WHEN IS A REGULAR SEQUENCE SUPER REGULAR?

J. HERZOG*

Let \((B, \mathcal{F})\) be a filtered, noetherian ring. A sequence \(x = x_1, \ldots, x_n\) in \(B\) is called super regular if the sequence of initial forms
\[
\xi_1 = L(x_1), \ldots, \xi_n = L(x_n)
\]
is a regular sequence in \(\text{gr}_s(B)\).

If \(B\) is local and the filtration \(\mathcal{F}\) is \(\mathfrak{m}\)-adic then any super regular sequence is also regular, see [6], 2.4.

In [3], Prop. 6 Hironaka shows that in a local ring \((B, \mathcal{M})\) an element \(x \in \mathcal{M}\setminus\mathcal{M}^2\) is super regular (with respect to the \(\mathcal{M}\)-adic filtration) if and only if \(x\) is regular in \(B\) and \((x) \cap \mathcal{M}^{n+1} = (x)\mathcal{M}^n\) for every integer \(n\).

This result is extended to a more general situation in [6], 1.1. In the present paper we will characterize super regular sequences in a relative case:

Let \(A\) be a regular complete local ring, \(B = A/I\) an epimorphic image of \(A\) and \(x = x_1, \ldots, x_n\) a regular sequence in \(B\) which is part of a minimal system of generators of the maximal ideal of \(B\). Let \(y = y_1, \ldots, y_n\) be a sequence in \(A\) which is mapped onto \(x\). Then \(y\) is part of a regular system of parameters of \(A\). Therefore \(y\) is a super regular sequence in \(A\).

We put \(\overline{A} = A/(y)A\), \(\overline{I} = I/(y)I\) and \(\overline{B} = B(x)B\). Then \(\overline{B} = \overline{A}/\overline{I}\), since \(x\) is a \(B\)-sequence.

As a consequence of our main result, the following conditions are equivalent:

(a) \(x\) is a super regular sequence in \(B\)

(b) For all elements \(g \in \overline{I}\) there exists \(f \in I\), such that
\[
\overline{f} = g \quad \text{and} \quad \nu(f) = \nu(g).
\]

(Here \(\overline{f}\) denotes the image of \(f\) in \(\overline{I}\) and \(\nu(f)\) the degree of the initial form.

Received October 6, 1979.

* During the preparation of this work the author was supported by C.N.R. (Consiglio Nazionale delle Ricerche).

183
of \(f \).)

The equivalence of (a) and (b) can also be expressed in terms of Hironaka’s numerical character \(\nu^*(J, R) \): \(x \) is a super regular sequence in \(B \) if and only if \(\nu^*(I, A) = \nu^*(\overline{I}, \overline{A}) \).

In the applications we will use this characterization to show that the tangent cone of certain algebras is CM (Cohen-Macaulay). Our examples contain some results of J. Sally [4], [5] in a more special case.

§1. Notations and remarks

In the following we fix our notations and recall some basic facts about filtrations. For a more detailed information about filtrations we refer to N. Bourbaki [1].

Let \((A, \mathcal{F}) \) be a noetherian filtered ring such that \(\mathcal{F}_0A = A \) and \(\mathcal{F}_{i+1}A \subseteq \mathcal{F}_iA \) for \(i \geq 0 \) and let \((M, \mathcal{G}) \) be a filtered \((A, \mathcal{F}) \)-module. Then \(\text{gr}_i(M) = \bigoplus_{i \geq 0} \mathcal{F}_iM/\mathcal{F}_{i+1}M \) is a graded \(\text{gr}_*A = \bigoplus_{i \geq 0} \mathcal{F}_iA/\mathcal{F}_{i+1}A \)-module.

If \(x \in M \) we define \(\nu(x) = \sup \{ n/x \in \mathcal{G}_nM \} \) to be the degree of \(x \) and call

\[
L(x) = x + \mathcal{G}_{\nu(x)}M
\]

the initial form of \(x \).

Let \(\varphi: M \rightarrow N \) be a homomorphism of filtered modules then \(\varphi \) induces a homogeneous homomorphism

\[
\text{gr}(\varphi): \text{gr}(M) \rightarrow \text{gr}(N).
\]

If \(\varphi \) is an epimorphism, we always will assume that \(N \) admits the canonical filtration induced from the filtration of \(M \). Then

\[
\text{Ker}(\text{gr}(\varphi)) = \{ L(x)/x \in \text{Ker} \varphi \}.
\]

We call a sequence \((x_1, \cdots, x_n), x_i \in \text{Ker} \varphi \) a standard base of \(\text{Ker} \varphi \) if

\[
\text{Ker}(\text{gr}(\varphi)) = (L(x_1), \cdots, L(x_n)).
\]

In the particular case that \(\varphi: A \rightarrow B \) is an epimorphism of filtered rings, we now give a slightly different but useful description of a standard base: Corresponding to a sequence \((x_1, \cdots, x_n), x_i \in \text{Ker} \varphi \), we define a filtration on \(A^n \):

\[
\mathcal{F}_iA^n = \{(a_1, \cdots, a_n)|a_j \in \mathcal{F}_{i-\nu(x_j)}A\}.
\]

Now
(1) \[A^n \xrightarrow{(x_1, \ldots, x_n)} A \xrightarrow{\varphi} B \rightarrow 0 \]
is a complex of filtered \(A\)-modules inducing a complex of \(gr(A)\)-modules

(2) \[gr(A^n) \xrightarrow{(L(x_1), \ldots, L(x_n))} gr(A) \xrightarrow{gr(\varphi)} gr(B) \rightarrow 0 \]
and \((x_1, \ldots, x_n)\) is a standard base of \(\text{Ker}\varphi\) if and only if the complex (2) is exact.

If \(A\) is complete and separated then any standard base of \(\text{Ker}\varphi\) is also a base of \(\text{Ker}\varphi\). However the converse is false in general.
Consider the following case:
Let \(B = A/xA\), where \(x\) is not a zero-divisor on \(A\) and let \(\varphi: A \rightarrow B\) be the canonical epimorphism and \(\xi = L(x)\).

Lemma. (a) If \(x\) is super regular then

\[(*) \quad gr(A) \xrightarrow{\xi} gr(A) \xrightarrow{gr(\varphi)} gr(B) \rightarrow 0\]
is exact, i.e. \((x)\) is a standard base of \(\text{Ker}\varphi = (x)\).

(b) If \(A\) is complete and separated and the sequence \((*)\) is exact then \(x\) is super regular.

The lemma shows that a non-zero-divisor \(x\) in a complete separated ring forms a standard base of \((x)\) if and only if it is super regular.

Proof of the lemma. (a) Let \(\alpha \neq 0\) be a homogeneous element of \(\text{Ker}\,(gr(\varphi))\). Then \(\alpha = L(\alpha a)\) for some \(a \in A\). Since \(\xi L(a) \neq 0\), we have \(\xi L(a) = L(\alpha a) = \alpha\).

(b) Let \(\alpha \in gr(A)\) be a homogeneous element such that \(\xi \alpha = 0\).
We construct a convergent series \((a_n)\) such that for all \(n \geq 1\) we have \(L(a_n) = \alpha\) and \(\nu(\alpha a_n) \geq \nu(\alpha) + \nu(a_n) + n\).

Let \(a = \lim a_n\), then \(\alpha = L(a)\) and \(\alpha a \in \cap \mathcal{F}_1 A = \{0\}\). Therefore \(\alpha = 0\) and consequently \(\alpha = 0\). Construction of the sequence \((a_n)\) by induction on \(n\):

Let \(a_n \in A\) such that \(\alpha = L(a_n)\). Since \(\xi \alpha = 0\) we have \(\nu(\alpha a_n) \geq \nu(\alpha) + \nu(a_n) + 1\).

Suppose we have already constructed \(a_1, \ldots, a_n\). By induction hypothesis we have \(\nu(\alpha a_n) \geq \nu(\alpha) + \nu(a_n) + n\). Since \(L(\alpha a_n) \in \text{Ker}\,(gr(\varphi))\) and since we suppose that \((*)\) is exact we find a homogeneous element \(\gamma_n\) such that \(\xi \gamma_n = L(\alpha a_n)\).
Choose \(g_n \in A \) such that \(\gamma_n = L(g_n) \), then \(\nu(g_n) = \nu(xa_n) - \nu(x) \geq \nu(a_n) + n \) and \(\nu(xa_n - g_n) \geq \nu(x) + \nu(a_n)(n + 1) \). The element \(a_{n+1} = a_n - g_n \) is the next member of the sequence.

\[\text{§2. The main result}\]

Let \(\varepsilon: A \to B \) be an epimorphism of complete and separated filtered rings. As before we assume that \(B \) admits the induced filtration. Then \(\text{Ker} \varepsilon \) is a closed ideal of \(A \).

Suppose we are given a super regular sequence \(y = y_1, \ldots, y_n \) on \(A \) and let \(x_i = \varepsilon(y_i) \). Suppose that \(x = x_1, \ldots, x_n \) is a regular sequence on \(B \) and that

\[\nu(x_i) = \nu(y_i) > 0\]

for \(i = 1, \ldots, n \).

Let \(\bar{\varepsilon} = A/(y)A, \bar{B} = B/(x)B, I = \text{Ker} \varepsilon \) and \(\bar{I} = I/(y)I \). We have \(\bar{I} \subseteq \bar{\varepsilon} \) and \(\bar{B} = \bar{\varepsilon}/I \), since \(x \) is a regular sequence on \(B \). If \(f \) is an element of \(A \) or of \(B \) we denote its image in \(\bar{\varepsilon} \) or \(\bar{B} \) by \(\bar{f} \).

Theorem 1. 1) The following properties are equivalent:

a) For each \(g \in I \) there exists \(f \in I \) such that \(\bar{f} = g \) and \(\nu(f) = \nu(g) \).

b) There exists a standard base \(g_1, \ldots, g_m \in I \) and elements \(f_i \in I \) such that \(\bar{f}_i = g_i \) and \(\nu(f_i) = \nu(g_i) \) for \(i = 1, \ldots, m \).

c) \(x \) is a super regular sequence.

2) If the equivalent conditions of 1) hold and the \(f_i \) are chosen as in b), then \((f_1, \ldots, f_m) \) is a standard base of \(I \).

Proof. It is sufficient to consider the case that the sequence \(x \) consists only of one element. The general case follows by induction on the length of the sequence.

1) a) \(\Rightarrow \) b): is obvious

b) \(\Rightarrow \) c): Let \((g_1, \ldots, g_m) \) be a standard base of \(I \) and \(f_i \in I \) be such that \(\bar{f}_i = g_i \) and \(\nu(f_i) = \nu(g_i) \).

We define on \(A^n \) and \(\bar{A}^n \) filtrations

\[\mathcal{F}_i A^n = \{(a_1, \ldots, a_n)/a_j \in \mathcal{F}_i - \nu(f_j) A\}\]

\[\mathcal{F}_i \bar{A}^n = \{(a_1, \ldots, a_n)/a_j \in \mathcal{F}_i - \nu(g_j) \bar{A}\}\]

and obtain a commutative diagram of filtered modules.
REGULAR SEQUENCE

\[\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
A^n & A & B \\
\downarrow & \downarrow & \downarrow \\
(f_1, \ldots, f_n) & y & x \\
\downarrow & \downarrow & \downarrow \\
A^n & (f_1, \ldots, f_n) & z \\
\downarrow & \downarrow & \downarrow \\
(\varepsilon_1, \ldots, \varepsilon_n) & A & \varepsilon \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array} \]

(1)

inducing a commutative diagram of graded modules

\[\begin{array}{ccc}
0 & & \\
\downarrow & & \\
\text{gr}(A^n) & \text{gr}(A) & \text{gr}(B) \\
\downarrow & \downarrow & \downarrow \\
\eta & \eta & \xi \\
\downarrow & \downarrow & \downarrow \\
\text{gr}(A^n) & \text{gr}(A) & \text{gr}(B) \\
\downarrow & \downarrow & \downarrow \\
\phi & \text{gr}(\varepsilon) & \text{gr}(\varepsilon) \\
\downarrow & \downarrow & \downarrow \\
\text{gr}(A^n) & \text{gr}(A) & \text{gr}(B) \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array} \]

(2)

\(\xi = L(x), \ \eta = L(y). \)

The lowest row is exact since \((g_1, \ldots, g_n)\) is a standard base. Also the middle column is exact since \(y\) is super regular.

By diagram chasing we find, that also the sequence

\[\text{gr}(B) \xrightarrow{\xi} \text{gr}(B) \xrightarrow{\eta} \text{gr}(B) \xrightarrow{\xi} 0 \]

is exact.

By the lemma it follows that \(x\) is super regular. c) \(\Rightarrow\) a): Let \(g \in \bar{I}\), then we can find an element \(f \in A\) such that \(\bar{f} = g\) and \(\nu(f) = \nu(g)\).

However we would like to find such an element \(f\) in \(I\). To do this we consider

\[\sigma \text{gr}(\varepsilon)(L(f)) = \text{gr}(\varepsilon)(L(g)) = 0. \]
Since we assume that \(x \) is super regular it follows from the lemma that \(\text{gr}(\varepsilon)(L(f)) = \beta \xi \). Therefore \(L(f) = \alpha \gamma + \gamma \), where \(\alpha, \gamma \) are homogeneous and \(\gamma \in \ker(\text{gr}(\varepsilon)) \).

Hence we can choose \(a, f, h \in I \) such that
\[
 f = a_x y + h_x + f_x,
\]
\[
 \nu(f) = \nu(a_x y) = \nu(h_x) < \nu(f_x).
\]

From this we obtain \(g = \bar{f} = h_x + f_x \in I \), hence \(f_x \in I \). Repeating the same reasoning for \(f_x \), we can find \(a, f, h \in I \) such that
\[
 f_x = a_x y + h_x + f_x,
\]
\[
 \nu(f_x) = \nu(a_x y) = \nu(h_x) < \nu(f_x).
\]

This time it may happen that \(\nu(f_x) < \nu(\bar{f_x}) \), but that doesn't matter and we can take \(h_x = 0 \) in that case. Proceeding that way we construct sequences \((a_i), (h_i)\) and \((f_i)\) such that \(h_i \in I \) and
\[
 f_i = a_i y + h_i + f_{i+1},
\]
\[
 \nu(f_i) = \nu(a_i y) = \nu(h_i) < \nu(f_{i+1}).
\]

Put \(a = \sum_{i=1}^\infty a_i, h = \sum_{i=1}^\infty h_i \). Then \(f = a y + h, h \in I \) and \(\nu(h) = \nu(h_i) \).
\[
 \nu(f) = \nu(g).
\]

Thus \(h \) is the desired element.

2) Consider again the diagram (2). We have to show that if \(\alpha \in \ker(\text{gr}(\varepsilon)) \) is a homogeneous element then there exists \(\gamma \in \text{gr}(A^x) \) such that \(\varphi(\gamma) = \alpha \). We prove this by induction on the degree of \(\alpha \). If \(\deg \alpha < 0 \), then \(\alpha = 0 \). Thus suppose that \(\deg \alpha > 0 \). By assumption all columns and the lowest row are exact. By diagram chasing we can find homogeneous elements \(\beta, \delta \) such that
\[
 \alpha = \beta \eta + \delta,
\]
where \(\delta \in \text{Im} \varphi \) and \(\beta \in \ker(\text{gr}(\varepsilon)) \). Since by assumption \(\deg \eta > 0 \), we have \(\deg \beta < \deg \alpha \). From the induction hypothesis the assertion follows.

§ 3. Some applications

(a) Let \(B = \mathbb{k}[x_1, \ldots, x_n]/I \) be a 1-dimensional complete algebra over an algebraically closed field \(\mathbb{k} \). In the following we consider only the \(m_x \)-adic filtration of \(B \).

Suppose that the residue class \(x_1 \) of \(X_1 \) is not a zero-divisor and a superficial element of \(B \), then \(\text{gr}(B) \) is a CM-ring (Cohen-Macaulay) if
and only if x_1 is super regular on B.

Applying Theorem 1 we find:

$gr(B)$ is a CM-ring if and only if for all $F \in I$ there exists $G \in k[[X_1, \cdots, X_n]]$ such that

$$F(0, X_2, \cdots, X_n) + GX_1 \in I \quad \text{and} \quad \nu(G) \geq \nu(F(0, X_2, \cdots, X_n)) - 1.$$

Next we restrict our attention to the more special case that B is a monomial ring:

Let $H \subset N$ be a numerical semigroup generated minimally by $n_1 < n_2 < \cdots < n_i$, see [2].

To H belongs the monomial ring $B = k[t^{n_1}, \cdots, t^{n_i}]$, whose maximal ideal is $m_B = (t^{n_1}, \cdots, t^{n_i})$. We want to describe in terms of the semigroup when $gr_{m_B}(B)$ is a CM-ring.

t^{n_1} is a superficial element of B. Let $\bar{B} = B/t^{n_1}B \cong k[[X_2, \cdots, X_n]]/I$. It is easy to see that a standard base of \bar{I} can be chosen such that the elements of the base are either monomials $X_i^{n_1} \cdots X_i^{n_l}$ or differences of monomials

$$X_i^{n_1} \cdots X_i^{n_l} - X_i^{n_1} \cdots X_i^{n_l},$$

with

$$\sum_{i=1}^{l} \mu_i n_i = \sum_{i=1}^{l} \mu_i^* n_i.$$

Let $n_i + H = \{n_i + h/h \in H\}$. A monomial $X_i^{n_1} \cdots X_i^{n_l}$ is an element of \bar{I} if and only if

$$\sum_{i=1}^{l} \nu_i n_i \in n_i + H.$$

Thus we find:

$gr(B)$ is a CM-ring if and only if for all integers $\nu_1 \geq 0, \nu_2 \geq 0, \cdots, \nu_l \geq 0$ such that

$$\sum_{i=1}^{l} \nu_i n_i \in n_i + H,$$

there exist $\nu_i^* > 0, \nu_2^* \geq 0, \cdots, \nu_l^* \geq 0$ such that

$$\sum_{i=1}^{l} \nu_i n_i = \sum_{i=1}^{l} \nu_i^* n_i \quad \text{and} \quad \sum_{i=1}^{l} \nu_i \leq \sum_{i=1}^{l} \nu_i^*.$$

It is not difficult to see that it suffices to consider only such ν_i with
the extra condition that \(n_i > \nu_i \). Therefore only a finite number of conditions are to be checked.

If in addition \(\bar{I} \) is generated only by monomials, then there is a unique minimal system of generators of \(\bar{I} \) consisting of monomials \(M_1, \cdots, M_k \). These monomials form a standard base of \(\bar{I} \).

Thus \(\text{gr}(B) \) is a CM-ring if and only if to each such monomial

\[
M_i = X_{i_1}^{r_i} \cdots X_{i_l}^{r_l}
\]

we can find

\[
F_i = X_{i_1}^{r_i} \cdots X_{i_l}^{r_l} - X_{i_1'}^{r_i'} \cdots X_{i_l'}^{r_l'} \in I,
\]

with

\[
\nu_i^* > 0 \quad \text{and} \quad \sum_{i=2}^l \nu_i \leq \sum_{i=1}^l \nu_i^*.
\]

In particular if \(\text{gr}(B) \) is a CM-ring then \(F_1, \cdots, F_k \) forms a standard base of \(I \) and also a minimal base of \(I \).

We now discuss in more detail monomial rings of embedding dimension 3. These examples were first studied by G. Valla and R. Robbiano in [7] and communicated to me, when I was visiting Genova. Using different methods they are able to construct in all cases a standard base. Here we restrict ourselves to the question whether \(\text{gr}(B) \) is a CM-ring.

Let \(B = k[[t^{r_1}, t^{r_2}], t^{r_3}] \) and assume first that \(B \) is not a complete intersection. In [2] it is shown that \(I = (F_1, F_2, F_3) \) with

\[
\begin{align*}
F_1 &= X_{i_1}^{r_1} - X_{i_1}^{r_{11}} X_{i_2}^{r_2} \\
F_2 &= X_{i_1}^{r_1} - X_{i_1}^{r_{21}} X_{i_3}^{r_3} \\
F_3 &= X_{i_1}^{r_1} - X_{i_1}^{r_{31}} X_{i_3}^{r_3}
\end{align*}
\]

where \(r_{ij} > 0 \) and \(c_1 = r_{21} + r_{31}, \quad c_2 = r_{12} + r_{32} \) and \(c_3 = r_{13} + r_{23} \). It follows that \(\bar{I} \) is generated by monomials and therefore \(\text{gr}(B) \) is a CM-ring if and only if

\[
\begin{align*}
c_1 &\geq r_{12} + r_{13} \\
c_2 &\leq r_{21} + r_{23} \\
c_3 &\leq r_{31} + r_{32}.
\end{align*}
\]

The first inequality is always satisfied since

\[
c_1 n_1 = r_{12} n_2 + r_{13} n_3
\]
and
\[n_1 < n_2 < n_3. \]

Similarly the third inequality is always true. Our final result is therefore:
\[\text{gr}(B) \text{ is a CM-ring if and only if } c_2 \leq r_{21} + r_{23}. \]

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>c_2</th>
<th>r_{21}</th>
<th>r_{23}</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

We now assume that \(B = k[[t^n, t^m, t^a]] \) is a complete intersection. Then \(I \) can be generated by two elements \(F_1, F_2 \). We have to distinguish several case:

Case a). \(\bar{I} = (X_i^{c_1}, X_i^{c_2}) \) is generated by monomials. Since \(c_i > c_2 \) and \(c_i > c_3 \), it follows that \(B \) is a strict complete intersection.

Case b). \(\bar{I} = (X_i^{c_2}, X_i^{c_3}, X_i^{c_4}, X_i^{c_5}) \).

We want to find a standard base of \(\bar{I} \):
\[X_i^{c_2+c_3}, X_i^{c_3}, X_i^{c_4}, X_i^{c_5} \]

are relations of \(\text{gr} (\bar{B}) \). We easily compute the length \(l \) of
\[k[[X_i, X_j]]/(X_i^{c_2+c_3}, X_i^{c_3}, X_i^{c_4}, X_i^{c_5}) \]
to be
\[l = r_{12}c_3 + r_{13}c_2. \]

On the other hand we have
\[n_2 = c_2c_1, \ n_3 = c_3c_1 \]

and
\[c_1n_1 = r_{12}n_2 + r_{13}n_3. \]
therefore
\[n_1 = r_1 c_1 + r_1 c_2 = l . \]

Since
\[n_1 = 1(B/t^n B) = l(gr(B/t^n B)) , \]
it follows that
\[X_2^{r_2+r_1}, X_3^{r_3} - X_3^{r_3}, X_4^{r_3}X_5^{r_5} \]
is a standard base of \(\tilde{I} \).

There is only one way to lift these equations:
\[X_2^{r_2+r_1} - X_3^{r_3}, X_4^{r_3} - X_4^{r_3}X_5^{r_5} . \]

Since \(c_1 \geq r_1 + r_2 \), we find that \(gr(B) \) is a CM-ring if and only if
\[c_2 + r_2 \leq c_3 - r_3 + c_1 . \]

However \(B \) is never a strict complete intersection.

\(\gamma \) \(\tilde{I} = (X_3^{r_3}, X_5^{r_5}) \) is generated by monomials. Thus \(B \) is a strict complete intersection if and only if \(c_1 \leq r_1 + r_3 \).

\(\delta \) \(\tilde{I} = (X_3^{r_3}, X_5^{r_5}) \) is generated by monomials and \(c_3 < r_1 + r_2 \), therefore \(B \) is always a strict complete intersection.

Theorem 2. Let \(B = k[[X_1, \ldots, X_n]]/I \) be a complete \(k \)-algebra and suppose that \(I \) admits a standard base \(F_1, \ldots, F_m \) such that:

1. \(\nu(F_i) = 2 \) for \(i = 1, \ldots, m \).
2. For each homomorphism \(\varphi: I/I^e \to B \) the elements \(\varphi(F_i + I^e) \), \(i = 1, \ldots, m \) are not units in \(B \) (equivalently, \(B \) is not a direct summand of \(I/I^e \)).

Then for any complete algebra \(\tilde{B} = k[[Y_1, \ldots, Y_k]]/J \) and any regular \(\tilde{B} \)-sequence \(t_1, \ldots, t_k \) such that \(\tilde{B}/(t_1, \ldots, t_k)\tilde{B} = B \) it follows that \((t_1, \ldots, t_k) \) is a super regular sequence on \(\tilde{B} \).

Proof. We may write
\[\tilde{B} \cong k[[X_1, \ldots, X_n, T_1, \ldots, T_k]]/J \]
such that \(t_i = T_i + J \), \(i = 1, \ldots, k \). Then \(J = (G_1, \ldots, G_m) \) with
\[G_i = F_i + \sum_{j=1}^k F_i^{(j)}T_j + H_i , \]
$H_t \in (T_1, \cdots, T_n)$ and $F_t^{(j)} \in k[[X_1, \cdots, X_n]]$. Since t_1, \cdots, t_n is a regular B-sequence, we obtain B-module homomorphisms

$$
\varphi_j : I/I^2 \to B,
$$

$$
F_t + I^2 \mapsto F_t^{(j)} + I
$$

By assumption 2) it follows that $\nu(F_t^{(j)}) \geq 1$ and by assumption 1) it follows that $\nu(F_t) = \nu(F_t^{(j)})$ for $i = 1, \cdots, m$.

From our criterion of section 2 the assertion follows.

We use this theorem to derive two results of J. Sally in a slightly more special case.

We introduce the following notations: $e(B)$ = embedding dimension of B, $d(B)$ = Krull dimension of B and $m(B)$ = multiplicity of B.

THEOREM 3 ([4], [5]). Let $B = k[[X_1, \cdots, X_n]]/I$ be a complete CM-algebra and suppose that either

a) $m(B) \leq e(B) - d(B) + 1$

or

b) $m(B) \leq e(B) - d(B) + 2$ and B is a Gorenstein ring

then $\text{gr}(B)$ is a CM-ring.

Proof. We may assume that k is algebraically closed.

a) There exists a regular sequence (t_1, \cdots, t_n) such that

$$
l(B/(t_1, \cdots, t_n)B) = m(B).
$$

This sequence is part of a minimal system of generators of m_B. Let $\bar{B} = B/(t_1, \cdots, t_n)B$, then $e(\bar{B}) = e(B) - d(B) = m(B) - 1 = l(\bar{B}) - 1$. It follows that $m_{\bar{B}} = 0$, and $\bar{B} = k[[X_1, \cdots, X_n]]/I$ with $I = (X_1, \cdots, X_n)^2$. We may assume that $m \geq 2$ and show that \bar{B} satisfies the conditions of Theorem 2.

Condition 1) is obviously satisfied since \bar{I} is generated by the monomials X_iX_j of degree 2, which form a standard base of \bar{I}.

Suppose there exists a \bar{B}-module homomorphism $\varphi : \bar{I}/\bar{I}^2 \to \bar{B}$ and integers i, j such that $\varphi(X_iX_j + \bar{I}^2)$ is a unit.

1st Case. If $i = j$, then for any $k \neq i$ we have

$$
x_i\varphi(X_i^2 + \bar{I}^2) + x_k\varphi(X_kX_k + \bar{I}^2),
$$

a contradiction since (x_1, \cdots, x_n) is a minimal base of m_B.
2nd Case. If $i \neq j$, then $x_i\varphi(X_iX_j + \bar{I}^3) = x_j\varphi(X_i^3 + \bar{I}^3)$, again a contradiction.

β) As in the case α) we can reduce B to an algebra \bar{B} such that $l(\bar{B}) = e(\bar{B}) + 2$. It follows that $m_\bar{B} = 0$ and that \bar{B} is a graded ring with Hilbert function $1 + e(\bar{B})t + \bar{t}$. Let σ be generator of \bar{B}_2. The multiplication on \bar{B} induces a non singular quadratic form $q: \bar{B}_1 \times \bar{B}_1 \rightarrow k$ defined by

$$q(u, w)\sigma = u \cdot w$$

Since we assume that k is algebraically closed we can choose a k-vectorspace base x_1, \ldots, x_m of \bar{B}, such that $x_i = \sigma$ for $i = 1, \ldots, m$ and $x_i x_j = 0$ for $i \neq j$.

We treat the case $m = 2$ separately, since in that case \bar{B} is a complete intersection and Theorem 2 is not applicable. However then we have $B = k[[X_1 \cdots X_n]]/(F_1, F_2)$ with $\bar{F}_1 = X_1^2 - X_2^2, \bar{F}_2 = X_1X_2$. If $\nu(F_1) = \nu(F_2) = 2$, then the assertion follows from Theorem 1. Otherwise, say $\nu(F_1) = 1$, then B is a hypersurface ring and the assertion follows again.

Now if $m > 2$ we apply Theorem 2: Again the first condition is satisfied. We check condition 2):

1st Case. Suppose there exists a \bar{B}-module homomorphism $\varphi: \bar{I}/\bar{I}^3 \rightarrow \bar{B}$ such that $\varphi(X_i^3 - X_i^2 + \bar{I}^3)$ is a unit, then

$$\sigma\varphi(X_i^3 - X_i^2 + \bar{I}^3) = x_i^2(\varphi(X_i^3 - X_i^2 + \bar{I}^3) = \varphi(X_i^3 - X_i^2 + \bar{I}^3) = 0,$$

since $X_i^2 - X_iX_i^2 \in \bar{I}^3$. This is a contradiction.

2nd Case. Suppose there exists a \bar{B}-module homomorphism $\varphi: \bar{I}/\bar{I}^3 \rightarrow \bar{B}$ such that $\varphi(X_iX_j + \bar{I}^3)$ is a unit, then $\sigma\varphi(X_iX_j + \bar{I}^3) = x_i^2(\varphi(X_iX_j + \bar{I}^3) = \varphi((X_iX_j)(X_iX_j) + \bar{I}^3) = 0$ since $(X_iX_j)(X_iX_j) \in \bar{I}^3$. This is again a contradiction.

Literature

Universität Essen – Gesamthochschule
Fachbereich 6
Universitätsstr. 3