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THE ASYMPTOTIC SHAPE OF THE
BRANCHING RANDOM WALK

J. D. BIGGINS, University of Sheffield

Abstract

In a supercritical branching random walk on IRP, a Galton-Watson process
with the additional feature that people have positions, let !fi(n) be the set of
positions of the nth-generation people, scaled by the factor n -I. It is shown
that when the process survives !J(n) looks like a convex set !fi for large n. An
analogous result is established for an age-dependent branching process in
which people also have positions. In certain cases an explicit formula for the
asymptotic shape is given.

SHAPE; BRANCHING PROCESSES; BRANCHING RANDOM WALK

1. Introduction

Let f!£ be the vector space [RP for some finite p. In the branching random
walk on f!£ an initial ancestor is born at the origin. His children, who form the
first generation, have positions which form a point process on f!£. Let {Z~1)} be
the set of positions of the first-generation people. The people in the nth
generation give birth independently of one another and of Bn

, the rr-field
generated by all of the births in the first n generations. Given Bn the point
process formed by the children of an nth-generation person at X has the same
distributions as the process with points {Z~l)+X}; thus if the origin were moved
to X it would have the same distributions as Z;!'. Let the set of positions of the
nth-generation people be {z;n)}. Ney (1965) considered a process similar to
this one; however, th'e asymptotic properties that he was concerned with are
quite different from those considered here.

The generation sizes, #{z;n): r}, in a branching random walk form a Galton­
Watson process. Let S be the event that there are people in every generation.
To ensure that S has positive probability we will assume that the expected
number of people in the first generation is strictly greater than one.

Throughout this article lower-case letters will be used for real numbers,
capital letters for elements of f!£ and script letters for subsets of f!£.

Let f,n) == z~n) / n and for each n let .j(n) be the set of points {I~n): r}; thus .j(n)

is the set of positions of the nth-generation people scaled by the factor n- 1
•

The convex hull of .j(n) will be denoted by cx(n). The main aim of this paper is
to show that on S both cx(n) and .j(n) 'look like' a convex set .j when n is large.
The set .j is the asymptotic shape of the branching random walk. When
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The asymptotic shape of the branching random walk 63

?£= IR r;;e(n) is just an interval and the asymptotic behaviour of its end points has
been studied in a series of papers by Hammersley (1974), Kingman (1975) and
Biggins (1976), (1977b). The description of the behaviour of .f;(n) when P£= lR P

will be approached through the one-dimensional result, the appropriate version
ofwhich is given in Section 3.

Mollison (1977) has written a review article on the spread of spatial
processes and the problems considered here fall within this broad category; a
discussion of related problems can be found in that article. There are, as is
explained there, other approaches to the problem of asymptotic shape. For
example, in the one-dimensional case, if we let S c;e(n) be the smallest interval
with at most s points of .f;(n) to the left of it and at most s points to the right of
it, so that 0 c;e(n) = c;e<n), then we could consider the asymptotic shape of s c;e(n). It
is easy to establish, using the results contained in Biggins (1977b), that c;e(n)

and sy{(n) have the same asymptotic shape. Other definitions, in terms of
expected numbers, of quantities describing, in some sense, the shape of the nth
generation can be formulated. Thus, still thinking of the one-dimensional case,
we could examine, for fixed s, the behaviour of inf {x: E[#{r: 1;n) ~ x}] ~ s} as n
gets large, and its relationship with the right endpoint of sy{(n). These questions
will not be pursued here. Daniels (1977a,b) has some results on questions of
this kind.

If X and Yare in ge their inner product will be written as (X, Y) and the
Euclidean norm of X as IIXlI. The unit sphere, {X: 1IX11 = I}, will be denoted by
[f and the closed ball of radius r, {X: \IX11 ~ r}, by gJr. The function k (e) is
defined on P£ by

k(8) = log E[~ exp (-8, Z~l) 1
It is possible that keEl) is always infinite. Notice that k(O), where 0 is the origin
of X, is the logarithm of the expected number of people in the first generation;
thus we are assuming that

k(O) > O.

Let the measure g on P£ be defined by g(0)) = E[#{r: Z;l) E 0)}] where qj) c X
(the adjective measurable will always be omitted), then for any h: X~ lR+

(1.1) E[ ~h(Z~l»)] = fh(X)dg(X)

~

and in particular exp k(f») is the multivariate Laplace-Stieltjes transform of g.

The next section is a collection of the various results on multivariate
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64 J. D. BIGGINS

Laplace-Stieltjes transforms that we will need. In the third section the sets 7le(n)

are shown to have the asymptotic shape !J. The fourth section contains the
main result, that the sets !J(n) also have the asymptotic shape !J. A continuous­
time analogue of the main result is obtained in the fifth section as a conse­
quence of it. In the sixth section a special case of this continuous-time result,
when the number of people alive form a continuous-time Galton-Watson
process, is discussed and its relationship with some results of Mollison (1978)
on 'the velocity of the contact birth process' is explained.

2. Multivariate Laplace-Stieltjes transforms

As was mentioned in the introduction we will need various results about
multivariate Laplace-Stieltjes transforms. These results, which are all con­
nected with the convexity properties of such transforms, are discussed in this
section.

For this section let g be a measure on ~(=lRP) and let

(2.1) expk(@)= fexp(-@,X)dg(X).

Then, by Holder's inequality,

exp k(aE>l +(3E>2)~exp ak(E>t) exp (3k(E>2)

for a, (3 ~ 0 and a + (3 = 1, so that k(E» is a convex function and is finite on a
possibly empty convex set ff.

For any fixed WE Y (the unit sphere in Be) and Y in ~ the function

(2.2) exp k(6W+ Y)

of the real number 6 is a Laplace-Stieltjes transform. In fact

exp k(OW+ Y) = fexp (-OW- Y, X)dg(X)

~

(2.3) = f exp (-O(W, X») exp (- Y, X)dg(X)

~

= fexp (- xO)dg(x)

IR

where the measure g on lR is defined by

J
{X:(X.W)E~}

exp( - Y, X)dg(X) for ~ c lR.
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The asymptotic shape of the branching random walk 65

This provides us with much information about the one-dimensional sections of
k(0).

The function ~ on ~ given by

(2.4) ~(A)=inf{k(e)+(e, A): 0}

will arise naturally later in the paper. As ~ is the infimum of a set of linear
functions it must be concave. Also, if g(A) is finite and Ai~ A then for small
E, suitable eE' and large i,

hence ~ is upper semicontinuous. In fact, as can be seen from Chapter 12 of
Rockafellar (1970), -~(-A) is the convex conjugate function of k so that the
concavity and upper semicontinuity of ~ follow from the general theory of
conjugate convex functions. Also, since (2.2) is lower semicontinuous in 6, it is
not hard to see that Theorem 7.5 of Rockafellar (1970) implies that k is a
closed (Le. lower semicontinuous on ~) convex function. Then, by Theorem
12.2 we have, as a dual relationship to (2.4), that

(2.5) k(e~ = sup {~(A) -(a, A): A}.

Let.sll be the smallest closed convex set such that g(~\.sIi)= 0; thus .sIi is the
closure of the convex hull of the support of g. The sets

(2.6) ~(a)={A :g(A)~a}n.sli

will be of particular interest to us. The interior and closure of a set ~ will be
denoted by int ~ and cl qj), and if ~ is convex its relative interior will be
denoted by rint qj).

Lemma 1.
(i) For any c<k(O) and AErint.sll the set {e:k(e)+(0,A)~c}

bounded.
(ii) ~(A)> -00 on rint.sll.

(iii) ~(A) = -00 on ~\.sIi when g is non-empty.
(iv) rint {A : ~(A) > -(X)} = rint.sli when g is non-empty.

Proof.
(i) If A Erint.sli then for any W E g either there is ad> 0 such that

{X:(W,A-X)~d,XErintd}is non-empty or .sIic{X:(W,A-X)=O}. In
the first case,

exp (k(8W)+ 8(W, A») = fexp (8(W, A - X»)dg(X)

~ e 6d g({X :(W, A - X)~ d}»O
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66 J. D. BIGGINS

and so k(6W)+ O(W, A)~oo as 6~00, and in the second case k(OW)+
8( W, A) = k(O) for all 6. Therefore the convex set { (3: k( (3) +«(3, A)~ c} must
be bounded.

(ii) This is immediate from (2.4) and (i).
(iii) Suppose that Y E g and that A E f£\d. There is a plane through A not

touching .sIi, that is there is aWE Y for which .sIi c {X: (W, X - A) ~ d > O}.
Hence

exp (k(OW+ Y)+(OW+ Y, A» = f exp (OW+ Y, A - X)dg(X)

stl

~ e-6dfexp ( Y, A - X)dg(X)

stl

= e-8d exp (k(Y)+(Y, A»)

~O as 6~00

and so, from (2.4), g(A) = -00.
(iv) This follows from (ii) and (iii).

Lemma 2. ~(a) = {A : g(A) ~ a} when g is non-empty and ~(a) =.sIi other­
wise.

Proof. This follows from the definition (2.6) and Lemma 1 (iv).

Lemma 3.
(i) ~(a) is a closed convex set and ~(a)= nd<a~(d).

(ii) If a < k(O) then ~(a) is non-empty and rint ~(a) c U d>a ~(d).

(iii) If a < k(O) then int ~(a) is non-empty if and only if int.sli is non-empty.

Proof. All the assertions hold when ~ (a) = sIi for all a; thus we can assume,
by Lemma 2, that ~(a)={A :g(A)~a}.

(i) This follows from the concavity and upper semicontinuity of ~.

(ii) By (2.5) sup {g(A): A} = k(O) so that {A : g(A) ~ a} is non-empty when
a<k(O), and by Theorem 7.6 of Rockafellar rint{A:g(A)~a}c

{A:g(A»a}.
(iii) Again by Theorem 7.6 when a < k(O) int {A : g(A) ~ a} is non-empty if

and only if int {A : g(A) > -oo} is non-empty, and by Corollary 13.4.2 of
Rockafellar int {A : g(A) > -oo} is empty if and only if k(OW + Y) = aO + b for
some WE Y, Y E P£ and a, b EIR, and for all real 8; but then, from (2.3), g must
be concentrated on the plane {X: (X, W) = a} and int sIi is empty.

Lemma 4. If Oe int g then ~(a) is compact.

Proof. This follows from Corollary 14.2.2 of Rockafellar.
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The next lemma, which is not needed until the fifth section, uses only the
facts that {.1(a): a} are nested closed convex sets. The convex set

J{(a) ={X : cX E .1(a) for some C > O} U{O}

is called the cone generated by .1(a). The recession cone of .1(a) is the set

{Y:{Z+AY:A~O}cj(a) forall ZEj(a)}.

Lemma 5. If O~9>(a)and a<k(O) then

n cl J{(d) = cl J{(a).
d<a

Proof. Again by Lemma 2 we need only consider the case when fJ is
non-empty. Obviously J{(a)c nd>aJ{(d), and J{(a) is non-empty because
.1(a) is non-empty when a < k(O). By Theorem 6.5 of Rockafellar cl n J{(d) =

ncIJ{(d) thus it suffices to show that nJ{(d)ccIJ{(a). If XEJC(d) then
cdX E .1(d) for some Cd> 0 and either {Cd} has an accumulation point C or
Cd~ 00, as d~ a. In the former case, because the sets !J (d) are closed and
nested, cXE.1(a) thus c#;O and so XEJC(a). In the latter case, since the sets
.1(d) are nested, the ray {AX:A~Cd}c.1(d) and so, by Theorem 8.3 of
Rockafellar, X is in the recession cone of .1(d). Then, because the sets ~(d)

are closed, Corollary 8.3.3 implies that X is in the recession cone of .1(a) and
so Theorem 9.6 implies that X E cl J{(a).

For the remainder of this section we will assume that int fJ is non-empty. If
Y E int fJ then, from (2.3), exp k(OW+ Y) is differentiable at 0 = 0 for any
WE!f; thus

ae~~(@) =f-Xi exp (-@, X)dg(X)

where the subscript i indicates the ith component with respect to some basis.
The integral on the left has the same form as (2.1), as can be seen by
incorporating Xi into g(X), and so exp k(8) and hence k(8) is C" on int fJ.
Let

d* = {-Vk(8): e E int fJ}.

A point E in the convex set qjJ is called an exposed point if there exists a
supporting plane, {Y:(Y, W)=K}, to ~ for which ~n{Y:(Y, W)=K}=E.
Obviously E is on the relative boundary of ~ which will be denoted by raqjJ.

Lemma 6.
(i) All points in ra.1 (a) n d * are exposed points of .1(a).

(ii) If .1(a) c d* then every point in ra.1 (a) is exposed.

https://doi.org/10.2307/1426719 Published online by Cambridge University Press

https://doi.org/10.2307/1426719


68 J. D. BIGGINS

Proof. This lemma is an immediate consequence of the definitions and
Corollary 25.1.2 of Rockafellar.

Lemma 7.
(i) If OEintg and A~-Vk(O) with ~(A»-oo then k(O»~(A) and

~(AA-(l-A)Vk(O)) is a strictly decreasing function of A for O~A~l.
(ii) sIi* c d and if g = ~ then rint d c si":

Proof.
(i) From (2.5) k(O)=sup{~(A):A} and, by Theorem 27.1(e) of Rockafellar

this supremum is achieved at the unique point -V k(O); the stated result
follows.

(ii) If -Vk(0o) = AoEsIi* then, by calculus, ~(Ao) = k(00)-(Ao, eo) so that
~(Ao)> -00. Therefore, using Lemma 1 (iv), sIi* c sIi. If g = ~ and A oErint sIi
then either ~(Ao) = k(O), in which case A o= -Vk(O) EsIi*, or ~(Ao) < k(O). In
the latter case, by Lemma 1 (i), the infimum in (2.4) is attained at some finite
0 0 and then A o = -Vk(0 0 ) Esi",

The remaining lemmas will not be needed to prove the main results in this
paper but they are connected with certain peripheral matters that will also be
discussed. Let

(2.7) ~(a) = {0: k( e) +( 0, -Vk(0» > a, 0E int .o/}.

We will assume from now on in this section that int sIi is non-empty; by
Lemma 3(iii) int ~(a) is then non-empty when a < k(O). The boundary of a set
~ will be denoted by a~.

Lemma 8.
(i) -Vk is a L -diffeomorphism from int g to si":

(ii) ~(a)=(-Vk)-l(int~(a)nd*) when a<k(O).

Proof.
(i) It is easy to verify that

(2.8) a
2

k (8 ) = J(Xi - JXidg*(X»)(Xj - JXjdg*(X»)dg*(X)
a0iaej

where dg*(X) is the probability distribution exp « - e,X) - k(0 »dg(X); hence
(2.8) is the covariance matrix of this distribution. Since d has a non-empty
interior this distribution is truly p-dimensional and so the matrix (2.8) must be
positive definite. The function k( e) has, therefore, a positive definite Hessian
matrix on int g and so is strictly convex there. (This argument is taken from
Lemma 2.1.1 of Brown (1971).) It follows that -Vk is one-one from int g on
to si", Since the determinant of the matrix (2.8) is non-zero and -Vk is COO the
inverse function theorem implies that (-Vk)-l is Coo also.
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The asymptotic shape of the branching 'random walk 69

(ii) By Lemma 3 int j(a) n d* = {A: ~(A)> a}n d*, but when AE d*
~(A)= k«-Vk)-l(A))+(A, (-Vk)-l(A), by calculus. Therefore

int !J(a) nd* = {A : k« -Vk)-l(A)) + (A, (-Vk)-l(A) > a, A E d*}

and the result follows from the definition (2.7).

Lemma 9. If !J(a)cd* and a<k(O) then
(i) iJ~(a) = (-Vk)-l(iJ!J(a));

(ii) the equations

k(E»+(0,A)=a and A=-Vk(E»

are satisfied only when A EiJ-1(a) and E>EiJ~(a); furthermore, to each point in
a-1(a) (and to each point in iJ~(a)) there corresponds exactly one solution;

(iii) a-1 (a) is a CCXJ-manifold of dimension (p - 1).

Proof. The interior of the closed set (-Vk)-l-1(a) is ~(a), by Lemma 8(ii),
and hence (-Vk)-l(iJ-1(a)) = iJ~(a). By Lemma 8(i) d* is open. The function ~,

being concave, is continuous on int {A : ~(A) > -oo} and by Lemmas 1(ii) and
7(ii) this set contains sd": Therefore, using the definition (2.6) and Lemma 3(ii)
iJ-1(a) = {A : ~(A) = a} and so by (i)

iJ~(a) ={E>: k(E» + (E>, -Vk(E») = a}.

Combining this formula with (i) proves (ii). On d*

~(A)= k«-Vk)-l(A))+(A, (-Vk)-l(A)

and so is CCXJ there. If V~(A) is zero then ~ attains its maximum, k(O), at A.
Therefore V~(A) is non-zero on {A: ~(A)= a} = iJ-1(a), since a < k(O), and this
proves (iii).

3. The sllape of Ye(n)

Let the particular convex set !J(O) be denoted by !J. In this section the sense
will be shown to be an 'upper bound' for the sets !J(n) in the sense that for any
a<O

(3.1) !J(n) C !J(a) for all but finitely many n on S

where, by Lemma 3(i), na<o!J(a)=!J. This upper bound will be combined
with the known behaviour of the branching random walk on lR to show that !J

is the asymptotic shape of Ye(n); in fact we will show that

(3.2)

where

rint !J c lim inf Ye(n) c lim sup Ye(n) C !J a.s. on S

lim inf Ye(n) = U n Ye(n) and lim sup Ye(n) = n U <jf(n).

m n>m n>m m
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70 J. D. BIGGINS

(3.4)

If {~(n)} are subsets of P£ then {pn)}, where for each n F"?E ~(n), will be
called an ~(n)-section, and if Ilpn) - F11~ 0 as n~ 00 it will be called an
~(n)-section for F.

It follows from (1.1) and the description of the process that for any
h:2r~IR+

E[ ~h(z~n))I lJn-l] = ~ fh(z~n-I)+X)dg(X).

In particular

(3.3) E[~exp (-fl, z~n» IlJn
-

1
] =exp k(fl) ~exp (-fl, z~n-l»

and so

E[~exp (-fl, z~n»]=exp nk(fl).

Hence when 0 E g

E[~ (exp (k(fl)~(fl, t.n»)t ] = 1 for each n.

Let us assume that g is non-empty and let fin be the event that .f;(n)\.f;(a) is
non-empty, where a < 0 is fixed. We may enumerate .f;(n) so that ft) E

.f;(n)\.f;(a) when fin occurs and then, from Lemma 2 and the definition (2.1),

1 -< 1 -<-a
exp(k(e)+(0,Iin»)-exp~(fln»)=e .

Thus, from (3.4),

P[fin]e-na ~ 1 and so P[fin]~ r-.
The Borel-Cantelli lemma now applies to prove (3.1) in this case. When g is
empty ~(a) = d for all a by Lemma 2. The set d is the smallest closed convex
set such that ~(l)cd a.s. and then .f;(n) cd a.s.; thus (3.1) holds in this case
also.

It is clear that any accumulation point of an ~(n)-section must lie in
n a<O j(a) almost surely, and that lim sup 'J{(n) must be contained in n a<O j>(a)

(= j».

Digressing for a moment notice, from (3.3), that when 0 E g

w(n)(fl) = L exp (-fl, z~n»
r exp nk(0)

is a positive martingale with respect to the rr-fields tS n
and so has an almost
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sure limit, W(8). When ~=IR the question 'when is E[W(E»]=1' is examined
in Biggins (1977a). The same proofs work in this context. If we assume that
int g is non-empty and let

~(O) = ~

(where ~(a) is defined by (2.7)) then when E>Eint g

E[W(E>')] = 1 if E[W(l)(E» log" W(1)(E»]<oo and E>E~,

and
W(E»=O if E[W(l)(E»log+ W(1)(E»]=oo or E>~~.

When int d is non-empty Lemma 8(ii) shows that

~ = (-V k)-l(int.j n d*).

It also seems worth noting that E[W(l)(0) log" W(1)(0)] is finite if and only if

and since Lr exp (-E>, Z~1) is convex in E> and x log" x is increasing and convex
in x we can see that E[W(l)(0) log" Wl)(0)] is finite for all E> in some
convex set.

To show that $J is the asymptotic shape of Ye(n) we will need the following
result. Suppose that ~=IR and k(E»)<oo for some E»O. Let 10glL(a)=

inf {E}a + k(E»: E>~O}, )' = inf {a : lL(a) > 1} and r~\~ = inf {I;n): r}; then
I~ln~ )' a.s. on S. A proof of this based on Kingman (1975) can be found in
Biggins «1976), Section 6) and a self-contained proof is given in Biggins
(1977b).

The important observation now is that the projection of the branching
random walk on ~ onto any subspace of ~ gives another branching random
walk. In particular we can, for any WE S, project the original process onto the
one-dimensional subspace spanned by W; thus the nth generation in the new
process have the positions {(W, z~n»}. (This observation was made by Professor
Kingman. The same idea has been used by Mollison (1978).) Let us suppose,
for the moment, that 0 E int g so that by Lemma 4 .j is compact.
Also

log E[~exp (-8(W, Z~l))]= k(8W) <00 for some 8 >0

so that for any W the associated projected branching random walk satisfies the
theorem quoted above. Thus if we let

)'( W) = inf {a : inf {k( OW)+ Oa : 0~ O} > O}
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then we know that, almost surely on S, there exists an g(n)-section {I(n)} such
that

(3.5)

Suppose that {Y: (Y, W) == K} is a supporting plane to $; such that $; c

{Y: (Y, W) ~ K}. For any E > 0 g(a) c {Y: (Y, W) ~ K - E} for a < 0 sufficiently
small. Therefore, from (3.1) and (3.5), y( W) ~ K - E. Now take A E rint $;; then
by Lemma 3(ii) and the definition of ~ O<~(A)~ k(6W)+(6W, A) for all real
6, hence y(W)~(W,A). Thus K == YeW) and any supporting plane to $; has the
form {Y: (Y, W) == y( W)} for some WE S.

Let E be an exposed point of $;, then there is a Wo E g such that

(3.6) !/J n {Y: (Y, Wo) == y(Wo)} == E.
.

If we now take {I(n)} satisfying (3.5) with W == Wo, then from (3.1) and Lemma
4 this sequence is bounded, and any accumulation point of it must lie in !/J. Let

A be an accumulation point of the sequence: then along a suitable subse­
quence ir», Wo)~ (A, Wo) == y( Wo) and so, by (3.6), A == E. Hence the whole
sequence must converge to E. This establishes that, when 0 E int ff, for any
exposed point E of !/J there is almost surely on S an !/J(n)-section for E.

Let E 1, · •• ,EN be exposed points of !/J and let 7le(E1, · •• ,EN) be their
convex hull, then by choosing an !/J(n)-section for each of them we see that

(3.7) rint 7le(E1 , ••• , EN) c lim inf 7le(n) a.s. on S.

By Theorem 18.7 of Rockafellar (1970) any compact convex set is the closure
of the convex hull of its exposed points, and so if we let {Ei } be a countable set
of exposed points dense in the set of all exposed points of !/J then we may let N
tend to infinity in (3.7) to establish that when 0 E int ff

(3.8) rint $; c lim inf 7le(n) a.s. on S.

A straightforward truncation argument removes the restriction that 0 E int ff.
We first relax it to 'ff is non-empty'. For each integer s > 0 a new branching
random walk is constructed from the original one in the following way. Only
those people born at a distance less than or equal to s from their parent occur
in the new process. The same procedure is applied to their children and so on.
This will be called the bounded modification. Quantities in the sth modification
will be denoted by a subscript, s. Then

exp ks(8) = fexp (-8, X)dg(X)
-ells

so that ffs == 2(, (3.8) holds for each modified process and

ks ( E» t k (e).
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As 7/f;n) c ~~1 c 7/f(n) for each s,

~ 00

Urint .1Js c lim inf 7/f(n) a.s. on U Sse
s=1 s=1

73

Suppose that A E rint!}, then by Lemma 3(ii) c = ~(A) > O. Let T(X) = x if x < c
and T(X) = c if' x ~ c. For large s A E rint ss, and, by Lemma l(i),
T(ks (0 )+ (0 , A ») = c when 0E~\~r for large r. As s~oo

T(k s (0 )+ (0 , A»)tc,

Dini's theorem implies that this convergence is uniform and so ~s(A) ~ c - e >
o for large s. Therefore rint.1 c U;=l .1s , but {.1s } are nested convex sets so
U;=l5>s is convex and rint U;=l.1s=U;=l rint.1s which implies that rinr s c

U;=l rint 5>s. An argument like those given by Kingman «1975), Section 6)
shows that P[S\U;=l Ss] = 0 and so rint 5> c lim inf <;j{(n) a.s. on S when ff is
non-empty. The remaining restriction can be removed by an application of the
sterilization modification as described by Kingman «1975), Section 6). (In this
each person's children are assigned an order; in the Nth modification only the
first N children of the initial ancestor are allowed to appear, and then only
their first N children and so on.) This completes the proof of (3.2).

4. The shape of .1J(n)

In this section we will complete the proof of the following theorem, the first
part of which was proved in the preceding section.

Theorem A. The following hold almost surely on S:
(i) for any a < 0 .1J(n) c .1J(a) for all sufficiently large n,

(ii) there is an g(n)-section for every point in .1J( = n a<O .1J(a)).

We already know from the preceding section that when 0 E int g and E is an
exposed point of .1J there is, almost surely on S, an .1J(n)-section for E. Part (ii)
of the theorem will be established by using this fact and truncation arguments.
This theorem provides the justification for the informal statement '.1J(n) has the
asymptotic shape .1J'.

Let us first suppose that g = 2(, so that by Lemma 7(ii), rint.sll c.sll*, and let
IE.1J\{-Vk(O)}. Then ~(I)~O and by Lemma 7(i) we may take a strictly
monotonic sequence {Pi} in (0, 1) such that

(4.1) exp - k(O)< Pi < exp - ~(I) and Pi t exp - ~(I).

For each Pi construct a new branching random walk from the original one in
the following way. Let each first generation person appear in the new process
with probability Pi independently of the others. Apply the same procedure to
the survivors' children and so on. Denote quantities in this new process by a

https://doi.org/10.2307/1426719 Published online by Cambridge University Press

https://doi.org/10.2307/1426719


74 J. D. BIGGINS

subscript, i. Clearly we can arrange that .1~n) c .1>]n) whenever i < j. Since
k;(8)==k(8)+logpi and ~i(A)==~(A)+logpi it follows from (4.1) that

for each i, and obviously -V'ki(O)==-V'k(O). Let I, be the point on the line
segment {AI - (1- A)V' k(O): 0 < A< 1} for which ~i(I;) == 0, by Lemma 7(i) there
is just one and I,~ I as i~ 00. Then I, E ra.1i n rint d == ra.1>i n d* == ra.1>i n dt
and so by Lemma 6(i) I, is an exposed point of .1i ; thus we know that on S,
there is an j>~n)-section for L. Since j>~n) C j>~~)1 for each i we can construct from
these sequences, by a subsequence argument, an jJ(n)-section {I(n)} such that

r-i-s i-:« on S1'

(actually this construction works on U ~=1 S, but on SI suffices) where, since
k t(0) > 0, P[St] > O.

Let f be the generating function for the Galton-Watson process consisting of
the generation sizes in the original process, and let t' be its sth iterate. The
initial ancestor has the property that there exists an .1(n)-section for I in the
branching random walk emanating from him whenever one of his sth­
generation offspring has this property. The probability of the latter event is
greater than 1- fS(l- P[Sl]) and since P[Sl]> 0 this tends to P[S] as s tends to
infinity by Theorem 11.7.2 of Harris (1963). Hence the initial ancestor must
have the stated property almost surely on S.

This establishes that when fJ == Pf and IE.1\ {-V'k(O)} there exists, almost
surely on S, an .1(n)-section for 1. Obviously this must also hold at -V' k(O), as
can be seen by taking a sequence in .1\ {-V'k(O)} tending to -V'k(O) and using
their .1(n)-sections to construct an .1(n)-section for -V' k(O). The condition that
fJ == 2e is easily removed using the bounded modification, then the sterilization
modification, and a subsequence argument. The details are straightforward and
are omitted.

Suppose now that we consider only those points of .1 in some countable
dense subset of /J. Then we may say that, on S\N where N is null, for any I in
this subset there is an .1(n)-section for 1. These .1(n)-sections can then be used
to approximate any point in .1 by an .1(n)-section, on S \ N. This completes the
proof of Theorem A.

When g is empty and .sIl == Pf or g == {O} the theorem tells us that as n tends
to infinity .1(nO) fills 2e, on S. This suggests that, in these cases, the scaling factor
n- 1 in the definition of .1(n) does not decrease sufficiently quickly. It would be
interesting to know whether an alternative scaling can ever produce a genuine
asymptotic shape for these processes. Renshaw (1977) is looking at an example
of this. When g is non-empty an obvious question is what is the asymptotic
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density of the sets $J(n) near a point A in $J. The results in Biggins (1977b)
suggest that, on S, there are about exp (n~(A)) points of !f>(n) near A.

When int fi and int d are non-empty and $J c d*, as will be the case
whenever fi = ge = d for example, then by Lemma 3(iii) int $J is non-empty
and by Lemma 9(ii) the equations

k(E»+(0, A) = 0 and A = -V k(E»

are satisfied only when A E iJ$J and E> E iJ'iff. Furthermore to each point of iJ$J
(and to each point of iJif;) there corresponds exactly one solution. (These
equations appear, in a different form, in both Kingman «1975), Equation (3.7))
and Biggins «1976), Equation (7.1)).) What is possibly more interesting is that,
by Lemmas 6(ii) and 9(iii), in this case $J is a strictly convex C" -manifold; thus
the branching random walk has a smooth rounded shape.

When 0 E int fi, as we shall now assume, Theorem A has a neater formula­
tion in terms of the Hausdorff metric on the compact subsets of gee For any set
f!lJ let J{e(gj) = {X: IIX - DII < E, DE gj}. For any two compact sets 9i)1 and f!lJ 2
let e1 = inf{E : 9i)2 C .He (9J)t)} and e2 = inf {s : 9J)1 <«. (9J)2)}, and let ~(9i)t, 9J)2)=

max Ie ., E2}; then ~ is the Hausdorff metric on the compact subsets of Be (a
discussion of it can be found in Rogers «1970), p. 90)).

By Lemma 4 !f>(a) is compact for every a; since these sets are nested and
!f> = n a<O !f>(a) it is easy to see that for any e > 0 !f>(a) c J{e(!f» when a is
sufficiently small. Thus when (i) of Theorem A holds we have that for any e > 0

$J(n) c .He($J) for sufficiently large n.

Now let {~} be a finite j s-net for.1>. Then when (ii) of the Theorem holds there
is an ~(n)-section {11 n

)} for each l.; thus for large n II11n)- ~II <!e for each I, and
so

.jJ c .N;(.jJ(n») for sufficiently large n.

Hence we have arrived at the following corollary.

Corollary to Theorem A. When 0 E int I

~(.1>(n), .1» ~ 0 a.s. on S.

It is also not hard to show that (3.2) is equivalent to

~(:le(n), .1» ~ 0 a.s. on S
when 0 E int fl.

Suppose that 11·11* is any norm on Be and that

I~?n = inf {11~n)ll* : r}= inf {n-11Iz;n)ll* : r}

so that nf;:?n is the minimum distance, with respect to 11·11*, from the origin to
an nth-generation person. This work arose from consideration of the following
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question. Does r;:?n~ y a.s. on S for some constant y? This question can now
be answered quite simply and there is no loss in giving a slightly more general
formulation. Let h: ge~ ~ satisfy:

(i) for some a < 0 h is continuous on .1(a),
(ii) for some 5 h(cX) = cl)h(X) for all c > 0,

(iii) for some a < 0 and some b > inf {h(I) : I E~} the set
.1(a) n {X: h(X) ~ b} is compact.
Now let

B(n) = inf {h(z~n)): r} and y = inf {h(I): I E~}

then we will show that

(4.2)
B(n)
-- ~ y a.s. on S.nl)

Using the conditions (i) and (iii) imposed on h we see that for some I" E.1
h([+) = ')'. Let {[(n)} be an .1(n)-section for T"; then, using Condition (ii),

B(n)
lim sup -I)~ lim h(I(n) = y.

n

For a < 0 and large n, on S,

.1(n) c .1(a) = (.1(a) n {X: h(X) ~ b}) U (.1(a) n {X: h(X) ~ b})

and then. using (i), (ii), (iii),

lim inf (B(n)/nl»)~ inf {h(X): X E~(a) n {X: h(X) ~ b}}~ ')' as a~O.

If we take h(X) = IIXlI* then (4.2) holds with 5 = 1, answering the question
posed above. If 0 E int g so that ~ (a) is compact then the condition (iii) on h
holds automatically; in this case if we take h(X) = -IIXlI* then (4.2) holds,
again with 5 = 1, and -tr» is the maximum distance from the origin to an
nth-generation person.

5. Continuous time

In this section we will obtain a continuous-time analogue of Theorem A. Let
us consider a branching random walk on ge = qy x ~ with the nth-generation
peoples' positions denoted by (l;n), t~n)) where l;n) E qy and t~n) E~. If we
assume that t~1) E ~ + (i.e. t;1) > 0) for all r, then t;n) may be considered to be the
birth time of a person at l;n); thus people are now thought of as having
positions in qy. For the moment, people remain for ever in their positions from
the time of their birth. Let

j(t) = {l;n)/t: t~n) ~ t}
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so that j(t) is the set of (scaled) positions of the people born before time t. The
aim of this section is to show that, subject to a mild side condition, j(t) has an
asymptotic shape. This problem, in a slightly less general form, was mentioned
in Section 6 of Biggins (1976). The notation of the previous sections will still be
used for the branching random walk on PE, and the idea is to use the known
results about the shape of !J(n) to deduce asymptotic results about j(t). We will
assume in this section that the initial ancestor has only finitely many children,
that is that

(5.1)

This assumption prevents the offspring in early generations from having a great
effect on j<t) when t is large.

Notice that if we forget the peoples' position and consider only their birth
times then the process obtained is an age-dependent branching process of the
kind considered by Jagers (1975), except that people do not die. This process
could be said to have survived if for any t there are births after the time t. It is
not hard to show that the event that this occurs is equal, up to a null set, to the
event that the Galton-Watson process of generation sizes survives. Hence we
may, without real ambiguity, continue describing S as the survival set.

We will define
!J*(a)={Y:(Y,l)EcIX(a)}.

Then !J*(a) is the projection onto 6JJ of the intersection of the closed convex
sets cl X(a) and {(Y, 1) : Y E 6JJ}. It is a closed convex set. If (<1>0' cPo) E ff then,
since t~l) > 0 for all r (<1>0,4» E g for all 4> ~ 4>0 and then k(<I>o, 4» ~ -00 as
4> ~ 00. Thus, for A E u.Y,

~«A, 0» ~ k(<I>o, <p) +«A, 0), (<1>0' <p» ~ ~oo as 4>~ 00

and so !J(a) c u.Y x ~ + for all a. Therefore, by Lemma 5,

(5.2) n !J*(d) = !J*(a)
d<a

for a<k(O). Notice that, since dn(u.Yx~+) is non-empty, !J*(a) is non-empty
when g is empty and clearly (5.2) holds in this case also.

Now let j(a) be the closure of the convex hull of !J*(a) and the origin of 6JJ,
that is

(5.3) j(a)=cl{Y:cYE!J*(a) forsome c~l}U{O}=cl1e(!J*(a),O).

An argument just like that given in Lemma 5 shows that for a < k(O)

(5.4) n j(d) = j(a).
d<a

(The final part of the proof is completed by noting that if X is in the recession
cone of !J*(a) then, by Theorem 8.3 of Rockafellar (1970), X is in the
recession cone of cl~(!J*(a),O) and so XEcl~(!J*(a),O).)
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we will show that j is the asymptotic shape of }(t).
Fix a < 0; then we know that, on S, for some no, !J(n) c !J(a) when n ~ no.

Now if (~n)/n, t~n)/n) E .1(a) then ~n)/t~n)E .1*(a), thus

{y~n)/t~n): r} c .1*(a) for n ~ no, on S.

From (5.3), if ~n)/t;n) E .1*(a) then ~n)/tE j(a) for all t ~ t~n). Also, by the
assumption (5.1), {¥;n): n ~ no} is a finite set and so

{~n)/t:n~no}c{Y:IIYlI~ -a}

for large t. Combining these remarks we can see that, on S, there is a T such
that

j(t) c j(a) U {Y: II Yll ~ - a} for all t~ T,

and by (5.4),

n (j(a)U{Y:IIYlI~ -a})=}.
a<O

To complete the proof of an analogue of Theorem A we will now show that,
on S, there is an j(t)-section for every point in j. If Y E :le(.1*(O), 0) then
cY E .1*(0) for some c ~ 1. If {j(t)} is an j(t)-section for cY, then {c" j(t)} is an
j(t)-section for Y because c- 1 j(t)~ Y and c" j(t)E j(ct). It is therefore suffi­
cient to show that there is an j(t)-section for any point in .1*(0).

Take Y E .1*(0), so (c'Y, c') E!J for some e' > 0, then there is an .1(n)-section,
{(y(n)/n, t(n)/n)}, for (c'Yc'). Obviously y(n)/t(n)~ Y. Let {(R(s), T(s»)} be a
subsequence of the sequence {(y(n), t(n»)} with the property that T(s)«s+1) for
all s; such subsequences certainly exist because c' > O. We can now define an
j(t)-section corresponding to this subsequence by

j(t) = {R(s)/ t} for T(s) ~ t < T(s+l)

_ IIR(S) R(S)II IIR(S) ~IIII(t)- YlI~ -'--- + ---t T(s) T(s)

II
R(S)111T(s) I IIR(S) vii

~ T(s) T(s+l) -1 + T(s) - ~ I
therefore

(5.5)
_ IT(s) I

lim sup III(t) - Yll ~ II Ylilim sup (s+1) -1 .
t~= S T
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Take a>l and e==!«a-I)/(a+I))c', then for s large enough [as](c'-e)~

[as-1](c'+ e) ([as] is the integer part of as) whilst for n large enough n(c'- e)<
t(n)< n(c' + e). Hence, for large So, the subsequence {r?": n == [as] s ~ so} is
strictly monotonic, Let {(R(s>, T(s»)} be the sequence {(y(n>, t(n»): n == [as] s ~ so},
then, because t(n)/n~ c', T(s)/T(s+l)~ a-I. Therefore, by (5.5), the j(t)-section
corresponding to this subsequence ultimately lies inside a ball of radius
IIYllla-I-11 centred on Y. We can perform this construction for a sequence of
values of a tending down to one and then use a subsequence argument on the
j(t)-sections obtained in this way to obtain an j(t)-section for Y. This completes
the proof of the following theorem.

Theorem B.
The following hold almost surely on S:
(i) for any a < 0 j(t) c j (a) U {Y:: II YII ~ - a} for all sufficiently large t,

(ii) there is an j(t)-section for every point in j ( == n a <0 j (a)).

Again, in certain circumstances, a reformulation of this result in terms of the
Hausdorff metric is possible; the proof of the Corollary to Theorem A will
work here whenever j(a) is compact for some a<O. Let

m(<I» =E[~ exp( -<I>, ~l)] for <I> E C!Y

and let ff' == {<I>: m(<I» < oo}. If 0 E int ff' and E[Lr exp (-Ot~l))] is finite for some
00 (and hence for all 0 ~ ( 0 ) it is not too hard to show that ~*(a), and so j(a),
is compact for a <0. The first condition implies that the projection of ~(a)

onto uy is bounded and the second implies that the projection of ~(a) onto
IR (~== OJ! x IR) is contained in [c, 00) for some c > 0, and together these imply
that ~*(a) must be bounded and hence compact. Then

d(j(t), j)~ 0 a.s. on S

as t~ 00.

Let us now include the additional feature of death in our model. The initial
ancestor has a lifetime, d> 0, and the process is built up, as usual, by
associating an independent copy of {~1), t~1), d : r} with each person to give the
relative positions of his children, their birth times relative to his, and his
lifetime; thus the person at y~n) has an associated lifetime d~n) and is alive at
those times t satisfying t~n) ~ t < t~n) + d~n). The set of points

j(t) == {~n) / t: t~n) ~ t < t~n) + d~n)}

is the set of (scaled) positions of those people alive at the time t. We have
shown that j(t) has an asymptotic shape when d == 00 and # {y~l) : r} is finite; it is
reasonable to expect that weaker conditions suffice. The general question is left
open; here a simple result needed in the next section is given.

6
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Suppose that the natural requirements
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(5.6) d~t~l) forallrandd<oo

hold almost surely; then (5.1) must hold. Suppose too that

(5.7) OE{~1):r} a.s.;

then PES] == 1 and every person has a child at his own position before he dies.
The sets j(t) and j(t) now contain the same points of O)J, though with different
multiplicities, and so we have the following result.

Corollary to Theorem B. When (5.6) and (5.7) hold Theorem B holds with
j(t) replaced by j(t).

6. Continuous time - the Markov case

A special case of the corollary to Theorem B, when the age-dependent
branching process formed by those people alive at time t is a continuous-time
Galton-Watson process, is of particular interest. The result is then closely
related to certain results of Mollison (1978) on the 'contact birth process' and a
discrete skeleton argument allows the results of the earlier sections to be used
to give a more explicit formula for j.

Let us suppose that d, the initial ancestor's lifetime, has an exponential
distribution with the parameter o, that d == t~l) for all r and that d is indepen­
dent of the point process {~1): r}. We will also assume that (5.7) holds, so that
the corollary to Theorem B holds. In this situation # j<t) is a continuous-time
Galton-Watson process and if we sample the continuous-time process formed
by {~n) : t~n) ~ t < t~n) + d~n)} only at those time points t with integer values then
we obtain a discrete-time branching random walk. All quantities associated
with this branching random walk will be denoted by a subscript, I. Obviously
$J}n) == j(n) and so j and $Jr must be the same. However $Jr is given by the
formula (2.6) with a == 0 which will allow us to give a similar formula for j in
terms of m(<I», lX and si'; where .sIl' is the smallest closed convex set containing
{~1): r} almost surely.

Let

exp k,(<I» =E[Lexp <-<1>, ~n»] for <I> E 0/1,

where the sum is taken over those ~n) for which t~n) ~ t < t~n) + d~n). By
considering the possible time of death of the initial ancestor we can see that

exp k.(<I» = e:" + m(<I» fexp k._T(<I»ae-aTdr,

o
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and hence, by standard renewal theory, that

kt(<I» == a (m(<I» -1)t.
Therefore

and so by Lemma 2 when g' is non-empty

j == {A : inf {a (m(<I» -1) + (<I>, A): <I>} ~ O}.

81

To cover the remaining case, when g' is empty, we have only to identify slJI ; in
fact

slJI == cl {A : cA E sIJ' for some c > O},

the closure of the cone generated by si', This formula will be established under
the condition that 0 E int g', a truncation argument would then show that it
always holds. If A E rint s/J' then by Lemma 1 inf {log m(<I» + (<I>, A): <I>} == b>
-00 and wA E slJI if ~I(wA) > -00. Now

kI(~)+ (~, wA) == exp (-<I>, A)(am(<I» exp (<I>, A») + w(~, A) - a

~ ae" exp (-<I>, A)+ w(~, A)- a

which is bounded below whenever w > 0, then ~I(wA) > -00 and wA E dIe
Hence cl {A : cA E s/J' for some c > O} C dIe The opposite inclusion is obvious
because cl{A : cA E s/J' for some c > O} is closed under addition and so contains
y~n) for every nand r. Notice that whenever 0 E int s/J' slJI == 09.

In Mollison's (1978) contact birth process a person at the origin in 09 has
children according to a Poisson process of rate a. Each child is given a position
in 6JI using independent copies of a random vector, U. Each child, from birth,
produces children according to a Poisson process of rate a and their positions,
relative to their parents', are again given by independent copies of U, and so
on. This process falls into the framework above when considered in a slightly
different way. Suppose that d is exponentially distributed with parameter a

and that
{y~l): r}== {O, U}.

The resulting process is the contact birth process if a parent is identified with
his offspring at his own position. Let

v (<I» == B[exp (-<I>, U)];

then m(<I» == a (v (<I»+ 1-1) == av(<I» and s/J' is the closure of the convex hull of
possible values of U and the origin of 6JI. If {<I>: v (<I» < oo} is non-empty then the
asymptotic shape of }>(O is

(6.1) j == {A : inf {av(<I» +(<I>, A): <I>}~ O}.
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If we further assume that 0 E int {<I>: v (<I» < oo} then, using the remarks follow­
ing Theorem B

a(}(t), j)~ 0 a.s. as t~ 00.

Mollison «1978),5.7) proves that for certain processes including the contact
birth process, the convex hull of j(t) has an asymptotic shape which he calls f.
When Pi' is non-empty Mollison «1978),3.10) also gives an upper bound,
which he calls C, on the asymptotic shape of .jJ(t) which is

(6.2)

where Cfj is a countable dense subset of the unit sphere in W. He conjectures
that I' == C for the contact birth process. We are now in a position to prove this
conjecture since we know the asymptotic shape of }(t) to be j and have a
formula for j; thus we have only to check that (6.1) is equal to (6.2). We may
assume that - WECO whenever WECO and rearrange (6.2) to get

n {A: inf {av(</>W) + (A, <pW): </> E lR} ~ O}
WE~

== {A : inf {inf {av(</>W) + (A, <p W): <p E IR} W E Cfj}.

Now, because av(<I» +(A, <1» is convex in <I> this equals (6.1) as it should.

Concluding comments

One of the most unrealistic features of branching-process models for popula­
tions is that there is no interaction between neighbouring individuals. More
realistic models incorporate the effects of competition and a bounded popula­
tion density. The population in any branching-process model that does not die
out almost surely grows geometrically with time. Typically the population will
grow less quickly in more realistic models. Hence one would expect branching­
process models to provide an upper bound on the rate of spread of the more
realistic models.

Mollison (1977) defines a Markovian contact process to be a population
process with a contact birth process underlying it. (The formal definition is
given in that paper.) Usually this means that given a realization of the contact
birth process the application of some set of rules for removing people results in
a corresponding realization of the Markovian contact process. Quite a broad
class of models, incorporating the interaction of neighbours, can be obtained in
this way. For example, in a contact birth process one could delete any person,
and all of his descendants, born at a distance less than s from any person
already present. As the births in the contact birth process are ordered almost
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surely, this proscription works. The result is a Markovian contact process. A
model of this kind might well be appropriate for describing the spread of some
plant colonies. (It seems likely that the process just described has an asymptotic
shape; however this is, as far as I know, unproven.) Obviously for models of
this kind Mollison's upper bound, C, provides a computable upper bound on
their rate of spread.

It is clear that this idea can be extended; we can consider processes with an
underlying branching process (this includes a variety of 'non-Markovian' mod­
els when they are thought of in the way described in Section 5). Now, as in the
simpler situation, the asymptotic shape of the underlying process provides an
upper bound on the rate of spread of the process of interest. Notice that for
any given, or postulated, k(0) the corresponding sets $;, $;* and j can be
computed. Furthermore we know that this computable upper bound is actually
attained by the branching process.
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