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1. Introduction. Let 8 be a closed rectifiable curve, not going through 
the origin, which bounds a domain 0 in the complex f-plane. Let X = (x, y, z) 
be a point in three-dimensional euclidean space Ez and set 

m v(X, f) = Zf2 + xf + Z*, 

^' z = t(iy + z),z* = Hiy-z). 
The Bergman-Whittaker operator defined by 

(2) HVO-Bto-^gfrfif, 

transforms analytic functions of two complex variables v and f into harmonic 
functions H of three variables defined in a certain domain of E3 (the domain of 
association) ; H can be continued analytically and thus we obtain a mapping 
of the analytic function g into a harmonic function § defined (in general) in 
a domain which multiply covers E3. Thus we have the following steps in 
mapping by this method 

the first step being obtained by an integral formula and the second by analytic 
continuation. Different classes of functions g such as rational or algebraic, the 
integral of an algebraic function or g = /fm where / is a meromorphic function 
of one complex variable and m a non-negative integer have been shown by 
Bergman and others to lead to different classes of harmonic functions (1; 2; 
3; 4; 7). 

An important problem in the theory of integral operators consists in the 
study of various properties of the function § such as the location and type of 
its singularities. In this paper we consider the problem when 

(3) g(v,ï) =f{v,ï)p(v), 

where p is a meromorphic function of v with an infinity of poles, none of which 
is the origin, and / / f is an entire function of the complex variables v and f. 
In §2 the properties of (2) with g given by (3) are discussed, including a study 
of the number of algebraic singular lines of H as X —>oo in different directions. 
It is found that (2) represents a multiple-valued harmonic function H in the 
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158 JOSEPHINE MITCHELL 

domain of association of the integral operator (2) ; H can be extended analytic­
ally except for an exceptional set of lower dimension over a Riemann domain 
(the domain of existence of £>), which multiply covers E3. § branches along 
a denumerable set of circles of increasing radii and all passing through the 
origin, where it has algebraic singularities of a pole-like type and an essential 
singularity on the negative (or positive) x-axis. Using known results on the 
minimum modulus of entire functions the growth properties of (2) are studied 
in §3 when the denominator of p is an entire function of finite order and 8 
is the unit circle. In §4 a representation is obtained for H when p in (3) is 
represented as the limit of a series summable in a star domain by the Mittag-
Leffler method. 

Suppose p has poles at ek and 

(4) 

Set 

(5) 

0 < hi < hi < . 

,Vr(v) E(v, r) = (1 — v)é 

PT(V) = V + ^V2 + . . . + -VT 

By the Weierstrass factor theorem it is known that 

(6) I l E{v/ek, rk - 1), 

where h is an entire function and {rk} is a set of positive integers such that 
the infinite series 

converges for all v. We set 

/ i(»,f) =f(vA)Hv) 

Pi(v) = I / f t £(*/**, r*- 1) 
/ A;=I 

so that g = fipi and use the normalized function pi in place of p, dropping the 
subscripts. 

2. Properties of (2). 

1. Explicit representation for H. If v in p is replaced by its value in (1), a 
function P(X, f) is obtained which has poles in the f-plane for Z ^ 0 at 

si — 
(la) 

f 2 = 

x + Rk(X) 
2Z 

Rk(X) 
2Z 
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HARMONIC FUNCTIONS 159 

where 

Rl(X) = i?2 + 4Zek, 
( l b ) D2 2 , 2 , 2 

K = x + y + z . 

If P*(X) = 0 and Z 9* 0, then 

(ic) r?} = $f}
 S f 0 = - x / 2 z . 

If Z = 0, (x ^ 0), P has poles a t 

( id ) r<*> = **/* 

and, if X = 0, v(0, f) = 0 for all f, so t h a t P ( 0 , f) = 1. 
Let 

i*1 = [X\Rk(X) = 0, X ^ 0]* 

(2) bl=\Jbl, 
k=l 

and c1 be the x-axis. Separated into real and imaginary par ts R2{X) = 0 
becomes 

x2 + (y - bk)
2 + (z + a*)2 = M 2 

a*? + fes = 0, 

where ak = Re ^ , ^ = Im ek, so t ha t bk
l is a circle lying on the plane aky 

+ bkz = 0 with the point X = 0 omitted. The sets bk
x C\ cl and bk

l C\ bjl 

( j 7* k) are empty. 
We remark t ha t v in (1.1) may be replaced by v — af, a a complex number, 

in which case Rk
2{X) = 0 becomes 

(x - a)2 + y2 + z2 + 2ek(ty + z) = 0 

and analogous results are obtained. 
I t is seen from formulae (1) by a computat ion tha t for fixed X j * 0 

|fM
U)| ~~*°° as ^ -^00 (/x = 1, 2), so t h a t only a finite number of poles of P 

lie inside 8. Also, if/ is an entire function of z; and f, then P ( X , f) = / ( ^ (X, f) , f) 
is an entire function of X and f. I t is also convenient to assume t h a t / has a 
factor f so t ha t the integrand has no singularity a t f = 0. Assuming t h a t no 
pole lies on £ we get by the residue theorem 

H(X) = Z residue a t Ç™ 

summed over all fM
w in 0. Since we have assumed t h a t all ek are distinct, the 

value of the residue a t fi(k) for X $bk
l \J cl is 

(3) Ak(X, f?}) s - M * F ( X , f ? } ) / f ^ ( x ) , 

where ^4fc is a non-zero constant equal to 

Q(X, f) = />[P(X, f)][ l - v(X, t)e~k
l] 

*The superscript on bk1 refers to the dimension of the set in E3. 
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when f = fi (S), v(X, Çi{k)) being equal to ek. Similarly the residue at f2 ( t ) 

is -Ak(X, f2(*)). Thus for ^ | V U c1 for all £ for which f„U ) € fi 

(4) # (X) = E ± ^S(X, ff). 

Since jf/f is an entire function of y and f, 

J W , s ) = — I — = 2 ^ < W ? 

for \v\ < oo, |f| < » . For any I Ç £ 3 and |f| < co, y is finite, hence for all 
X e Ez 

S m,n=0 

Since y(X, f i ^ ) = e*, F 0 (X, f i w ) = F0{^) is a function of f i ^ only and 
has the series representat ion 

oo 

Z Mr?')" 
for Z 7e 0 from which it is seen t h a t Fo(fi(fe)) has a singularity of an essential 
type on the negative x-axis; Fo(^2(k)) has an analogous singularity on the 
positive x-axis. T h u s the function represented by formula (4) is a multiple-
valued function of X which has algebraic singularities of a pole-like type along 
the curves bk

l, which are analogous to singularities obtained by Bergman (3), 
essential-type singularities on the positive or negative x-axis (or both) and 
is undefined a t X = 0.* 

2. Exceptional cases to formulae (3) and (4). Exceptional cases arise when 
(i) the roots of v(X, f) = ek coincide, (ii) Z = 0, (iii) X = 0, and (iv) the 
integrand is undefined. 

(i) If ^(k) £ 12 and X £ bk
l the integral operator (1.2) gives a different 

function. In this case v(X, f) = ek has coincident roots f0 given by (1c) and 
the residue a t f 0 is 

Bk{X,U) = -e*[F o r ( fo)Q(X,fo) + Fo(fo)<2r(X, f 0 ) ] /Z . 

As we have seen Q{X, f0) equals the cons tan t /l / c and similarly Qf(X, f0) 
equals a cons tant 2$fc. T h u s Bk(X, fo) is a single-valued function with a 
singularity on the x-axis (x ^ 0) and 

(5) H(X) = Z ± 4 , ( X , tf>) + £*(X, fo). 

*If / does not have a common factor f and 0 G Œ, then the function represented by (4) also 
has algebraic singularities along the half-lines y = 2bk, z = — 2au (x > 0) given by £Vfc) = 0. 
Also, H is increased by a function with a simple pole on each line y = 2bk, z = — 2dk. 
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(ii) If Z = 0 and x 9* 0, v(X, f) = x£ so that the residue at f = f<*> is 
— ekAkx~1F(ekx~1) and on c1 

#(x) = - x'1 £ M*/̂ **-1) 
fwea 

which is a single-valued function of X with an essential singularity at x = 0. 
(iii) If X = 0, w(X, f) E 0 ^ ( P ) S 1 and #(0) = 0. 

(iv) The set of points in E3, where the associate g is undefined. For fixed f 
the equation z;(X, f) = ek or 

,fi v 2xRef - 3>Imf2 + s(Ref2 - 1) = 2ak 
{ a j 2xlmf + 3/(Ref2 + 1) + slmf2 = 26, 

represents a line //^(f) m £3- Hence 

(6b) Bl(2) = u JJGO 
f €8 

is a ruled surface and 

(6c) 52(S) = U B**(8) 

a family of ruled surfaces. Now X G 52(2) implies that there exists fe and 
f 1 G 8 such that X G /^(fi)» which implies that equation z/(X, fi) = ê  is 
satisfied. But then fi is one of the poles fM

(A;) of the function p(v). Consequently 
the surfaces Bk

2(2), which are referred to as surfaces of separation (3), sub­
divide Ez into a denumerable number of cells (called domains of association) 
in each of which the number of singularities inside 8 remains constant. Call 
these cells Dv

z(p = 1, 2, . . .). As X crosses from one cell to another it meets a 
surface Bk

2(2) and for this X the integral operator (1.2) is undefined. Thus 
for X G Dv

z — bl U c1, (1.2) defines a branch of a complex harmonic function 
given by (3) and (4), which we shall call H(p). 

We summarize these results in 

THEOREM 1. Let the function g in the integral operator (1.2) be given by (1.3). 
For X in the set Dv

z — b1 W c1 (p = 1, 2, . . .) (1.2) represents a branch, HiP\ 
of a complex harmonic function given by formulae (3) and (4). For X G bk

l 

(k = 1 ,2 , . . . ) it represents the function (5) and on c1 it represents a single-
valued harmonic function with an essential singularity at x = 0. The integral 
operator is undefined on B2(%). 

Remark. Since in general H(p) cannot be continued into the function repre­
sented by (1.2) when X G bl KJ cl, in order to get a general harmonic function 
§ by analytic extension we consider only the set of functions 

(7) £ = ! F > ) (p = 1 ,2 , . . . ) ; 

H{p) being represented by (1.2) when X G Dp
z — bl \J c1. H refers to the 

harmonic function represented by (1.2) when X G Ez — B2C&). 
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3. The Riemann domain R* on which § is single-valued. 

If g is a rational function of u = Ç~lv and f and hence of f and X: 

G(X, f) = P (X , f)/<2(X, f), 

where P and Q are polynomials in f and X, we know that the Riemann domain 
on which the corresponding harmonic function is defined and single-valued 
has the equation 

Q(XA)/A2N = 0 

(A2N the leading coefficient of Q) (2). Similarly the Riemann domain R* on 
which § is single-valued has the equation 

oo 

(8) S(X, f) = II E[v(X, $)/ek1 rt-l] = 0. 

In order to study this domain we consider at first the equation 

(9) SP(X, f) = ft E[v(X9 f)M, rk - 1] = 0. 
k=l 

The Riemann domain Rp* defined by (9) has 2p sheets given by 

52fc: f = fi(fc)(X), S2k+i'- f = f 2
w (X) (X * 0) (fe = 1, . . . , p), 

where f/fc) are given by (1). 52^ and 5*2̂ +1 are connected at the branch curves 
bfc1 (see (1) and (2)) and the x-axis c1. The Riemann domain R* given by (8) 
is the limiting case of Rp

z as p —> °o . Hence i^3 has an infinite number of sheets 
{Sn\ (n = 1, 2, . . .), the sheets being connected in pairs S2fc, S2/C+1 along the 
branch curves bk

l and c1. If i and j are not consecutive integers of the form 2&, 
2k + 1 the sheets St and 5;- are not connected. As k increases the spheres on 
which bjc1 lie are of increasing radii \ek\ and all passing through the origin. 
Infinity is a singularity of higher order which is not assumed to lie on R3. 
We state as a corollary to Theorem 1 : 

COROLLARY. Under the hypothesis of Theorem 1 the junction 

$ = {H»>} (p = 1 ,2 , . . . ) , 

represented by (1.2) when X G Ez — B2(%) U b1 VJ c1, is a complex harmonic 
function which is single-valued on the Riemann domain Rs. H(p) has a finite 
number of algebraic singularities of a pole-like type on b1 and a singularity on 
the positive or negative x-axis (or both) of an essential type. 

4. The number of algebraic singular lines possessed by H. 

Disregarding the essential type singularity of H on the positive or negative 
x-axis, let n(x, y, z) be the number of algebraic singular lines possessed by H 
for 8 a given closed curve. As we have seen by (3) and (4) i l h a s a finite number 
of algebraic singular lines C^1- Furthermore for X Ç D/ n(x} y, z) is a non-
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negative integer. However, the number of singularities may become infinite 
as X —» oo in certain directions, thus giving a different type of singularity for 
X infinite in this direction. For example, let X —> oo along the negative z-axis, 
2 be the unit circle, and ek real and positive. If x = y = 0, z ^ 0 in (1), then 

C = ±[^ + 2zelcf/z. 

If z > 0, then |fM
(fc)| > 1 and there are no algebraic singularities inside 8 

so that w(0, 0, z) = 0. If z < 0 and also \z\ > ek, then |fM
(fc)| < 1 and all such 

singularities lie inside 8; for fixed s the number n(0, 0, z) is finite but increasing 
monotonically as \z\ increases since ek is a monotone non-decreasing sequence. 
Hence lim w(0, 0, z) = oo, whereas lim n(0, 0, z) = 0. 

2->—co Z->co 

3. Growth properties of H. Using certain results on the minimum 
modulus of an entire function of finite order p in the theory of functions of one 
complex variable (8) we have 

THEOREM 2. Let the function gin (1.2) be given by (1.3), where p~l is an entire 
function of finite order p and f entire of finite order p with respect to v on |f | = 1. 
Let 2 be the unit circle |f| = 1. If a > p and e are arbitrary positive numbers 
then for all X on the sphere SR

2: x2 + y2 + z2 = R2, R = R(a, e), provided X 
does not belong to a certain set C3(8) (see (5)), 

(1) \H(X)\ < M e B P + \ 

M a positive constant and ei > e. 

Proof. From the theory of entire functions of one complex variable it is 
known that for a canonical product of order p, if <r(>p) and e are positive 
numbers, then for all sufficiently large r = r(a, e) 

(2) log b" 1 Ml > -rp+% 

where \v\ = r, provided v lies outside circles of centre ek and radius |^|_(r 

(8). Consequently 

(3) \p{v)\ < e^\ 

Also 

(4) 

on |f| = 1. 

Now for X £ SB
2 and f 

M2 = Irl'l^r + * + z*r'\2 = x
2 + rl cos

2(0 - *), 
where j = ro cos <£, s = r0 sin 0. Hence 

I I 2 ^» 2 • 2 n 2 

fl < * + ro = it . 

|/(»,f)| = 0(e"+') 
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Thus for such X and f (3) and (4) hold with r replaced by R from which (1) 
follows. 

The hypothesis 

\v - ek\ > \ek\-* 

for each f G 8 implies that X must satisfy the condition 

|f||Zf + x+ (Z*-ek)r
1\ > W\~\ 

that is 

[x — ak cos 0 — bk sin 6]2 + [(y — bk) cos 6 + (z + ak) sin 0]2 > \ek\~
2(T. 

Now 

Jk = Jkifi) = (y — W cos 0 + (s + a*) sin 0 

is one of the equations of rotation by 6 in the ^ys-plane about the point (bkt — ak). 
Thus the set of excluded points 

(5a) C*(0, 8) = [X\ (x — ak cos 6 — bk sin 0)2 + ^ < \ek\~
2<T] 

is an infinite right cylinder with circular cross-section of radius \ek\~
ff and 

centre 

x = Ak = ^U(0) = a* cos 0 + i* sin 0, yk = 0. 

Its axis is the line perpendicular to the 3^-axis and x-axis and going through 
the point (Akj bk1 — ak). For 0 < 0 < 2T the excluded set is the one parameter 
family of cylinders 

(5b) C!(2) = U C|(0,8). 
0 < K 2 T T 

Also set 
oo 

(5c) C\2) = U Cftg). 

The surface C/c3(8) consists of one infinite right cylinder of circular cross-
section and radius \ek\~

(T in each direction 0, measured from the line z = — ak 

about the point (bk, —ak) and lying in the plane x = Ak. 
Now fix y = y$, z = z0. For each fe there exists 0 = 0o such that (^o, Zo) 

lies on the line yk(do), since these lines cover the whole ^s-plane. For this value 
of 0, x £ C/-3(0o, 8) satisfies the inequality 

Ak(d0) - \ek\-« < x < 4fc(0o) + | e , | - . 

Hence on any line y = yo, z = Zo the set of points x removed is contained in 
a set whose total length is 

oo 

Jc=0 
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But for a > p this series is convergent and hence the set of excluded points 
is contained in a segment of finite length and the remaining points lie outside 
the excluded region C3(£). This remark is valid for every line perpendicular to 
the 3/2-plane. Hence Ez — C3(8) is a three-dimensional set of points. 

We must also consider the set of points B2(2) where (1.2) is undefined; 
X Ç B2(%) implies there exist k and f such that the equation v(X, f) = ek 

is satisfied. (See (2.6).) Hence X G C*3(8) andB*2(8) C C,3(g), J32(8) C C3(8). 
This completes the proof of Theorem 2. 

Similarly other known results on the minimum modulus of entire functions 
(5) may be used to obtain inequalities for the function H(X) represented bv 
(1.2). 

Remark. The envelope Ek
2 of the family {Bk

2(6)\ (0 < 6 < 2T), where 
Bk

2(d) is the boundary of the surface C}*(6, 2) is found by eliminating 6 between 
the equation of Bk

2(d) and of its partial derivative with respect to 6. For 
fixed (3/, z) the distance between the top and bottom sheets of the envelope 
is 2|eA;|~

(r, which is less than 1 for k sufficiently large. The excluded surfaces 
Cjcz(6) lie between the top and bottom sheets of the envelope. 

4. Mittag-Leffler summability for H. 

1. Representation for H obtained by using Mittag-Leffler summability method 
for p. In this section it is convenient to replace v in (1.1) by 

(1) u = r 1 » 

and take 8 as the unit circle. We also assume that p in (1.3) is an analytic 
function of u in a star domain with centre at the origin and / has the series 
representation 

(2) /(«, r) = Ë cMuY, 
p,q=0 

where for u and f independent variables the convergence is uniform in any 
closed domain such that \u\ < °°, |f| < °°. 

Bergman has shown that there exists a set of homogeneous polynomials 
{ TPK} (p = 0, 1, 2, . . . ; K = 0, 1, . . . , 2p), Tpil being given by the integral 
operator (1.2) when the associate is upÇ~p+K (3). 

THEOREM 3. Let the associate g in the operator (1.2) equal fp where f has the 
series representation (2) and p is an analytic function of u in a star domain with 
centre at the origin whose function element is ]£n==o anu

n. From the representation 

(3) p(u) = limY, anu
n/nn 

follows the representation 
CO 

(4) H(X) = lim^(aH/nm)Hn(X), 
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where 
co n+p 

H-n\X) = 2^/ /Lu CpqTn+p,n+p+q(X). 

If a is a singularity of p with Re a ^ 0, then (4) is not valid when X belongs to 
the set 

(5) Da* = [X\y2 + z2 > A2x2, x > Re a if Re a > 0, x < Re a if Re a < 0] 

(/I = I m a / R e a ) . (For the case Re a = 0 see paragraph 2.) 

Proof. From the theory for one complex variable it is known that if p satisfies 
the hypothesis of the theorem, then the series 

oo 

(6) D anun/nm 

represents an entire function and converges uniformly to the function p in 
every finite domain inside the star domain as a —> 0 through positive values 
(6). If u is replaced by (1) in series (2) the series will converge uniformly in 
any closed set in the f-plane not containing the origin ; for series (6) we show 
in paragraph 2 that the convergence is uniform on |f| = 1 for any fixed X, 
not belonging to the set DJ given by (5). Hence replacing/ and p by their 
representations (2) and (3) in the integral operator (1.2), we can interchange 
the order of integration and the limiting operation to obtain 

OO CO f* 

H(X) = lim 2 o»/nn E cM(l/2«) u+Pt 

By the residue theorem the integral on the right which equals 

(1/2W) f (Zf2 + xf + Z*)n+prl-n-pdï 
J if 1=1 

has the value 0 unless a < n + p. If a < n + p, its value is Tn+Ptn+p+q(X). 
Thus H has the representation (4). 

2. Excluded sets. From the theory for one complex variable if a is a singu­
larity of p, then on the half-line arg u = arg a the set \u\ > \a\ is excluded. 
(Note that a ^ 0 by hypothesis.) Now arg u = arg a implies that 

(7) y'(0)Re a = (y cos 6 + z sin 6)Re a = x Im a, 
x > 0 if Re a > 0, x < 0 if Re a < 0, 

which is the equation of a half-plane II2 (6). As 6 traces the unit circle the surface 

(8) n3 = u n2(0) 
O<0<2x 

is obtained. 

Remark. If Re a = 0, arg a = TT/2 or 3ir/2 and n2(0) is one-half the ^yz-plane 
so that II3 degenerates into a two-dimensional surface (the ^s-plane). 
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The surface II3 does not cover all of Ez since the points satisfying y2 + z2 

< A2x2 do not lie on it. 

Proof. I f II3 implies t h a t there exists 0 such t h a t (7) is satisfied. Expressing 
cos 0 in terms of sin 0, squaring and solving for sin 0, we get 

(9) sin 0 = (Axz ± \y\[y2 + z2 - A2x2]^)/(y2 + z2), 

from which the conclusion follows. The cone y2 + z2 = A2x2 is the envelope 
of the family of planes (7) (0 < 0 < 2TT). 

The excluded set in the w-plane on the half-line arg u = arg a is the set 
for which \u\ > \a\. In E* for f on the unit circle \u\ > \a\ becomes the surface 
and exterior of the cylinder C2(0) whose equation is 

x2 + y'2(d) = \a\2. 

The half-plane II2 (0) intersects C2(0) in a line I1 (6) parallel to the z'(0)-axis 
(the axis perpendicular to the x- and y,f (0) -axes) and through the point (x 
= Re a, y'(d) = Im a, zf(d) = 0). I t intersects the exterior of the cone given 
by x2 + y'2(6) = k2\a\2, k2 > 1 for fixed k in a line parallel t o the 2'(0)-axis 
and on the opposite side of ll (0). T h u s for fixed d the excluded area is t h a t 
par t of II2(0) which lies on the opposite side of l1 (0) to the 2'(0)-axis. Call this 
piece of plane plus the line I1 (0), IIi2(0). The complete set of excluded points is 

nï = U n?(0). 
O < 0 < 2 T T 

Now show t h a t if R e a ^ 0, DJ = II13. If X £ Da
z show there exists 0 

such t h a t X £ IIi2(0). This means t ha t equation (9) must be satisfied, t h a t is, 
a t least one of the values of sin 0 in (9) must not exceed one in absolute value. 
X G Da

z implies t h a t the equation y2 + z2 = ^42&2x2 is satisfied for some 
k2 > 1 and hence we must show tha t 

- 1 < (s=F \y\[k2 - 1]*)/Ak*x < 1. 

Bu t this follows by a careful analysis of all possible cases. Thus Da
z C IT13. 

Conversely X £ II13 implies t h a t X satisfies (7) for some value of 0 and hence 
sin 0 is given by (9), whence y2 + z2 — ^42x2 > 0 so t h a t X G Da

z. Thus Da
z 

= nx
3. 

The to ta l set of excluded points is 

Dz = U Dl 
{a} 

plus the exterior of the circle y2 + z2 = \a\2 in the ^s-plane if Re a = 0 for 
any a. Consequently the set where Mittag-Lefïïer summabil i ty holds is the 
complement of Z)3, namely 

f = n [X\y2 + z2< AV] U [X\y* + z2 > A*x\ 
{a} 

x < Re a if Re a > 0, x > Re a if Re a < 0] 
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plus the disk y2 + z2 < \a\2 in the 3/3-plane (or the intersection of such disks) 
if Re a = 0 for any a. P is not empty since by hypothesis the function element 
of p(u) has a positive radius of convergence Ro SO that \a\ > Ro for all a. Any 
point X in the interior of the sphere x2 + y2 + z2 = Ro2 belongs to P, since 
if we set y = r0 cos 4>, z = r0 sin <£, then X satisfies the inequality x2 + r0

2 

< Ro2. If X is such that r0
2 < A2x2 for all a there is nothing to prove but if 

r0
2 > A2x2 for some a's, then \a\2 — x2 > i V — x2 > f0

2 > ^42x2 or |a|2 

> |a|2x2/Re2a or Re2a > x2 and again X Ç 73. 

3. In order to complete the proof of Theorem 3 we must show that for any 
fixed X Ç P the convergence of (6) as a —•> 0 is uniform on |f| = 1, that is, 
for such X and f on |f | = 1 the values of w which lie on the half-line arg u 
= arg a are in absolute value less than \a\. There are two cases: (i) If X is 
such that y2 + z2 < A2x2, the equation y'(6) = Ax has no solution for 6 
which means that for any f on the unit circle u does not lie on the half-line 
a r g ^ = arg a. (ii) If X is such that y2 + z2 > ^42x2, as we have seen the 
equation y' (6) = Ax always has a solution for u on the half-line arg u = arg a 
and 

\U\2 = X2 + y2(^) = X 2 ( ! + ^ 2 ) = X2|a |2/R e2a 

so that \u\2 < \a\2 if x2 < Re2a. 
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