Can. J. Math., Vol. XXXVII, No. 4, 1985, pp. 767-768

A CORRECTION TO: DISCRETE OPEN AND CLOSED MAPPINGS ON GENERALIZED CONTINUA AND NEWMAN'S PROPERTY

L. F. MCAULEY AND E. E. ROBINSON

In this paper, domains have compact closures.

On pp. 1087 and 1093, lines 6- and 11-, there is no homeomorphism h defined on M(X) onto M(X) having the properties listed.

The proof of Lemma 5.2 has an error on p. 1107 which can be easily corrected.

On p. 1108, line 9, σ commutes on *n*-chains with the special projections.

On p. 1109, line 13-, delete "special".

Theorem 6.2 should read as follows: Suppose that X is an *n*-dimensional generalized continuum. Furthermore, for each domain A in X, \overline{A} compact, the Čech homology group,

 $\check{H}_{p}(X, X - A, Z_{p}) \cong Z_{p}$ for the prime p > 1.

Then X has Newman's Property with respect to C(p).

In Theorem 6.2, we consider the class C(p), p > 1, of all finite-to-one open and closed mappings f on an *n*-dimensional generalized continuum such that

(1) f maps X onto a generalized continuum Y_{f} ,

(2) if $F = f(B_f)$, then dim F < n,

(3) N(f) = p, and

(4) $\{x | N(x, f) = N(f)\}$ is dense in X.

We could consider C(k) where p is the smallest prime divisor of k.

The projection $\pi: N(B) \to N(U)$ takes an essential *n*-cycle $Z^n(B) \mod X$ - *D* to an essential *n*-cycle $Z^n(U) \mod X - D$.

The Lebesque number ϵ of *B* is relative to the subcollection *B* each of whose members meets \overline{A} .

Note that $\sigma\sigma Z^n(G_f) = x^2 Z^n(G_f)$. Either x = 0 or x = 1 in case p = 2. It follows that x = 0. For p > 2, a similar argument yields that x = 0. Thus, $\sigma Z^n(G_f) = 0$. This means that the sum of the coefficients of the *n*-simplices in $Z^n(G_f)$ which belong to the same distinguished family is 0 mod *p*. Indeed, each *n*-simplex in $Z^n(G_f)$ belongs to a distinguished family

Received February 14, 1985.

consisting of p n-simplices no one of which meets $f^{-1}(F)$. Thus, $\pi Z^n(G_f) = 0$ (the 0-cycle) on A. By construction of G_f , $\pi Z^n(G_f) \neq 0$ on A. Hence, it is false that

diam $f^{-1}f(x) < \epsilon$ for each $x \in A$.

The theorem is proved.

In Corollary 6.21, the conclusion is that X has Newman's Property with respect to C(p) as defined above.

In Corollary 6.22, the conclusion is that X has Newman's Property (as stated in Section 3), i.e., with respect to the class of all finite-to-one open and closed mappings f on X with N(f) > 1.

The statement that σ takes essential *n*-cycles to essential *n*-cycles is false and is never used in the paper.