Diamond Alkali Company, Cleveland, Ohio

The Dow Chemical Company, Midland, Michigan

- E. I. duPont deNemours & Co. Inc., Grasselli Chemicals Dept., Wilmington, Delaware
- G. L. F. Soil Building Service, Ithaca, New York
- Geigy Agricultural Chemicals, Div. of Geigy Chemical Corp., Yonkers, New York
- General Chemical Research Laboratory, Allied Chemical & Dye Corp., Morristown, New Jersey
- Hercules Powder Company, Wilmington, Delaware
- International Harvester Company, Chicago, Illinois

Miller Chemical & Fertilizer Corp., Baltimore, Maryland

Monsanto Chemical Company, St. Louis, Missouri

National Aluminate Corp., Chicago, Ill.

O. M. Scott & Sons Company, Marysville, Ohio

- Reade Manufacturing Company, Inc., Jersey City, New Jersey
- Spraying Systems Company, Bellwood, Illinois
- Stauffer Chemical Company, New York, New York

Swift and Company (Plant Food Division), Chicago, Illinois

Thompson-Hayward Chemical Company, Kansas City, Missouri

United States Borax and Chemical Corp., Los Angeles, California

viii