PROPERTIES OF HARMONIC FUNCTIONS OF THREE REAL VARIABLES GIVEN BY BERGMAN-WHITTAKER OPERATORS

JOSEPHINE MITCHELL

1. Introduction. Let \mathbb{Z} be a closed rectifiable curve, not going through the origin, which bounds a domain Ω in the complex ζ-plane. Let $X=(x, y, z)$ be a point in three-dimensional euclidean space E^{3} and set

$$
\begin{align*}
& v(X, \zeta)=Z \zeta^{2}+x \zeta+Z^{*} \\
& Z=\frac{1}{2}(i y+z), Z^{*}=\frac{1}{2}(i y-z) \tag{1}
\end{align*}
$$

The Bergman-Whittaker operator defined by

$$
\begin{equation*}
H(X)=B(g) \equiv \frac{1}{2 \pi i} \int_{\mathfrak{R}} g(v, \zeta) \frac{d \zeta}{\zeta}, \tag{2}
\end{equation*}
$$

transforms analytic functions of two complex variables v and ζ into harmonic functions H of three variables defined in a certain domain of E^{3} (the domain of association); H can be continued analytically and thus we obtain a mapping of the analytic function g into a harmonic function \mathfrak{F} defined (in general) in a domain which multiply covers E^{3}. Thus we have the following steps in mapping by this method

$$
g(v, \zeta) \rightarrow B(g) \rightarrow \mathfrak{y}(X)
$$

the first step being obtained by an integral formula and the second by analytic continuation. Different classes of functions g such as rational or algebraic, the integral of an algebraic function or $g=f \zeta^{m}$ where f is a meromorphic function of one complex variable and m a non-negative integer have been shown by Bergman and others to lead to different classes of harmonic functions (1; $\mathbf{2}$; 3; 4; 7).

An important problem in the theory of integral operators consists in the study of various properties of the function $\mathfrak{5}$ such as the location and type of its singularities. In this paper we consider the problem when

$$
\begin{equation*}
g(v, \zeta)=f(v, \zeta) p(v) \tag{3}
\end{equation*}
$$

where p is a meromorphic function of v with an infinity of poles, none of which is the origin, and f / ζ is an entire function of the complex variables v and ζ. In $\S 2$ the properties of (2) with g given by (3) are discussed, including a study of the number of algebraic singular lines of H as $X \rightarrow \infty$ in different directions. It is found that (2) represents a multiple-valued harmonic function H in the

[^0]domain of association of the integral operator (2); H can be extended analytically except for an exceptional set of lower dimension over a Riemann domain (the domain of existence of \mathfrak{S}), which multiply covers E^{3}. \mathfrak{S} branches along a denumerable set of circles of increasing radii and all passing through the origin, where it has algebraic singularities of a pole-like type and an essential singularity on the negative (or positive) x-axis. Using known results on the minimum modulus of entire functions the growth properties of (2) are studied in $\S 3$ when the denominator of p is an entire function of finite order and \mathbb{Z} is the unit circle. In $\S 4$ a representation is obtained for H when p in (3) is represented as the limit of a series summable in a star domain by the MittagLeffler method.

Suppose p has poles at e_{k} and

$$
\begin{equation*}
0<\left|e_{1}\right|<\left|e_{2}\right|<\ldots \tag{4}
\end{equation*}
$$

Set

$$
\begin{align*}
& E(v, r)=(1-v) e^{p_{r}(v)} \\
& p_{r}(v)=v+\frac{1}{2} v^{2}+\ldots+\frac{1}{r} v^{r} . \tag{5}
\end{align*}
$$

By the Weierstrass factor theorem it is known that

$$
\begin{equation*}
p(v)=h(v) / \prod_{k=1}^{\infty} E\left(v / e_{k}, r_{k}-1\right), \tag{6}
\end{equation*}
$$

where h is an entire function and $\left\{r_{k}\right\}$ is a set of positive integers such that the infinite series

$$
\sum\left|\frac{v}{e_{k}}\right|^{r_{k}}
$$

converges for all v. We set

$$
\begin{aligned}
& f_{1}(v, \zeta)=f(v, \zeta) h(v) \\
& p_{1}(v)=1 / \prod_{k=1}^{\infty} E\left(v / e_{k}, r_{k}-1\right)
\end{aligned}
$$

so that $g=f_{1} p_{1}$ and use the normalized function p_{1} in place of p, dropping the subscripts.

2. Properties of (2).

1. Explicit representation for H. If v in p is replaced by its value in (1), a function $P(X, \zeta)$ is obtained which has poles in the ζ-plane for $Z \neq 0$ at

$$
\begin{align*}
\zeta_{1}^{(k)} & =\frac{-x+R_{k}(X)}{2 Z} \\
\zeta_{2}^{(k)} & =\frac{-x-R_{k}(X)}{2 Z} \tag{1a}
\end{align*}
$$

where

$$
\begin{align*}
& R_{k}^{2}(X)=R^{2}+4 Z e_{k} \\
& R^{2}=x^{2}+y^{2}+z^{2} \tag{1b}
\end{align*}
$$

If $R_{k}(X)=0$ and $Z \neq 0$, then

$$
\begin{equation*}
\zeta_{1}^{(k)}=\zeta_{2}^{(k)} \equiv \zeta_{0}=-x / 2 Z \tag{1c}
\end{equation*}
$$

If $Z=0,(x \neq 0), P$ has poles at

$$
\begin{equation*}
\zeta^{(k)}=e_{k} / x \tag{1d}
\end{equation*}
$$

and, if $X=0, v(0, \zeta)=0$ for all ζ, so that $P(0, \zeta)=1$.
Let

$$
\begin{align*}
b_{k}^{1} & =\left[X \mid R_{k}(X)=0, \quad X \neq 0\right]^{*} \\
b^{1} & =\bigcup_{k=1}^{\infty} b_{k}^{1}, \tag{2}
\end{align*}
$$

and c^{1} be the x-axis. Separated into real and imaginary parts $R^{2}(X)=0$ becomes

$$
\begin{gathered}
x^{2}+\left(y-b_{k}\right)^{2}+\left(z+a_{k}\right)^{2}=\left|e_{k}\right|^{2} \\
a_{k} y+b_{k} z=0,
\end{gathered}
$$

where $a_{k}=\operatorname{Re} e_{k}, b_{k}=\operatorname{Im} e_{k}$, so that $b_{k}{ }^{1}$ is a circle lying on the plane $a_{k} y$ $+b_{k} z=0$ with the point $X=0$ omitted. The sets $b_{k}{ }^{1} \cap c^{1}$ and $b_{k}{ }^{1} \cap b_{j}{ }^{1}$ ($j \neq k$) are empty.

We remark that v in (1.1) may be replaced by $v-\alpha \zeta, \alpha$ a complex number, in which case $R_{k}{ }^{2}(X)=0$ becomes

$$
(x-\alpha)^{2}+y^{2}+z^{2}+2 e_{k}(i y+z)=0
$$

and analogous results are obtained.
It is seen from formulae (1) by a computation that for fixed $X \neq 0$ $\left|\zeta_{\mu}{ }^{(k)}\right| \rightarrow \infty$ as $k \rightarrow \infty \quad(\mu=1,2)$, so that only a finite number of poles of P lie inside \mathcal{R}. Also, if f is an entire function of v and ζ, then $F(X, \zeta)=f(v(X, \zeta), \zeta)$ is an entire function of X and ζ. It is also convenient to assume that f has a factor ζ so that the integrand has no singularity at $\zeta=0$. Assuming that no pole lies on \mathfrak{R} we get by the residue theorem

$$
H(X)=\sum \text { residue at } \zeta_{\mu}^{(k)}
$$

summed over all $\zeta_{\mu}{ }^{(k)}$ in Ω. Since we have assumed that all e_{k} are distinct, the value of the residue at $\zeta_{1}{ }^{(k)}$ for $X \notin b_{k}{ }^{1} \cup c^{1}$ is

$$
\begin{equation*}
A_{k}\left(X, \zeta_{1}^{(k)}\right) \equiv-e_{k} A_{k} F\left(X, \zeta_{1}^{(k)}\right) / \zeta_{1}^{(k)} R_{k}(x) \tag{3}
\end{equation*}
$$

where A_{k} is a non-zero constant equal to

$$
Q(X, \zeta)=p[v(X, \zeta)]\left[1-v(X, \zeta) e_{k}^{-1}\right]
$$

*The superscript on $b_{k}{ }^{1}$ refers to the dimension of the set in E^{3}.
when $\zeta=\zeta_{1}{ }^{(k)}, v\left(X, \zeta_{1}{ }^{(k)}\right)$ being equal to e_{k}. Similarly the residue at $\zeta_{2}{ }^{(k)}$ is $-A_{k}\left(X, \zeta_{2(k)}\right)$. Thus for $X \notin b_{k}{ }^{1} \cup c^{1}$ for all k for which $\zeta_{\mu}{ }^{(k)} \in \Omega$

$$
\begin{equation*}
H(X)=\sum_{\zeta_{\mu}^{(k)} \in \Omega} \pm A_{k}\left(X, \zeta_{\mu}^{(k)}\right) \tag{4}
\end{equation*}
$$

Since f / ζ is an entire function of v and ζ,

$$
f_{0}(v, \zeta) \equiv \frac{f(v, \zeta)}{\zeta}=\sum_{m, n=0}^{\infty} a_{m n} v^{m} \zeta^{n}
$$

for $|v|<\infty,|\zeta|<\infty$. For any $X \in E^{3}$ and $|\zeta|<\infty, v$ is finite, hence for all $X \in E^{3}$

$$
F_{0}(X, \zeta) \equiv \frac{F(X, \zeta)}{\zeta}=\sum_{m, n=0}^{\infty} a_{m n} v^{m}(X, \zeta) \zeta^{n}
$$

Since $v\left(X, \zeta_{1}{ }^{(k)}\right)=e_{k}, F_{0}\left(X, \zeta_{1}{ }^{(k)}\right)=F_{0}\left(\zeta_{1}{ }^{(k)}\right)$ is a function of $\zeta_{1}{ }^{(k)}$ only and has the series representation

$$
\sum_{n=0}^{\infty} b_{n}\left(\zeta_{1}^{(k)}\right)^{n}
$$

for $Z \neq 0$ from which it is seen that $F_{0}\left(\zeta_{1}{ }^{(k)}\right)$ has a singularity of an essential type on the negative x-axis; $F_{0}\left(\zeta_{2}{ }^{(k)}\right)$ has an analogous singularity on the positive x-axis. Thus the function represented by formula (4) is a multiplevalued function of X which has algebraic singularities of a pole-like type along the curves $b_{k}{ }^{1}$, which are analogous to singularities obtained by Bergman (3), essential-type singularities on the positive or negative x-axis (or both) and is undefined at $X=0$.*
2. Exceptional cases to formulae (3) and (4). Exceptional cases arise when (i) the roots of $v(X, \zeta)=e_{k}$ coincide, (ii) $Z=0$, (iii) $X=0$, and (iv) the integrand is undefined.
(i) If $\zeta_{\mu}{ }^{(k)} \in \Omega$ and $X \in b_{k}{ }^{1}$ the integral operator (1.2) gives a different function. In this case $v(X, \zeta)=e_{k}$ has coincident roots ζ_{0} given by (1c) and the residue at ζ_{0} is

$$
B_{k}\left(X, \zeta_{0}\right)=-e_{k}\left[F_{05}\left(\zeta_{0}\right) Q\left(X, \zeta_{0}\right)+F_{0}\left(\zeta_{0}\right) Q_{s}\left(X, \zeta_{0}\right)\right] / Z
$$

As we have seen $Q\left(X, \zeta_{0}\right)$ equals the constant A_{k} and similarly $Q_{\zeta}\left(X, \zeta_{0}\right)$ equals a constant B_{k}. Thus $B_{k}\left(X, \zeta_{0}\right)$ is a single-valued function with a singularity on the x-axis $(x \neq 0)$ and

$$
\begin{equation*}
H(X)=\sum_{\substack{\zeta_{\mu}^{(j)} \in \Omega \\ j \neq k}} \pm A_{j}\left(X, \zeta_{\mu}^{(j)}\right)+B_{k}\left(X, \zeta_{0}\right) \tag{5}
\end{equation*}
$$

[^1](ii) If $Z=0$ and $x \neq 0, v(X, \zeta)=x \zeta$ so that the residue at $\zeta=\zeta^{(k)}$ is $-e_{k} A_{k} x^{-1} F\left(e_{k} x^{-1}\right)$ and on c^{1}
\[

$$
\begin{gathered}
H(X)=-x^{-1} \sum_{\zeta^{(k)} \in \Omega} e_{k} A_{k} F\left(e_{k} x^{-1}\right) \\
\end{gathered}
$$
\]

which is a single-valued function of X with an essential singularity at $x=0$.
(iii) If $X=0, v(X, \zeta) \equiv 0, p(v) \equiv 1$ and $H(0)=0$.
(iv) The set of points in E^{3}, where the associate g is undefined. For fixed ζ the equation $v(X, \zeta)=e_{k}$ or

$$
\begin{align*}
& 2 x \operatorname{Re} \zeta-y \operatorname{Im} \zeta^{2}+z\left(\operatorname{Re} \zeta^{2}-1\right)=2 a_{k} \tag{6a}\\
& 2 x \operatorname{Im} \zeta+y\left(\operatorname{Re} \zeta^{2}+1\right)+z \operatorname{Im} \zeta^{2}=2 b_{k}
\end{align*}
$$

represents a line $l_{k}{ }^{1}(\zeta)$ in E^{3}. Hence

$$
\begin{equation*}
B_{k}^{2}(\mathbb{R})=\bigcup \bigcup \bigcup \bigcup_{\zeta \in \mathbb{R}}^{1}(\zeta) \tag{6b}
\end{equation*}
$$

is a ruled surface and

$$
\begin{equation*}
B^{2}(\Omega)=\bigcup_{k=1}^{\infty} B_{k}^{2}(\Omega) \tag{6c}
\end{equation*}
$$

a family of ruled surfaces. Now $X \in B^{2}(\Omega)$ implies that there exists k and $\zeta_{1} \in \mathbb{R}$ such that $X \in l_{k}{ }^{1}\left(\zeta_{1}\right)$, which implies that equation $v\left(X, \zeta_{1}\right)=e_{k}$ is satisfied. But then ζ_{1} is one of the poles $\zeta_{\mu}{ }^{(k)}$ of the function $p(v)$. Consequently the surfaces $B_{k}{ }^{2}(\Omega)$, which are referred to as surfaces of separation (3), subdivide E^{3} into a denumerable number of cells (called domains of association) in each of which the number of singularities inside \mathbb{R} remains constant. Call these cells $D_{p}{ }^{3}(p=1,2, \ldots)$. As X crosses from one cell to another it meets a surface $B_{k}{ }^{2}(\Omega)$ and for this X the integral operator (1.2) is undefined. Thus for $X \in D_{p}{ }^{3}-b^{1} \cup c^{1}$, (1.2) defines a branch of a complex harmonic function given by (3) and (4), which we shall call $H^{(p)}$.

We summarize these results in
Theorem 1. Let the function g in the integral operator (1.2) be given by (1.3). For X in the set $D_{p}{ }^{3}-b^{1} \cup c^{1}(p=1,2, \ldots)(1.2)$ represents a branch, $H^{(p)}$, of a complex harmonic function given by formulae (3) and (4). For $X \in b_{k}{ }^{1}$ ($k=1,2, \ldots$) it represents the function (5) and on c^{1} it represents a singlevalued harmonic function with an essential singularity at $x=0$. The integral operator is undefined on $B^{2}(\Omega)$.

Remark. Since in general $H^{(p)}$ cannot be continued into the function represented by (1.2) when $X \in b^{1} \cup c^{1}$, in order to get a general harmonic function \mathfrak{S} by analytic extension we consider only the set of functions

$$
\begin{equation*}
\mathfrak{S}=\left\{H^{(p)}\right\}(p=1,2, \ldots) ; \tag{7}
\end{equation*}
$$

$H^{(p)}$ being represented by (1.2) when $X \in D_{p}{ }^{3}-b^{1} \cup c^{1} . H$ refers to the harmonic function represented by (1.2) when $X \in E^{3}-B^{2}(\Omega)$.

3. The Riemann domain R^{3} on which \mathfrak{S} is single-valued.

If g is a rational function of $u=\zeta^{-1} v$ and ζ and hence of ζ and X :

$$
G(X, \zeta)=P(X, \zeta) / Q(X, \zeta)
$$

where P and Q are polynomials in ζ and X, we know that the Riemann domain on which the corresponding harmonic function is defined and single-valued has the equation

$$
Q(X, \zeta) / A_{2 N}=0
$$

($A_{2_{N}}$ the leading coefficient of Q) (2). Similarly the Riemann domain R^{3} on which \mathfrak{F} is single-valued has the equation

$$
\begin{equation*}
S(X, \zeta)=\prod_{k=1}^{\infty} E\left[v(X, \zeta) / e_{k}, r_{k}-1\right]=0 . \tag{8}
\end{equation*}
$$

In order to study this domain we consider at first the equation

$$
\begin{equation*}
S_{p}(X, \zeta)=\prod_{k=1}^{p} E\left[v(X, \zeta) / e_{k}, r_{k}-1\right]=0 . \tag{9}
\end{equation*}
$$

The Riemann domain $R_{p}{ }^{3}$ defined by (9) has $2 p$ sheets given by

$$
S_{2 k}: \zeta=\zeta_{1}{ }^{(k)}(X), S_{2 k+1}: \zeta=\zeta_{2}{ }^{(k)}(X)(X \neq 0)(k=1, \ldots, p),
$$

where $\zeta_{j}{ }^{(k)}$ are given by (1). $S_{2 k}$ and $S_{2 k+1}$ are connected at the branch curves $b_{k}{ }^{1}$ (see (1) and (2)) and the x-axis c^{1}. The Riemann domain R^{3} given by (8) is the limiting case of $R_{p}{ }^{3}$ as $p \rightarrow \infty$. Hence R^{3} has an infinite number of sheets $\left\{S_{n}\right\}(n=1,2, \ldots)$, the sheets being connected in pairs $S_{2 k}, S_{2 k+1}$ along the branch curves $b_{k}{ }^{1}$ and c^{1}. If i and j are not consecutive integers of the form $2 k$, $2 k+1$ the sheets S_{i} and S_{j} are not connected. As k increases the spheres on which $b_{k}{ }^{1}$ lie are of increasing radii $\left|e_{k}\right|$ and all passing through the origin. Infinity is a singularity of higher order which is not assumed to lie on R^{3}. We state as a corollary to Theorem 1:

Corollary. Under the hypothesis of Theorem 1 the function

$$
\mathfrak{F}=\left\{H^{(p)}\right\}(p=1,2, \ldots),
$$

represented by (1.2) when $X \in E^{3}-B^{2}(\Omega) \cup b^{1} \cup c^{1}$, is a complex harmonic function which is single-valued on the Riemann domain $R^{3} . H^{(p)}$ has a finite number of algebraic singularities of a pole-like type on b^{1} and a singularity on the positive or negative x-axis (or both) of an essential type.

4. The number of algebraic singular lines possessed by H.

Disregarding the essential type singularity of H on the positive or negative x-axis, let $n(x, y, z)$ be the number of algebraic singular lines possessed by H for $\&$ a given closed curve. As we have seen by (3) and (4) H has a finite number of algebraic singular lines $\subset b^{1}$. Furthermore for $X \in D_{p}{ }^{3} n(x, y, z)$ is a non-
negative integer. However, the number of singularities may become infinite as $X \rightarrow \infty$ in certain directions, thus giving a different type of singularity for X infinite in this direction. For example, let $X \rightarrow \infty$ along the negative z-axis, \mathfrak{R} be the unit circle, and e_{k} real and positive. If $x=y=0, z \neq 0$ in (1), then

$$
\zeta_{\mu}^{(k)}= \pm\left[z^{2}+2 z e_{k}\right]^{\frac{1}{2}} / z
$$

If $z>0$, then $\left|\zeta_{\mu}{ }^{(k)}\right|>1$ and there are no algebraic singularities inside Ω so that $n(0,0, z)=0$. If $z<0$ and also $|z|>e_{k}$, then $\left|\zeta_{\mu}{ }^{(k)}\right|<1$ and all such singularities lie inside \mathfrak{R}; for fixed z the number $n(0,0, z)$ is finite but increasing monotonically as $|z|$ increases since e_{k} is a monotone non-decreasing sequence. Hence $\lim _{z \rightarrow-\infty} n(0,0, z)=\infty$, whereas $\lim _{z \rightarrow \infty} n(0,0, z)=0$.
3. Growth properties of \mathbf{H}. Using certain results on the minimum modulus of an entire function of finite order ρ in the theory of functions of one complex variable (8) we have

Theorem 2. Let the function g in (1.2) be given by (1.3), where p^{-1} is an entire function of finite order ρ and f entire of finite order ρ with respect to v on $|\zeta|=1$. Let \mathfrak{R} be the unit circle $|\xi|=1$. If $\sigma>\rho$ and ϵ are arbitrary positive numbers then for all X on the sphere $S_{R^{2}}{ }^{2}: x^{2}+y^{2}+z^{2}=R^{2}, R=R(\sigma, \epsilon)$, provided X does not belong to a certain set $C^{3}(\mathbb{R})$ (see (5)),

$$
\begin{equation*}
|H(X)| \leqslant M e^{R \rho+\epsilon_{1}} \tag{1}
\end{equation*}
$$

$M a$ positive constant and $\epsilon_{1}>\epsilon$.
Proof. From the theory of entire functions of one complex variable it is known that for a canonical product of order ρ, if $\sigma(>\rho)$ and ϵ are positive numbers, then for all sufficiently large $r=r(\sigma, \epsilon)$

$$
\begin{equation*}
\log \left|p^{-1}(v)\right|>-r^{\rho+\epsilon} \tag{2}
\end{equation*}
$$

where $|v|=r$, provided v lies outside circles of centre e_{k} and radius $\left|e_{k}\right|^{-\sigma}$ (8). Consequently

$$
\begin{equation*}
|p(v)|<e^{\tau \rho+\epsilon} . \tag{3}
\end{equation*}
$$

Also

$$
\begin{equation*}
|f(v, \zeta)|=0\left(e^{\tau+\epsilon}\right) \tag{4}
\end{equation*}
$$

on $|\zeta|=1$.
Now for $X \in S_{R}{ }^{2}$ and $\zeta=e^{i \theta}$

$$
|v|^{2}=|\zeta|^{2}\left|Z \zeta+x+Z^{*} \zeta^{-1}\right|^{2}=x^{2}+r_{0}^{2} \cos ^{2}(\theta-\phi),
$$

where $y=r_{0} \cos \phi, z=r_{0} \sin \phi$. Hence

$$
|v|^{2} \leqslant x^{2}+r_{0}^{2}=R^{2}
$$

Thus for such X and ζ (3) and (4) hold with r replaced by R from which (1) follows.

The hypothesis

$$
\left|v-e_{k}\right|>\left|e_{k}\right|^{-\sigma}
$$

for each $\zeta \in \Omega$ implies that X must satisfy the condition

$$
|\zeta|\left|Z \zeta+x+\left(Z^{*}-e_{k}\right) \zeta^{-1}\right|>\left|e_{k}\right|^{-\sigma}
$$

that is

$$
\left[x-a_{k} \cos \theta-b_{k} \sin \theta\right]^{2}+\left[\left(y-b_{k}\right) \cos \theta+\left(z+a_{k}\right) \sin \theta\right]^{2}>\left|e_{k}\right|^{-2 \sigma} .
$$

Now

$$
y_{k}=y_{k}(\theta) \equiv\left(y-b_{k}\right) \cos \theta+\left(z+a_{k}\right) \sin \theta
$$

is one of the equations of rotation by θ in the $y z$-plane about the point $\left(b_{k},-a_{k}\right)$. Thus the set of excluded points

$$
\begin{equation*}
C_{k}^{3}(\theta, \mathbb{R})=\left[X\left|\left(x-a_{k} \cos \theta-b_{k} \sin \theta\right)^{2}+y_{k}^{2} \leqslant\left|e_{k}\right|^{-2 \sigma}\right]\right. \tag{5a}
\end{equation*}
$$

is an infinite right cylinder with circular cross-section of radius $\left|e_{k}\right|^{-\sigma}$ and centre

$$
x=A_{k}=A_{k}(\theta) \equiv a_{k} \cos \theta+b_{k} \sin \theta, y_{k}=0 .
$$

Its axis is the line perpendicular to the y_{k}-axis and x-axis and going through the point $\left(A_{k}, b_{k},-a_{k}\right)$. For $0 \leqslant \theta \leqslant 2 \pi$ the excluded set is the one parameter family of cylinders

$$
\begin{equation*}
C_{k}^{3}(\mathbb{Z})=\bigcup_{0 \leqslant \theta \leqslant 2 \pi} C_{k}^{3}(\theta, \mathbb{R}) \tag{5b}
\end{equation*}
$$

Also set

$$
\begin{equation*}
C^{3}(\mathfrak{R})=\bigcup_{k=1}^{\infty} C_{k}^{3}(\mathfrak{Z}) . \tag{5c}
\end{equation*}
$$

The surface $C_{k}{ }^{3}(\mathbb{R})$ consists of one infinite right cylinder of circular crosssection and radius $\left|e_{k}\right|^{-\sigma}$ in each direction θ, measured from the line $z=-a_{k}$ about the point ($b_{k},-a_{k}$) and lying in the plane $x=A_{k}$.

Now fix $y=y_{0}, z=z_{0}$. For each k there exists $\theta=\theta_{0}$ such that $\left(y_{0}, z_{0}\right)$ lies on the line $y_{k}\left(\theta_{0}\right)$, since these lines cover the whole $y z$-plane. For this value of $\theta, x \in C_{k}{ }^{3}\left(\theta_{0}, \mathfrak{Z}\right)$ satisfies the inequality

$$
A_{k}\left(\theta_{0}\right)-\left|e_{k}\right|^{-\sigma} \leqslant x \leqslant A_{k}\left(\theta_{0}\right)+\left|e_{k}\right|^{-\sigma} .
$$

Hence on any line $y=y_{0}, z=z_{0}$ the set of points x removed is contained in a set whose total length is

$$
2 \sum_{k=0}^{\infty}\left|e_{k}\right|^{-\sigma} .
$$

But for $\sigma>\rho$ this series is convergent and hence the set of excluded points is contained in a segment of finite length and the remaining points lie outside the excluded region $C^{3}(\Omega)$. This remark is valid for every line perpendicular to the $y z$-plane. Hence $E^{3}-C^{3}(\mathfrak{R})$ is a three-dimensional set of points.

We must also consider the set of points $B^{2}(\Omega)$ where (1.2) is undefined; $X \in B^{2}(\Omega)$ implies there exist k and ζ such that the equation $v(X, \zeta)=e_{k}$ is satisfied. (See (2.6).) Hence $X \in C_{k}{ }^{3}(\mathfrak{Z})$ and $B_{k}{ }^{2}(\mathfrak{Z}) \subset C_{k}{ }^{3}(\mathfrak{Z}), B^{2}(\mathfrak{Z}) \subset C^{3}(\mathfrak{Z})$. This completes the proof of Theorem 2.

Similarly other known results on the minimum modulus of entire functions (5) may be used to obtain inequalities for the function $H(X)$ represented by (1.2).

Remark. The envelope $E_{k}{ }^{2}$ of the family $\left\{B_{k}{ }^{2}(\theta)\right\}(0 \leqslant \theta \leqslant 2 \pi)$, where $B_{k}{ }^{2}(\theta)$ is the boundary of the surface $C_{k}{ }^{3}(\theta, \Omega)$ is found by eliminating θ between the equation of $B_{k}{ }^{2}(\theta)$ and of its partial derivative with respect to θ. For fixed (y, z) the distance between the top and bottom sheets of the envelope is $2\left|e_{k}\right|^{-\sigma}$, which is less than 1 for k sufficiently large. The excluded surfaces $C_{k}{ }^{3}(\theta)$ lie between the top and bottom sheets of the envelope.

4. Mittag-Leffler summability for \mathbf{H}.

1. Representation for H obtained by using Mittag-Leffler summability method for p. In this section it is convenient to replace v in (1.1) by

$$
\begin{equation*}
u=\zeta^{-1} v \tag{1}
\end{equation*}
$$

and take $?$ as the unit circle. We also assume that p in (1.3) is an analytic function of u in a star domain with centre at the origin and f has the series representation

$$
\begin{equation*}
f(u, \zeta)=\sum_{p, q=0}^{\infty} c_{p q} u^{p} \zeta^{q}, \tag{2}
\end{equation*}
$$

where for u and ζ independent variables the convergence is uniform in any closed domain such that $|u|<\infty,|\zeta|<\infty$.

Bergman has shown that there exists a set of homogeneous polynomials $\left\{\Gamma_{p \kappa}\right\} \quad(p=0,1,2, \ldots ; \kappa=0,1, \ldots, 2 p), \Gamma_{p \kappa}$ being given by the integral operator (1.2) when the associate is $u^{p} \zeta^{-p+\kappa}(3)$.

Theorem 3. Let the associate g in the operator (1.2) equal fp where f has the series representation (2) and p is an analytic function of u in a star domain with centre at the origin whose function element is $\sum_{n=0} a_{n} u^{n}$. From the representation

$$
\begin{equation*}
p(u)=\lim _{\sigma \rightarrow 0} \sum_{n=0}^{\infty} a_{n} u^{n} / n^{\sigma n} \tag{3}
\end{equation*}
$$

follows the representation

$$
\begin{equation*}
H(X)=\lim _{\sigma \rightarrow 0} \sum_{n=0}^{\infty}\left(a_{n} / n^{\sigma n}\right) H_{n}(X) \tag{4}
\end{equation*}
$$

where

$$
H_{n}(X)=\sum_{p=0}^{\infty} \sum_{q=0}^{n+p} c_{p q} \Gamma_{n+p, n+p+q}(X) .
$$

If a is a singularity of p with $\operatorname{Re} a \neq 0$, then (4) is not valid when X belongs to the set

$$
\begin{equation*}
D_{a}^{3}=\left[X \mid y^{2}+z^{2} \geqslant A^{2} x^{2}, x \geqslant \operatorname{Re} a \text { if } \operatorname{Re} a>0, x \leqslant \operatorname{Re} a \text { if } \operatorname{Re} a<0\right] \tag{5}
\end{equation*}
$$

($A=\operatorname{Im} a / \operatorname{Re} a$). (For the case $\operatorname{Re} a=0$ see paragraph 2.)
Proof. From the theory for one complex variable it is known that if p satisfies the hypothesis of the theorem, then the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} u^{n} / n^{\sigma n} \tag{6}
\end{equation*}
$$

represents an entire function and converges uniformly to the function p in every finite domain inside the star domain as $\sigma \rightarrow 0$ through positive values (6). If u is replaced by (1) in series (2) the series will converge uniformly in any closed set in the ζ-plane not containing the origin; for series (6) we show in paragraph 2 that the convergence is uniform on $|\zeta|=1$ for any fixed X, not belonging to the set $D_{a}{ }^{3}$ given by (5). Hence replacing f and p by their representations (2) and (3) in the integral operator (1.2), we can interchange the order of integration and the limiting operation to obtain

$$
H(X)=\lim _{\sigma \rightarrow 0} \sum_{n=0}^{\infty} a_{n} / n^{\sigma n} \sum_{p, q=0}^{\infty} c_{p q}(1 / 2 \pi i) \int_{|\zeta|=1} u^{n+p} \zeta^{q} \frac{d \zeta}{\zeta}
$$

By the residue theorem the integral on the right which equals

$$
(1 / 2 \pi i) \int_{|\zeta|=1}\left(Z \zeta^{2}+x \zeta+Z^{*}\right)^{n+p} \zeta^{q-1-n-p} d \zeta
$$

has the value 0 unless $q \leqslant n+p$. If $q \leqslant n+p$, its value is $\Gamma_{n+p, n+p+q}(X)$. Thus H has the representation (4).
2. Excluded sets. From the theory for one complex variable if a is a singularity of p, then on the half-line $\arg u=\arg a$ the set $|u| \geqslant|a|$ is excluded. (Note that $a \neq 0$ by hypothesis.) Now $\arg u=\arg a$ implies that

$$
\begin{gather*}
y^{\prime}(\theta) \operatorname{Re} a \equiv(y \cos \theta+z \sin \theta) \operatorname{Re} a=x \operatorname{Im} a \tag{7}\\
x>0 \text { if } \operatorname{Re} a>0, x<0 \text { if } \operatorname{Re} a<0
\end{gather*}
$$

which is the equation of a half-plane $\Pi^{2}(\theta)$. As θ traces the unit circle the surface

$$
\begin{equation*}
\Pi^{3}=\bigcup_{0 \leqslant \theta \leqslant 2 \pi} \Pi^{2}(\theta) \tag{8}
\end{equation*}
$$

is obtained.
Remark. If $\operatorname{Re} a=0, \arg a=\pi / 2$ or $3 \pi / 2$ and $\Pi^{2}(\theta)$ is one-half the $y z$-plane so that Π^{3} degenerates into a two-dimensional surface (the $y z$-plane).

The surface Π^{3} does not cover all of E^{3} since the points satisfying $y^{2}+z^{2}$ $<A^{2} x^{2}$ do not lie on it.

Proof. $X \in \Pi^{3}$ implies that there exists θ such that (7) is satisfied. Expressing $\cos \theta$ in terms of $\sin \theta$, squaring and solving for $\sin \theta$, we get

$$
\begin{equation*}
\sin \theta=\left(A x z \pm|y|\left[y^{2}+z^{2}-A^{2} x^{2}\right]^{\frac{1}{2}}\right) /\left(y^{2}+z^{2}\right) \tag{9}
\end{equation*}
$$

from which the conclusion follows. The cone $y^{2}+z^{2}=A^{2} x^{2}$ is the envelope of the family of planes (7) $(0 \leqslant \theta \leqslant 2 \pi)$.

The excluded set in the u-plane on the half-line $\arg u=\arg a$ is the set for which $|u| \geqslant|a|$. In E^{3} for ζ on the unit circle $|u| \geqslant|a|$ becomes the surface and exterior of the cylinder $C^{2}(\theta)$ whose equation is

$$
x^{2}+y^{\prime 2}(\theta)=|a|^{2}
$$

The half-plane $\Pi^{2}(\theta)$ intersects $C^{2}(\theta)$ in a line $l^{1}(\theta)$ parallel to the $z^{\prime}(\theta)$-axis (the axis perpendicular to the x - and $y^{\prime}(\theta)$-axes) and through the point (x $\left.=\operatorname{Re} a, y^{\prime}(\theta)=\operatorname{Im} a, z^{\prime}(\theta)=0\right)$. It intersects the exterior of the cone given by $x^{2}+y^{\prime 2}(\theta)=k^{2}|a|^{2}, k^{2}>1$ for fixed k in a line parallel to the $z^{\prime}(\theta)$-axis and on the opposite side of $l^{1}(\theta)$. Thus for fixed θ the excluded area is that part of $\Pi^{2}(\theta)$ which lies on the opposite side of $l^{1}(\theta)$ to the $z^{\prime}(\theta)$-axis. Call this piece of plane plus the line $l^{1}(\theta), \Pi_{1}{ }^{2}(\theta)$. The complete set of excluded points is

$$
\Pi_{1}^{3}=\underset{0 \leqslant \theta \leqslant 2 \pi}{\bigcup} \Pi_{1}^{2}(\theta) .
$$

Now show that if $\operatorname{Re} a \neq 0, D_{a}{ }^{3}=\Pi_{1}{ }^{3}$. If $X \in D_{a}{ }^{3}$ show there exists θ such that $X \in \Pi_{1}{ }^{2}(\theta)$. This means that equation (9) must be satisfied, that is, at least one of the values of $\sin \theta$ in (9) must not exceed one in absolute value. $X \in D_{a}{ }^{3}$ implies that the equation $y^{2}+z^{2}=A^{2} k^{2} x^{2}$ is satisfied for some $k^{2} \geqslant 1$ and hence we must show that

$$
-1 \leqslant\left(z \mp|y|\left[k^{2}-1\right]^{\frac{1}{2}}\right) / A k^{2} x \leqslant 1
$$

But this follows by a careful analysis of all possible cases. Thus $D_{a}{ }^{3} \subset \Pi_{1}{ }^{3}$. Conversely $X \in \Pi_{1}{ }^{3}$ implies that X satisfies (7) for some value of θ and hence $\sin \theta$ is given by (9), whence $y^{2}+z^{2}-A^{2} x^{2} \geqslant 0$ so that $X \in D_{a}{ }^{3}$. Thus $D_{a}{ }^{3}$ $=\Pi_{1}{ }^{3}$.

The total set of excluded points is

$$
D^{3}=\bigcup_{\{a\}} D_{a}^{3}
$$

plus the exterior of the circle $y^{2}+z^{2}=|a|^{2}$ in the $y z$-plane if $\operatorname{Re} a=0$ for any a. Consequently the set where Mittag-Leffler summability holds is the complement of D^{3}, namely

$$
\begin{aligned}
& I^{3}=\bigcap_{\{a\}}\left[X \mid y^{2}+z^{2}<A^{2} x^{2}\right] \cup\left[X \mid y^{2}+z^{2} \geqslant A^{2} x^{2},\right. \\
& x<\operatorname{Re} a \text { if } \operatorname{Re} a>0, x>\operatorname{Re} a \text { if } \operatorname{Re} a<0]
\end{aligned}
$$

plus the disk $y^{2}+z^{2} \leqslant|a|^{2}$ in the $y z$-plane (or the intersection of such disks) if $\operatorname{Re} a=0$ for any $a . I^{3}$ is not empty since by hypothesis the function element of $p(u)$ has a positive radius of convergence R_{0} so that $|a| \geqslant R_{0}$ for all a. Any point X in the interior of the sphere $x^{2}+y^{2}+z^{2}=R_{0}{ }^{2}$ belongs to I^{3}, since if we set $y=r_{0} \cos \phi, z=r_{0} \sin \phi$, then X satisfies the inequality $x^{2}+r_{0}{ }^{2}$ $<R_{0}{ }^{2}$. If X is such that $r_{0}{ }^{2}<A^{2} x^{2}$ for all a there is nothing to prove but if $r_{0}{ }^{2} \geqslant A^{2} x^{2}$ for some a 's, then $|a|^{2}-x^{2} \geqslant R_{0}{ }^{2}-x^{2}>r_{0}{ }^{2} \geqslant A^{2} x^{2}$ or $|a|^{2}$ $>|a|^{2} x^{2} / \operatorname{Re}^{2} a$ or $\operatorname{Re}^{2} a>x^{2}$ and again $X \in I^{3}$.
3. In order to complete the proof of Theorem 3 we must show that for any fixed $X \in I^{3}$ the convergence of (6) as $\sigma \rightarrow 0$ is uniform on $|\zeta|=1$, that is, for such X and ζ on $|\zeta|=1$ the values of u which lie on the half-line $\arg u$ $=\arg a$ are in absolute value less than $|a|$. There are two cases: (i) If X is such that $y^{2}+z^{2}<A^{2} x^{2}$, the equation $y^{\prime}(\theta)=A x$ has no solution for θ which means that for any ζ on the unit circle u does not lie on the half-line $\arg u=\arg a$. (ii) If X is such that $y^{2}+z^{2} \geqslant A^{2} x^{2}$, as we have seen the equation $y^{\prime}(\theta)=A x$ always has a solution for u on the half-line $\arg u=\arg a$ and

$$
|u|^{2}=x^{2}+y^{\prime 2}(\theta)=x^{2}\left(1+A^{2}\right)=x^{2}|a|^{2} / \operatorname{Re}^{2} a
$$

so that $|u|^{2}<|a|^{2}$ if $x^{2}<\operatorname{Re}^{2} a$.

References

1. S. Bergman, Zur Theorie der ein- und mehrwertigen harmonischen Funktionen des dreidimensionalen Raumes, Math. Z. 24 (1926), 641-669.
2. - On solutions with algebraic character of linear partial differential equations, Trans. Amer. Math. Soc. 68 (1950), 461-507.
3. - Integral operators in the theory of linear partial differential equations, Ergebnisse der Math. N. F. 23, Springer (1961).
4. - Some properties of a harmonic function of three variables given by its series development, Archive for Rational Mech. and Anal. (1961), 207-222.
5. R. P. Boas, Jr., Entire functions, New York (1954).
6. E. Lindelöf, Le calcul des résidus et ses applications à la théorie des fonctions, London (1947).
7. J. Mitchell, Representation theorems for solutions of linear partial differential equations in three variables, Archive for Rational Mech. and Anal., 3 (1959), 439-459.
8. E. G. Titchmarsh, The theory of functions, 2nd ed., London (1939).

Pennsylvania State University

[^0]: Received January 15,1962 . This research was supported by the Air Force Office of Scientific Research. Presented to the American Mathematical Society, Cincinnati, Ohio, January 1962.

[^1]: *If f does not have a common factor ζ and $0 \in \Omega$, then the function represented by (4) also has algebraic singularities along the half-lines $y=2 b_{k}, z=-2 a_{k}(x>0)$ given by $\zeta_{1}{ }^{(k)}=0$. Also, H is increased by a function with a simple pole on each line $y=2 b_{k}, z=-2 a_{k}$.

