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We derive the upper limit for power extraction from an open-channel flow with
lateral bypass representing tidal power or run-of-river plants for the complete range
of blockage σ , Froude number Fr2 and turbine head HT . For this, a generic turbine
model is used: a momentum and energy sink distributed over the geometric blocking
σ of the channel allowing lateral bypass. It is indicated that existing models neglect
important aspects of the free-surface deformation due to the energy extraction, yielding
unphysical behaviour at high blockage, high Froude number or high turbine head.
The asymptotic validity of existing theories for σ → 0, Fr2 → 0, HT → 0 becomes
evident: firstly, by comparing existing theories with the presented general theory; and
secondly, by the experimental validation of the existing and presented theories. The
accompanying systematic experimental study comprises a wide range of blockage
ratios, 0.25 6 σ 6 1.0, of downstream Froude numbers, 0.2 6 Fr2 6 0.5, and of
different turbine heads, HT , measured in multiples of the specific energy E0 of the
undisturbed flow. The subsequent model-based optimisation allows an indication of
the optimal turbine head HT,opt/E0 as well as the maximal obtainable coefficient of
performance CP,opt as a function of σ and Fr2 or downstream water depth h2/E0,
respectively. The theory reveals points of operation in which there is a surge wave in
the tailwater. The new physical insight and optimisation results may serve for plant
design and operation, as well as for investment decisions.

Key words: channel flow, hydraulics

1. Introduction
Low-head hydropower plants such as tidal power or run-of-river plants are a

promising contribution to meeting the world’s rising electrical power demand,
provided the technology becomes economically profitable (Rourke, Boyle & Reynolds
2010). A reliable physical model for an energy-converting system capturing the
relevant physical effects is necessary for investment decisions and optimal installation
and operation. Adcock, Draper & Nishino (2015) pointed out that the maximal
extractable power from tidal energy is of major interest and an adequate modelling
is therefore a crucial step.
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FIGURE 1. Top view of a turbine array. The flow is from left to right. Thin solid lines
are streamlines and thick solid lines are turbine discs. It is assumed that the turbines
are positioned sufficiently distant in the flow direction so that the upstream flow is
uniform at the position labelled as [1]. Provided that the array spans the complete channel,
the streamlines between two turbines are straight and it is sufficient to consider one
representative turbine only. The sectional view A–A of a representative turbine is shown
in figure 5.

1.1. Turbine array and representative turbine
For power extraction, hydrokinetic turbines are used as machines arranged in a fence,
row or array (figure 1). We investigate a turbine placed in an array that is either
extended to infinity in the lateral direction or spans the entire channel width. In this
case, the separating streamlines between the turbines are straight and hence lines of
symmetry (figure 1). This allows us to focus on a single turbine with bypass within
a generic control volume as marked in figure 1.

The flow is considered as quasi-stationary. For run-of-river plants, this is obviously
valid. For tidal power, the channel flow is quasi-stationary for a cycle time
T ≈ 4.5 × 104 s� l/

√
gh0. With the length of the tidal channel l ∼ 10–100 km and

the undisturbed water depth in the channel h0∼ 10–100 m the mentioned condition is
usually fulfilled. Only for very long, l∼ 100 km, and at the same time very shallow,
h0 ∼ 10 m, channels do transient effects become relevant.

With the assumptions of (i) straight separating streamlines and (ii) quasi-stationary
flow, the presented model is in accordance with the asymptotic theories of Garrett &
Cummins (2007), Whelan et al. (2007), Whelan, Graham & Peiro (2009), Houlsby,
Draper & Oldflield (2008) and Polagye (2009) analysing a generic turbine in quasi-
stationary flow. As will be shown, the cited existing theories for power extraction are
only asymptotically valid for small blockage σ → 0 or small turbine power, i.e. low
turbine head HT→ 0. Note that Fr0→ 0 implies HT→ 0.

The aim of this paper is to generalise the asymptotic validity of the mentioned
theories to the complete range of blockage ratio, turbine head and Froude number.
Based on the presented and experimentally validated axiomatic theory, the upper limit
for tidal power with lateral bypass is derived (cf. figures 18 and 19).
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FIGURE 2. (a) Sketch made by Leonardo da Vinci in the 16th century (da Vinci 1510).
A plate placed in the flow causes a drag force and thus a change in the water depth
and convective momentum transport. (b) Water head drop caused by a momentum and
energy sink due to a partial blockage at the open-channel test rig (see § 3). The turbine
is represented by a perforated plate. There is no turbine volume flow, QT ≡ 0, in (a),
whereas QT > 0 in our experiment (b).

Secondary effects like centred and staggered arrangements and partially blocked
tidal channels as discussed, for example, by Vennell (2012), Draper & Nishino (2014),
Nishino & Willden (2013), Gupta & Young (2017) and Bonar et al. (2019) are not
in the scope of this paper.

1.2. Quasi-stationary models of power extraction from an open-channel flow
The turbines of the array may be axial-flow or cross-flow machines operating with
ducts or diffusers (Roberts et al. 2016). The axis of rotation may be horizontal or
vertical. The water depth in typical applications is about 1.5 to 3 times as deep as the
turbine diameter of axial machines (Stallard et al. 2013). For vertical-axis cross-flow
machines like Darrieus rotors, the turbine may even penetrate the free water surface,
causing a deformation of the free surface due to gravity similar to the observation of
Leonardo da Vinci in the 16th century (da Vinci 1510) (figure 2a).

All turbines have in common that they act as a momentum and energy sink to the
flow. This sink is distributed over the turbines’ cross-section AT . In addition, energy
is dissipated due to mixing in the wake of the turbine. For practical and ecological
reasons AT is smaller than the channel cross-section A1 = bh1, with the channel
width b and the upstream water depth h1 (cf. figures 2b and 5). Garrett & Cummins
(2007), Whelan et al. (2007, 2009), Houlsby et al. (2008) and Polagye (2009) define
the blockage as σ := AT/A1.

Garrett & Cummins (2005) pointed out that the design and operation of a turbine
array will slow down an undisturbed flow velocity u0 (denoted by index 0) to the
approaching velocity u1 < u0, resulting in an increase of the water depth h1 > h0 in
the upstream flow. This effect can only be neglected if the turbine array disturbs the
flow only marginally. Thus, u0 and h0 are in general not independent scales for the
problem.

Recognising this, Pelz (2011) introduced the effective head Heff := z1 − z2 + h0 +

u2
0/2g with the ground level z, water depth h, velocity u and gravitational body

force g. The effective head Heff is independent of design, operation and downstream
flow conditions. Hence, it is the natural scale for the energy conversion in any
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FIGURE 3. Upper limit of the coefficient of performance CP,max/ηT = (PT,max/ηT)/Pavail
versus Froude number of the undisturbed flow, Fr0= u0/

√
gh0, for σ = 1. For free-surface

flow, the available power %u3
0AT/2 defined by Betz (1920) leads to an undesired increase

of CP,max with decreasing Froude number of the undisturbed flow. Hence, the ‘Betz limit’
16/27 should only be used for the asymptotic limit σ→0, HT→0, Fr0→0. The available
power 2%g3/2b (2/5Heff )

5/2 defined by Pelz (2011) yields a constant upper limit for σ =
1: (CP/ηT)max = 1/2. For σ 6 1 the upper limit is given in figure 18, depending on the
downstream water depth h2 := h2/Heff .

open-channel flow. For the considered problem, the upstream ground level z1 equals
the downstream ground level z2. Thus, in this case, the effective head Heff reduces to
the specific energy Heff = E0 = h0 + u2

0/2g.
Pelz (2011) derived an upper limit for the power extraction from an open-channel

flow without bypass, i.e. for the special case σ = 1. Using the first law of
thermodynamics, the upper limit for the power extracted by the turbine from the
flow, PT/ηT < Pavail/2 := %bg3/2(2/5Heff )

5/2, can be derived. Hence, the coefficient
of performance is limited in any case to CP := PT/Pavail 6 CP,max = ηT/2, where ηT
is the turbine efficiency and % is the fluid density (the subscript max denotes the
maximum possible value of CP for any design, operation and boundary condition).
Here CP,max = ηT/2 is a constant reference value independent of the boundary
conditions, as shown in figure 3.

Betz (1920) modelled the complementary limiting case σ → 0. Only for σ → 0
is the approaching velocity u0 unaffected by the turbine design and operation, and
u0 may serve as an independent scale for the energy extraction. Consequently, Betz
defined Pavail,σ→0 := %u3

0AT/2 as the available power. For the asymptotic limit σ→ 0,
Fr0→ 0 the upper limit is the well-known ‘Betz limit’ CP,max,σ→0 := PT/Pavail,σ→0 6
16 ηT/27 (figure 3).
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FIGURE 4. Different approaches to modelling the influence of the free surface on the
turbine streamtube of a hydrokinetic turbine placed in an open-channel flow: (I) constant
water head and neglected influence on turbine streamtube (Garrett & Cummins 2007);
(II) change in water head and neglected influence on turbine streamtube (Whelan et al.
2007, 2009; Houlsby et al. 2008; Polagye 2009); and (III) turbine streamtube deformation
considered (this paper).

In the context of tidal power, it becomes more and more obvious that this
limit is exceeded using the reference %u3

0AT/2 for ideal and non-ideal turbine
fences and arrays (Garrett & Cummins 2007; Vennell 2013). A simple analysis
(appendix A) shows that the ‘Betz limit’ becomes infinity for Fr0 → 0, σ = 1:
CP,Betz→ 2ηT(2/5)5/2Fr−3

0 (figure 3).
Garrett & Cummins (2007) generalised the Betz case for 0 < σ 6 1 but ignored

any gravitational influence on the free surface. This conflicts with the first law of
thermodynamics as figure 10 of this paper shows: the model of Garrett & Cummins
(2007) predicts a power extraction above the physically possible value of ηT/2. An
enhanced ‘streamtube’ model was proposed by Whelan et al. (2007, 2009), Houlsby
et al. (2008) and Polagye (2009) taking into account the deformation of the free
surface due to gravity. However, this model still ignores the deformation of the
turbine streamtube and the change in flux of kinetic energy and momentum across
the turbine. Thus, for high blockage σ , high turbine head HT and high downstream
Froude number Fr2, the respective model yields unphysical behaviour. A critical
assessment shows that the proposed models of Houlsby et al. (2008) and Polagye
(2009) are in fact identical to the one proposed by Whelan et al. (2007, 2009).

Figure 4 sketches the three different modelling approaches. Known theories I and
II adapt the approach of Betz (1920) or Glauert (1926) to hydrokinetic turbines in a
free-surface flow.

In models I and II the inflow into the turbine, section [+], is considered to be
immediately in front of the turbine of cross-section AT . The outflow, section [−],
is considered to be immediately behind the turbine. Hence, the authors implicitly
assumed the flow to be in a local equilibrium just upstream and downstream of the
turbine. However, this implicit assumption is only valid for the asymptotic case of
small blockage and turbine power, i.e. σ→ 0 and turbine head HT→ 0.

For relevant blockage, Froude number and turbine head, the asymptotic simplificati-
ons A+ ≈ A− ≈ AT and u+ ≈ u− made in models I and II are not admissible. The
flow field near the free surface differs from the one near the ground, and thus the
gradients immediately behind the turbine are too large and the distribution of pressure
and velocity is unknown. In this case, stream filament theory is not applicable (Spurk
1997). This is the reason why section [−] has to be further downstream where the
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gradients are small. As a result A+ 6= A− 6= AT . Consequently, the flux terms in front,
A+un

+
, and behind, A−un

−
, the turbine are only equal for n= 1 (mass flux) but not for

n= 2, 3: the change of momentum and kinetic energy flux across the disc is relevant
for the turbine model itself but was ignored so far.

As this paper indicates, the asymptotic approximation A+ = A− = AT for σ → 0,
Fr2 → 0, HT → 0, as done by Garrett & Cummins (2007), Whelan et al. (2007,
2009), Houlsby et al. (2008) and Polagye (2009), leads to an overestimated energy
extraction for non-asymptotic conditions conflicting with either the continuity or the
energy equation (cf. figures 10–15). Experiments of Myers & Bahaj (2007), studies
by means of computational fluid dynamics by Kolekar & Banerjee (2015) as well
as the experiments shown in this paper (figure 2) reveal this limitation of existing
theories.

To summarise, model I (Garrett & Cummins 2007) ignores any interaction of
the turbine array with the free surface. In model II (Whelan et al. 2007, 2009;
Houlsby et al. 2008; Polagye 2009) the influence of the turbine on the free surface
is considered, but the interaction of gravity with the turbine streamtube is ignored.
Theories I and II are asymptotically justified for σ→0, HT→0. The general approach
III takes the interaction of the turbine streamtube with the free surface into account
and A+ 6=A− applies. The variables A+, A−, u+ and u− become unknowns, requiring
additional equations to close the problem.

For a truly axiomatic approach and in order to derive an upper limit for the power
extraction, we consider a special case of III allowing only lateral bypass but no
bypass ahead of and underneath the turbine (hereinafter referred to as model III) (cf.
figures 2b and 5). This approach results in a closed system of equations including the
additional unknowns h+=A+/σb, h−=A−/σb, u+ and u− (see § 2), without the need
for further assumptions about the separation of the flow above and below the turbine.
Thus, it is possible to derive a physically well-founded upper limit for any immersion
depth of turbines of width σb. It may be seen as a consistent generalisation of the
limiting case σ = 1, treated by Pelz (2011). The generalised theory allows for a
rigorous optimisation and hence the derivation of the desired upper limit shown in
figure 18.

1.3. Independent variables and boundary conditions
As discussed, for σ → 0 the undisturbed velocity u0 is the independent variable.
However, for relevant power extraction from a tidal stream, this limiting case is
unrealistic as Garrett & Cummins (2005) pointed out. They showed that for an
optimal control of the power extraction from a tidal channel Q1,opt = Q0/

√
3 must

hold. This may be reached by an optimally controlled operation considering the
downstream flow condition Fr2 or the downstream water depth h2 := h2/Heff for a
given design parameter σ and u1 6= u0. For a tidal channel the downstream water
surface does not change when entering the downstream basin due to Newton’s third
law ‘actio est reactio’: the streamlines are parallel, and thus there is no pressure
change normal to the streamlines and the water depth of two parallel streamtubes
is equal. Hence, h2 is in fact a boundary condition to the flow (see the analogy to
gas dynamics in appendix B). In conclusion we have a parameter for (i) design, (ii)
operation and (iii) boundary condition. (i) The design of a generic turbine field is
sufficiently described by the blockage ratio σ . (ii) The turbine operator controls the
head drop across the turbine HT/ηT := PT/(ηT%gQT). (iii) The boundary condition is
given either by h2 or by Fr2.
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In previous research often Fr1 and h1 were chosen as boundary conditions. Since
the flow variables depend on each other, it is possible to transform the boundary
conditions. From CP(σ , HT, Fr2) and Fr1(σ , HT, Fr2) it is possible to derive
CP(σ , HT, Fr1). Nevertheless, the choice of Fr1 or h1 as boundary condition is
not practical when looking for the optimal power coefficient CP,opt, since both Fr1
and h1 depend on the design, i.e. blockage σ , and the operation, i.e. turbine head
HT . (Note that for the asymptotic limit σ → 0, Fr0 → 0 the often used induction
factor a := u∗/u1 and the turbine head HT are equivalent determining the operation of
the turbine. But in general, σ > 0, the turbine head HT is appropriate indicating the
operating point, being common in the context of fluids engineering, turbomachinery
and open-channel flow.)

The power extraction per unit width depends on

PT

ηTb
= f (g, %,Heff , σ ,HT/ηT, h2). (1.1)

A dimensional analysis yields

CP :=
CP

ηT
:=

PT/ηT

Pavail
=CP(σ ,HT, h2)6 1/2, (1.2)

with HT :=HT/(HeffηT) and the available power for the general case

Pavail := 2%bg3/2
(

2
5 Heff

)5/2
. (1.3)

The factor (2/5)5/2 originates of course not from the dimensional analysis but from
the energy balance. The factor 2 originates from the assumed ‘ideal’ machine (Pelz
2011).

Similarly, the volumetric efficiency ηV :=QT/Q1 with turbine volume flow QT and
total volume flow Q1 <Q0 is also a function of (i) design parameter σ , (ii) operation
parameter HT and (iii) downstream condition h2 or Fr2:

ηV :=
QT

Q1
= ηV(σ ,HT, h2)6 1. (1.4)

Since ηV < 1 for σ < 1, the mixing of the turbine volume flow QT = ηVQ1 and the
bypass volume flow (1− ηV)Q1 causes the dissipated power PD,mix in the mixing zone
between [∗] and [2] (see figure 5). The dimensionless mixing loss ε is a function of
the same independent variables:

ε :=
PD,mix

% g Q1 (H1 −H2)
= ε(σ ,HT, h2)6 1. (1.5)

With these definitions, the downstream total head can be expressed as

H2

Heff
= 1− ηV

HT

1− ε
(1.6)

and the total efficiency as

η :=
PT

PT + PD,mix + PD,T
= ηT(1− ε). (1.7)
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On a system level it is necessary to determine all three measures: CP to benchmark
the overall energetic quality of the system, ηV to gain a valuable measure for the
turbine design and ε to benchmark the dissipation loss influenceable by the system
designer. To optimise the power extraction of a cascade or array of turbines, i.e.
turbines aligned in a row in flow direction, CP and ε have to be known.

The aim of this study is threefold. Firstly, comparing CP, ηV, ε = f (σ , HT, Fr2)
or f (σ , HT, h2) of the presented model with the asymptotically valid theories of
Garrett & Cummins (2007), Whelan et al. (2007, 2009), Houlsby et al. (2008) and
Polagye (2009). Here, it is revealed that these models are limited to the asymptotic
limit σ → 0 or Fr2→ 0 or HT→ 0. Secondly, discussing the function CP(σ ,HT, h2)
including the parameter range resulting in a downstream surge wave. This can only
be achieved by treating the free surface of the problem in a physically appropriate
way. Thirdly, discussing the upper limit CP,opt(σ , h2) for the power extraction as a
function of blockage and downstream flow condition:

CP,opt(σ , h2)=max
HT

CP(σ ,HT, h2) (1.8)

(the subscript opt denotes optimal values for given design parameter σ and boundary
condition h2).

The paper is structured as follows. Model III is derived in § 2. The experimental
apparatus is described in § 3.1, while we validate our model in § 3.2 with the help
of an assessable integral measure, the drag force and water depth h∗. We discuss the
system behaviour and compare the mentioned models in § 4.1. The transient behaviour
for sub- and supercritical flow is analysed in § 4.2. Finally, the optimisation problem
(1.8) is treated and discussed in § 4.3. The conclusion of this work is given in § 5.

2. Generic model of a hydrokinetic turbine with lateral bypass
The turbine is modelled, for both the analysis and the experiment, as a planar

momentum and energy sink of constant width σb placed vertically in a stationary
flow, ranging from the bottom of the channel to above the free surface (figure 5).
The origin of the z coordinate is placed at the channel bottom, for which zero slope
is assumed, i.e. z= 0. Therefore the total head H is identical to the specific energy E.

The distribution of the flow quantities does not need to be known over each arbitrary
cross-section of the streamtube; this is only necessary at the inlet and outlet of a
streamtube representing one part of the model. In the presented model, we assume that
the flow at the inlet and the outlet does not change significantly in the flow direction.
For a free-surface flow, this assumes that the water depth h is only a slowly varying
function of the coordinate in the flow direction x. In terms of dimensionless measures,
the slope of the free surface shall be much smaller than one: |h′| = |dh/dx|� 1. This
is clearly not the case when modelling conditions directly downstream of a turbine,
where a drag force D in the free-surface flow is caused: immediately downstream
of the turbine h′ is negative and the absolute value may reach values of the order
one (figure 2). Only at a distance downstream of the turbine is the asymptote h′→ 0
reached, and thus the flow is sufficiently uniform and the pressure is given by a
hydrostatic pressure distribution. This fact has to be considered in the momentum
equation of the turbine streamtube, see (2.13) and (2.14), and was ignored in previous
research. It results in A+ > A− and in a change in the momentum and energy flux
through the turbine.

The energy extraction takes place between [+] and [−], i.e. the beneficial part
PT := %gQTHT and the dissipation within the turbine PD,T := %g QThD,T (hD,T is the
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FIGURE 5. Momentum and energy sink with lateral bypass in an open channel as
investigated in this paper. All solid lines are streamlines. Index 1 indicates disturbed
approaching flow. Indexes + and − are respectively in close proximity upstream and
downstream of the turbine where the changes in flow direction are small. Index ∗ marks
the position where the bypass and the turbine flow depths are again balanced due to ‘actio
est reactio’ while index 2 is the position far downstream of the turbine.

associated height loss) cause the turbine drag force D. This makes it accessible
to a force measurement for the experimental model validation discussed in § 3.2.
The bypass flow and the turbine flow show different flow depths due to streamline
curvature. At one position downstream of the turbine, marked by an asterisk [∗]
(figures 2, 5 and 6), the streamlines are straight and parallel. Hence, for dynamic
reasons, Newton’s third law ‘actio est reactio’, the bypass and turbine flow show the
same flow depth h∗, even though their velocities differ. The bypass and turbine
flow mix from cross-section [∗] to [2], which is associated with considerable
dissipation PD,mix := %g Q1hD,mix. With this picture in mind, the generic control volume
is considered to be composed of five control volumes (i)–(v) as sketched in figure 6.
Each control volume is a streamtube:

(i) upstream turbine streamtube stretching from section [1] to section [+],
(ii) turbine wake streamtube stretching from section [−] to section [∗],

(iii) turbine itself, with inlet section [+] and outlet section [−],
(iv) bypass streamtube stretching from section [1] to section [∗], and
(v) mixing (or wake) streamtube stretching from section [∗] to section [2].

Hence, there are five linear independent continuity equations – one for each
streamtube – connecting 14 flow variables: three dimensionless lengths ηV , β∗ and
σ measured in multiples of the channel width b, five dimensionless water depths h1,
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-
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-

*Fr-, h--Fr+, h-+ (v)(i)
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(iv)

Streamline Control volume (i)–(v) g

xz

y

FIGURE 6. Top view of the generic control volume being composed of control volumes
(i)–(v).

h+, h−, h∗ and h2 related to the upstream energy height H1=H0=E0 and six Froude
numbers, i.e. dimensionless velocities, Fr1, Fr+, Fr−, Frb, Fri and Fr2.

The flow through the turbine is described by three continuity equations starting with
the continuity equation for the control volume (i) upstream of the turbine

ηVFr1h
3/2
1 = σFr+h

3/2
+
, (2.1)

for control volume (iii) around the turbine

Fr+h
3/2
+
= Fr−h

3/2
−

(2.2)

and for control volume (ii) downstream of the turbine

σFr−h
3/2
−
= β∗Frih

3/2
∗
. (2.3)

This reveals that the volumetric efficiency ηV corresponds to the dimensionless
width of the turbine streamtube at point [1]. The mass conservation for the bypass
flow yields

(1− ηV)Fr1h
3/2
1 = (1− β∗)Frbh

3/2
∗

(2.4)

and for the mixing zone

[(1− β∗)Frb + β∗Fri]h
3/2
∗
= Fr2h

3/2
2 . (2.5)

Applying the energy equation to each streamtube yields five more equations
considering the two energy sinks PT/ηT and PD,mix. For the power extraction, the
energy equation for control volume (iii), expressed in terms of energy head, leads to

h+
(
1+ 1

2 Fr2
+

)
− h−

(
1+ 1

2 Fr2
−

)
=HT . (2.6)

Only in the asymptotic approximation for small blockage σ → 0 and low turbine
head HT → 0 (Garrett & Cummins 2007; Whelan et al. 2007, 2009; Houlsby et al.
2008; Polagye 2009) does the difference in the flux of kinetic energy cancel out. For
the relevant range of turbine power and blockage the flux terms must be taken into
account.

For the mixing zone described by control volume (v), the energy equation yields

β∗
qi

q2
h∗

(
1+

1
2

Fr2
i

)
+ (1− β∗)

qb

q2
h∗

(
1+

1
2

Fr2
b

)
− h2

(
1+

1
2

Fr2
2

)
= hD,mix, (2.7)
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with hD,mix := hD,mix/Heff . The values qi=Frih
3/2
∗

, qb=Frbh
3/2
∗

and q2=Fr2h
3/2
2 are the

dimensionless specific volume flow rates at positions [i], [o] and [2], respectively. For
the remaining control volumes, energy conservation yields

h1
(
1+ 1

2 Fr2
1

)
= h+

(
1+ 1

2 Fr2
+

)
(2.8)

for the upstream part of the turbine flow (control volume (i)) and

h−
(
1+ 1

2 Fr2
−

)
= h∗

(
1+ 1

2 Fr2
i

)
(2.9)

for the downstream part of the turbine flow (control volume (ii)). For the bypass flow
(iv), the energy equation is written

h1
(
1+ 1

2 Fr2
1

)
= h∗

(
1+ 1

2 Fr2
b

)
. (2.10)

The bypass flow is an accelerated flow for which the dissipation is usually small
(Spurk 1997). Hence, dissipation is only considered for the decelerated flow starting
from [∗].

A sixth energy equation is obtained by the definition of the upstream boundary
condition

H1 = 1= h1(1+ Fr2
1/2). (2.11)

The system of equations is completed by momentum equations formulated for the
three rectangular streamtubes, since for curved, i.e. non-rectangular, streamtubes the
pressure distribution along the axial coordinate is necessary but unknown. Firstly, the
momentum balance for the mixing streamtube (v) reads

β∗h
2
∗

(
1
2 + Fr2

i

)
+ (1− β∗)h

2
∗

(
1
2 + Fr2

b

)
= h

2
2

(
1
2 + Fr2

2

)
. (2.12)

Secondly, the momentum equation for the turbine streamtube (iii) from [+] to [−]
leads to

σh
2
+

(
1
2 + Fr2

+

)
− σh

2
−

(
1
2 + Fr2

−

)
=D, (2.13)

considering the dimensionless drag force D := D/%gbH2
eff . As in the energy equation

(2.6), the asymptotic approximation for small blockage and low turbine head (Garrett
& Cummins 2007; Whelan et al. 2007, 2009; Houlsby et al. 2008; Polagye 2009)
does not show the difference in the flux terms. In general, the difference in momentum
flux is relevant and therefore is taken into account in this paper. For the considered
generic case, equations (2.6) and (2.13) are exact. This allows us to derive an
axiomatically determined upper limit for tidal power with lateral bypass.

Thirdly and finally, we give the momentum equation for the generic control volume
itself, i.e. the streamtube stretching from [1] to [2]:

h
2
1

(
1
2 + Fr2

1

)
− h

2
2

(
1
2 + Fr2

2

)
=D. (2.14)

Thus, a system of 14 equations is obtained for the 14 variables ηV , β∗, h1, Fr1, h+,
Fr+, h−, Fr−, h∗, Frb, Fri, h2, hD,mix and D. The system of equations is completed by
three independent variables: the design parameter σ , the operational parameter HT and
the downstream boundary condition Fr2. Alternatively to Fr2, the downstream water
depth h2 may be used as boundary condition. The upstream boundary condition H1=1
is always satisfied.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.99


889 A32-12 P. F. Pelz, M. Metzler, C. Schmitz and T. M. Müller

At the end of this section it is worth summarising the assumptions made and the
resulting axiomatic character of the theory. Firstly, the flow is considered to be quasi-
stationary and the separating streamlines between the turbines are straight. Secondly,
the dissipation due to frictional forces is considered to take place within the turbine
and mixing zone only and uniform velocity profiles are assumed at the inlet and outlet
cross-sections. Thirdly, the turbine extends from the channel bottom to the surface.

The first two assumptions do not represent a strong limitation of the given theory
and are explicitly or implicitly made by Garrett & Cummins (2007), Whelan et al.
(2007, 2009), Houlsby et al. (2008) and Polagye (2009) as well. The third assumption,
the special topology, allows us to give an exact general valid theory and an exact
upper limit for the power output. This is because the flux terms in the momentum
and energy equation for the turbine are indeed relevant.

3. Experimental validation
So far there has been a lack of experimental validation of models I, II and III apart

from the experiments done by Whelan et al. (2009). Thus, an open-channel test rig
was designed. The set-up is presented in § 3.1. The experimental validation is given in
§ 3.2. The apparatus allows the observation of transient phenomena like surge waves,
which are discussed in § 4.2 and shown in a movie (Metzler & Pelz 2015), also
available as a supplementary movie available at https://doi.org/10.1017/jfm.2020.99.

3.1. Experimental set-up
The Froude-scaled channel is designed with 0.05 6 Fr0 6 1.4 including the
representative range for rivers and tidal currents. This experimental set-up serves
to validate the derived model. The channel has a width of b = 0.20 m, a height of
0.40 m and a length longer than 2.0 m. Figure 7 shows a photograph and a sketch
of the test rig. From left to right the flow wells up and passes a flow straightener,
which separates the plunge chamber from the inlet nozzle by means of two perforated
plates. The inlet nozzle allows the flow Q1 to stream smoothly into the entry of the
measurement section. Most of the test rig is made of acrylic glass, which allows
smooth surfaces and optical accessibility. The flow rate is measured by an in-line
magnetic-inductive sensor. The photograph shows the three-dimensional traverse for
the pitot tube used to measure the flow velocity profiles and the water levels, as an
electrical circuit closes when the pitot tube comes in contact with the water.

In accordance with the introduced generic control volume, the turbine is modelled
as an energy and momentum sink. A perforated plate extending from the bottom
of the channel to above the free surface causes a drag force D (momentum sink)
and the associated dissipation PT/ηT (energy sink) (figure 2b). By changing the
plate width, four different blockage ratios σ = {0.25, 0.5, 0.75, 1.0} are realised. The
turbine operation point HT =HT(QT) is varied using different plate perforations. The
perforation is quantified by the plate’s porosity φ :=Avoid/AT with the perforated area
Avoid of the plate and the total area AT . The perforated plate is supported by a short
beam, connected in the middle of the upper plate edge. This beam is designed as a
strain gauge beam sensor to measure the drag force D. At the outlet [2], the flow
is conditioned by an adjustable flow resistor, controlling the outlet Froude number
Fr2. All measurements discussed in this paper are taken at zero slope 1z = 0 and
stationary operation.

A pump is installed below the open channel to overcome the pressure losses within
the closed loop, obtaining a Reynolds number of Re := 4u0h0/[(1 + 2 h0/b) ν] >
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FIGURE 7. Open-channel test rig for measurements with defined values for the blockage
ratio σ , turbine head HT and downstream Froude number Fr2.

5 × 104 with the kinematic viscosity of water ν = 10−6 m2 s−1, undisturbed flow
u0 > 0.1 m s−1 and water depth h0 6 0.4 m. Hence, the flow is well within the
turbulent regime and the boundary layers are thin enough so that the velocity profiles
can be approximated as block profiles at all inlet and outlet cross-sections of the
five streamtubes. For the operation point σ = 0.5, Fr2 = 0.5 and φ = 0.37, example
velocity profiles are shown in figure 8. The measurement grids consist of more than
250 points by one vertical cross-section and one measurement point is averaged over
3 s. The assumption of block velocity profiles is very well satisfied for the inlet and
outlet sections [1] and [2]. At the estimated measurement section [∗] for the bypass
flow [o] and the inner flow [i], the velocity distribution coefficients for energy and
momentum flux (Chow 1959), i.e. analysing the degree of homogeneity, are always
lower than 1.5 and 1.2. Hence, for simplicity it is justified to set these coefficients
to 1.0.

3.2. Model validation
The energetic and kinematic measures CP, ηV and ε are of major interest. However,
for the chosen generic set-up, it is not possible to measure them explicitly and thus
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FIGURE 8. Isoclines of the measured axial velocity u= const. in m s−1 at cross-sections
[1], [∗] and [2] for the operation point Fr2 = 0.5, σ = 0.5 and φ = 0.37. The shown β∗
and H2 are derived by solving the system of equations discussed in § 2.

validate them. The determination of CP, for example, requires either the measurement
of PT and a known characteristic diagram of the turbine efficiency ηT or the volume
flow through the turbine QT and the turbine head HT . In the apparatus the energy
is not extracted by the perforated plate but rather dissipated. Hence, PT , QT and HT

are not directly accessible even thought present in the model set-up. However, the
drag force D and the water depth h∗ are in fact accessible integral variables and can
be measured directly. As both quantities arise explicitly in two and six equations,
respectively, they are implicitly linked to the other quantities (see § 2). To validate
the system of equations, a semi-analytical simulation is performed.

The values of the measured variables, except the one used for validation, are set
as boundary conditions in the semi-empirical simulation, i.e. Q1, h1, h∗, h2, σ for the
validation via drag force D (figure 9a,c,e) and Q1, h1, h2,D, σ for the validation via
the water depth h∗ (figure 9b,d, f ). The latter corresponds to the choice of independent
variables for § 4 as discussed in § 1.3 due to H1 = H1(Q1, h1), Fr2 = Fr2(Q1, h2) and
HT ∝ D. The remaining variables, including the left-out measured variable D or h∗
respectively, are the unknowns of the system of equations and are estimated.

The system of equations is solved in MATLAB using the fmincon algorithm. The
residual of the solution is below 10−6, which guarantees that neither the measured
variables nor the equations contradict each other and all equations are accurately
solved. This chosen approach is known as a nonlinear observer model in control
theory.

In order to take into account the influence of the uncertainty in the observed values
on the predicted values, the semi-empirical simulation is integrated into a Monte
Carlo simulation. In this process, the simulation is repeatedly solved (2000 iterations)
with different values for the measured variables, normally distributed within their
uncertainty range. From this follows a set of solutions, providing an uncertainty
range for the estimation.
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FIGURE 9. For each model: observed drag force D versus predicted drag force (a,c,e)
and observed water depth h∗ versus predicted water depth (b,d, f ) for various values of
blockage ratios σ ={0.25, 0.5, 0.75}, downstream Froude numbers Fr2={0.2, 0.3, 0.4, 0.5}
(marker size rising with Froude number) and plate porosity φ = {0.26, 0.37, 0.48}. The
solid line indicates the data trend, whereas the dotted bisecting line represents ideal results.
The error bars represent the 95 % confidence interval.

To validate the prediction quality of the different models, the observed drag force
D is compared with the predicted drag force D(Q1, h1, h∗, h2, σ ) of each simulation
(figure 9a,c,e). Similarly, figure 9(b,d, f ) shows the observed depth h∗ over the
predicted depths h∗(Q1, h1, h2,D, σ ).

It becomes evident that model I (Garrett & Cummins 2007) overpredicts the drag
force for high σ and Fr2 (figure 9a). This can be explained as follows: the pressure
downstream of the turbine is given as boundary condition. As the change in potential
energy due to the water head drop is neglected by model I, an equivalent drag that
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FIGURE 10. Coefficient of performance versus turbine head HT for various values of
blockage ratio σ and downstream Froude number Fr2. Solid lines represent the results of
model III, presented in this paper. Dashed lines represent model II of Whelan et al. (2007,
2009), Houlsby et al. (2008) and Polagye (2009) and dotted lines represent model I of
Garrett & Cummins (2007). The optimum point of operation is marked by a small black
circle, the conflict with the energy equation of model I by a triangle and the upper limit
for Fr2 = 1 by a large circle.

produces the same downstream pressure by just decelerating the streamtube flow is
predicted. This drag is obviously higher than with consideration of the water head
drop. As approaches II (Whelan et al. 2007, 2009; Houlsby et al. 2008; Polagye
2009) and III (this paper) consider the water head drop above the turbine and thus
a change in potential energy, the predicted forces are in good agreement with the
measurement. Comparing measured and predicted water depth h∗ at position [∗]
downstream of the turbine, it can be seen that the predictions of Garrett & Cummins
(2007) are obviously always higher than the measured depths due to the neglected
water head drop, i.e. h∗,I = h1. Approaches II and III again show far better accordance.
For high blockage and downstream Froude number, however, neglecting the influence
on turbine streamtube (II) leads to a slight underprediction of h∗, i.e. an overprediction
of the beneficial energy extraction over the mixing losses (see § 4.1).

It is worthwhile noting, even though not shown, that experiments performed with
fully submerged perforated plates covering the whole width of the channel but
allowing bypass flow above and underneath showed similar results.

4. Results and discussion
In this section we first discuss the system behaviour for typical Froude numbers

Fr2 6 0.5 and compare the predictions of model III presented in this paper with
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models according to approaches I (Garrett & Cummins 2007) and II (Whelan et al.
2007, 2009; Houlsby et al. 2008; Polagye 2009). Afterwards, the influence of the
downstream Froude number is analysed up to supercritical flow of Fr2=2.0 for a fixed
turbine head HT showing transient flow phenomena between sub- and supercritical
downstream flow. Concluding, we discuss the optimal operational strategy HT,opt for
hydrokinetic turbines for given blockage σ and downstream condition h2, yielding
the optimal coefficient of performance CP,opt.

4.1. System behaviour and comparison with asymptotically valid models
To provide a benchmark for the planning and dimensioning of low-head hydropower
plants, the energetic and kinematic measures that are relevant for system design
are analysed. These measures are the coefficient of performance CP, the normalised
volumetric efficiency ηV := ηV/σ and the mixing loss ε. The three measures are
calculated in terms of the independent parameter triple (σ , HT, Fr2). In this section
we focus on the plausibility and comparison of the different models. The complete
picture of model III is given in figures 18–21, in which the optimal operational
strategy and the upper limit are discussed (§ 4.3).

Each measure is plotted for four blockage ratios σ = {0.25, 0.5, 0.75, 1.0} and two
downstream Froude numbers Fr2={0.2, 0.4} versus the relative turbine head HT . Bold
solid lines show the axiomatic result of model III presented in this paper. Thin solid
lines represent model II of Whelan et al. (2007, 2009), Houlsby et al. (2008) and
Polagye (2009) and dashed lines represent model I of Garrett & Cummins (2007).

Figure 10 shows the influence of the turbine head HT on the coefficient of
performance CP for different downstream Froude numbers Fr2 = 0.2 and 0.4. There
is an increase of CP as well as of the optimal turbine head HT,opt (marked by a
circle) with increasing blockage σ and downstream Froude number Fr2. It can be
seen that the predictions of the different models are similar for low turbine head
HT or blockage σ . A comparison of models I, II and III gives: for low σ = 0.25
all models are equivalent up to HT ≈ 0.15, whereas for σ > 0.75 the models start
to differ significantly above HT ≈ 0.05. The differences occur less early and are less
critical for lower Froude numbers until for Fr2 → 0 again, all results are identical.
For independent variables σ , HT , Fr2 beyond that region, model II of Whelan et al.
(2007, 2009), Houlsby et al. (2008) and Polagye (2009) and especially model I of
Garrett & Cummins (2007) overestimate the energy extraction. This is due to the fact
that these models assume an unaffected turbine streamtube that can expand freely
without interacting with the surface. The water head drop, however, prevents that
expansion, which becomes significant for higher σ , HT , Fr2. The model of Garrett
& Cummins (2007) even exceeds the upper limit of CP,max = 1/2, e.g for σ = 0.75,
Fr2= 0.4 for HT > 0.5 (for higher σ and Fr2 even earlier), which is obviously wrong
since it conflicts with the first law of thermodynamics.

The second measure to be analysed, the normalised volumetric efficiency ηV :=

ηV/σ , is plotted in figure 11. It becomes apparent which fraction of the volume flow
enters the turbine, QT = ηVQ1, or bypasses the turbine, (1 − ηV)Q1. For the limit
HT → 0, the flow is undisturbed, which yields ηV = 1, since the turbine streamtube
is not affected. For full blockage σ = 1, there is no bypass flow and ηV ≡ 1 is true
for all flow conditions. For σ < 1, increasing HT and decreasing Fr2, the volumetric
efficiency decreases as the turbine has a higher resistance and thus more flow
bypasses the turbine. For a too high turbine head the whole volume flow bypasses
the turbine, leading to ηV→ 0. Therefore the coefficient of performance CP vanishes
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FIGURE 11. Normalised volumetric efficiency ηV versus turbine head HT for different
values of blockage ratio σ and downstream Froude number Fr2. Solid lines represent the
results of model III, presented in this paper. Dashed lines represent model II of Whelan
et al. (2007, 2009), Houlsby et al. (2008) and Polagye (2009) and dotted lines represent
model I of Garrett & Cummins (2007). The conflict with the continuity equation of model
II is marked by a triangle.

(cf. figures 10 and 16). As for the coefficient of performance, the predictions of all
models are similar for small independent variables σ , HT , Fr2. For larger blockage,
especially with higher Froude number and turbine head, model I according to Garrett
& Cummins (2007) and especially model II according to Whelan et al. (2007, 2009),
Houlsby et al. (2008) and Polagye (2009) overestimate the volumetric efficiency. For
the latter model and a blockage of σ = 0.75, the volumetric efficiency increases with
increasing turbine head. This is implausible and not representing the flow. Values
ηV > 1, predicted by model II of Houlsby et al. (2008), are wrong.

The mixing loss ε is shown in figure 12. Comparing the four plots, it is evident that
the mixing loss decreases with increasing blockage σ . For the limit σ → 1 the loss
vanishes as there is no bypass and thus no mixing. High turbine head and low Froude
number, however, lead to inefficient wake mixing. Especially when considering turbine
cascades, the turbine head HT should be adjusted to minimise mixing losses. The
predictions of model II show implausible decreasing mixing loss for high blockage
σ = 0.75.

To further study the influence of the blockage ratio, CP, ηV and ε are plotted against
σ for four fixed relative turbine heads HT = {0.1, 0.2, 0.3, 0.4} and two downstream
Froude numbers Fr2 = {0.2, 0.4}.

Figure 13 shows the influence of the blockage ratio σ on the coefficient of
performance CP. Obviously the power extraction is increasing with increasing
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FIGURE 12. Mixing loss ε versus turbine head HT for various values of blockage ratio
σ and downstream Froude number Fr2. Solid lines represent the results of model III,
presented in this paper. Dashed lines represent model II of Whelan et al. (2007, 2009),
Houlsby et al. (2008) and Polagye (2009) and dotted lines represent model I of Garrett
& Cummins (2007). The conflict with the energy equation of model II is marked by a
triangle.

blockage and is higher for higher Froude number. For a fixed Froude number Fr2, a
minimal blockage σmin is needed to create a head drop HT > 0 so that there is no
power extraction for low σ < σmin. As already discussed earlier, the different models
are similar for low (σ , Fr2, HT). In accordance with figure 10 similar results for a
wide range of blockages are only given for turbine heads HT 6 0.1. For higher turbine
heads, results are only similar for quite low blockages or Froude number. Otherwise
the coefficient of performance is overpredicted by models I and II. Model I is even
exceeding the upper limit CP,max = 1/2 as stated earlier.

The normalised volumetric efficiency ηV is plotted in figure 11 against the blockage
ratio σ . The volumetric efficiency is increasing with increasing Froude number and
obviously increasing with the blockage ratio. For full blockage, σ = 1, ηV has to be
equal to one no matter the flow state. This is indeed true for models I and III, whereas
the result of model II (Whelan et al. 2007, 2009; Houlsby et al. 2008; Polagye 2009)
predicts ηV > 1, which is obviously wrong. A further analysis shows that in this case
the turbine streamtube at position [∗] is supposed to cover more than the available
channel cross-section bh∗. This is due to the head drop, and thus a reduction of the
floated channel area, without considering the back-effect on the turbine streamtube, i.e.
a reduction of the streamtube area.

As the volumetric efficiency ηV is increasing, the mixing inefficiency ε is decreasing.
Both values are qualitatively similar and roughly related by the approximation ηV,opt≈
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FIGURE 13. Coefficient of performance versus blockage ratio σ for various values of
turbine head HT and downstream Froude number Fr2. Solid lines represent the results of
model III, presented in this paper. Dashed lines represent model II of Whelan et al. (2007,
2009), Houlsby et al. (2008) and Polagye (2009) and dotted lines represent model I of
Garrett & Cummins (2007). The optimum point of operation at Fr2 = 1 is marked by a
circle and the conflict with the energy equation of model I by a triangle.

1− εopt (cf. figures 14 and 15). For high blockages, σ→ 1, and no bypass flow, ε→ 0,
again only models I (Garrett & Cummins 2007) and III (this paper) yield plausible
results for the mixing zone.

Concluding, this section can be summarised as follows:

(i) Beneficial and non-beneficial power extraction is dependent on the independent
parameters σ , HT , Fr2 or σ , HT , h2. The coefficient of performance CP is
monotonically increasing with σ and Fr2 < 1. For HT there is an upper limit
for the power extraction in the range 0.0 < HT,opt(σ , Fr2) < 0.5 (cf. figures 18
and 19). This maximum has to be taken into account by the operator. The
upper limit is consistent with the findings of Pelz (2011) and is addressed in
more detail in § 4.3. In order to reduce mixing losses after the turbine, it is
recommended to operate at high σ , high Fr2 and low HT .

(ii) For low blockages σ < 0.25 or for low turbine heads HT < 0.1, the results of all
models are similar as they are for low Froude numbers Fr2→ 0. Thus, the water
head drop and the turbine streamtube deformation are negligible for σ ,HT,Fr2→

0.
(iii) For higher energy-extraction the predictions of the models differ. With increasing

σ , HT and Fr2 the differences become more significant. For a blockage at the
latest from σ = 0.75, neglecting the turbine streamtube deformation even leads to
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FIGURE 14. Normalised volumetric efficiency ηV versus turbine head HT for different
values of blockage ratio σ and downstream Froude number Fr2. Solid lines represent the
results of model III, presented in this paper. Dashed lines represent model II of Whelan
et al. (2007, 2009), Houlsby et al. (2008) and Polagye (2009) and dotted lines represent
model I of Garrett & Cummins (2007). The optimum point of operation at Fr2 = 1 is
marked by a circle and the conflict with the continuity equation of model II by a triangle.

implausible results for known models I and II (in terms of either CP or ηV and
ε, respectively).

In conclusion, only within the limits σ < 0.25, HT < 0.1 or Fr2 → 0 may the
previous models I and II serve as an approximation.

4.2. Transient flow phenomena
In order to achieve a profound understanding of the entire system, a wider Froude
range 0 6 Fr2 6 2 including supercritical flow states is considered in the following.
Figure 16 shows CP versus the downstream Froude number Fr2 for, as an example,
turbine head HT =HT,max = 2/5 for different blockage ratios σ .

One can draw three conclusions from this figure. Firstly, the coefficient of
performance increases with increasing blockage ratio σ . The bold solid line, σ = 1,
reaches the maximum CP,max = 1/2 for Fr2 = 1. Thus, the results presented here
are a consistent generalisation of the results presented by Pelz (2011) for different
blockage ratios. Secondly, for subcritical downstream flow Fr2 < 1, the coefficient of
performance increases with increasing downstream Froude number until a threshold
Fr2,lb is reached. At this threshold, the downstream flow becomes transient and a
rarefaction wave occurs in the experiment (the term rarefaction wave is adopted from
gas dynamics; see appendix B). This rarefaction wave starts behind the turbine, and
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FIGURE 15. Mixing loss ε versus blockage ratio σ for various values of turbine head
HT and downstream Froude number Fr2. Solid lines represent the results of model III,
presented in this paper. Dashed lines represent model II of Whelan et al. (2007, 2009),
Houlsby et al. (2008) and Polagye (2009) and dotted lines represent model I of Garrett
& Cummins (2007). The optimum point of operation at Fr2= 1 is marked by a circle and
the conflict with the energy equation of model II by a triangle.

moves downstream while the downstream flow becomes supercritical Fr2 > 1. The
vice versa case, an upstream-moving hydraulic jump, i.e. a surge wave, is shown in
a movie (Metzler & Pelz 2015). For Fr2 > Fr2,ub, the flow becomes quasi-stationary
again. As the simulation is based on a quasi-stationary system of equations, no
meaningful solutions exist for Fr2,lb < Fr2 < Fr2,ub, i.e. the residuals are more than
five orders of magnitude higher than for Fr2 <Fr2,lb and Fr2 >Fr2,ub. Both thresholds
Fr2,lb and Fr2,ub depend on the blockage ratio and turbine head. The transition is
given by the dashed line in figure 16. Hence, by the transition from Fr2,lb to Fr2,ub,
the flow is transient and there is no solution of the quasi-stationary model. Thirdly,
for still increasing downstream Froude number and supercritical flow, the coefficient
of performance decreases. Hence, the coefficient of performance reaches its maximum
close to the thresholds.

These thresholds are shown in figure 17 as well. This figure analyses the blockage
ratio versus the downstream Froude number depending on the turbine head isolines.
The dependency of the thresholds on the turbine head becomes visible and the region
Fr2,lb < Fr2 < Fr2,ub becomes smaller for decreasing turbine head. Thus, the lower
and upper thresholds reduce to one transition line at Fr2 = 1 for HT → 0. The area
below the hatched line is physically impossible as the volumetric efficiency ηV has to
be positive.
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FIGURE 17. Blockage ratio σ versus the downstream Froude number Fr2 depending on
the turbine head showing the thresholds of the downstream Froude number Fr2,lb and
Fr2,ub.

4.3. Optimal operation of a tidal turbine

As stated in § 1.3 and appendix B, the parameter triple (σ , HT, Fr2) can be
equivalently replaced by (σ , HT, h2) as considered in the following. Since the
downstream water depth h2 is given by the tidal system and the blockage ratio σ

by the system designer, the turbine head HT is the only adjustable parameter of this
parameter triple. Thus, the operator has to adjust the turbine head in order to achieve
optimal operation. Here, optimal operation means reaching the maximum possible
coefficient of performance CP,opt for given parameters.

An optimal coefficient of performance CP,opt(σ , h2) could be achieved examining
∂CP/∂HT = 0. However, the coefficient of performance is not continuously differentia-
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FIGURE 18. Isolines of maximum possible coefficient of performance CP,opt for a given
blockage and downstream water depth h2. Critical water depth h2,crit = 2/3.

ble due to the transition from Fr2,lb to Fr2,ub (see § 4.2). Hence, the optimal coefficient
of performance is evaluated numerically.

The optimal coefficient of performance depending on the downstream water depth
h2 and the blockage ratio σ is depicted in figure 18. The optimum operation point
with CP,opt = CP,max = 1/2 is reached for full blockage σ = 1 and a critical water
depth h2 = 2/5, which is consistent with the findings of Pelz (2011) (see circular
marker in figures 16 and 18). At a fixed blockage ratio σ < 1 and for subcritical
downstream flow Fr2 < 1, the optimal coefficient of performance increases with
decreasing downstream depth h2. Crossing the transition line, the downstream flow
becomes supercritical and the coefficient of performance decreases. For a supercritical
downstream flow and still decreasing downstream depth, the optimal coefficient of
performance increases at first, but decreases after reaching a maximum. For the area
below the hatched line, the Froude number Fr− reaches infinity as the velocity of the
turbine flow reaches the Torricelli velocity u=

√
2gHeff .

The turbine head at optimal operation HT,opt has to be set by the operator. Figure 19
shows the turbine head depending on the downstream water depth h2 and the blockage
ratio σ at optimal coefficient of performance. For σ = 1.0, the turbine head HT,opt =

HT,max= 2/5 yields the optimal coefficient of performance. For decreasing downstream
water depth at subcritical downstream flow and a fixed blockage ratio σ < 1, the
necessary optimal turbine head increases.

For supercritical downstream flow and still decreasing downstream depth, the
turbine head continuously increases until the turbine flow reaches the Torricelli
velocity (hatched line). The turbine head is only slightly dependent on the blockage
ratio for both downstream flow states.

As already discussed in § 1.3, it is worth looking not only at the coefficient of
performance CP but also at the volumetric efficiency ηV and the mixing loss ε. These
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FIGURE 19. Isolines of required HT,opt to obtain the optimal coefficient of performance
CP,opt for a given blockage ratio σ and downstream water depth h2.
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two values are plotted depending on blockage ratio and downstream water depth in
figures 20 and 21, respectively, for the optimal operation point. Due to ηV,opt≈ 1− εopt
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FIGURE 21. Isolines of mixing loss ε for operation at optimal coefficient of performance
CP,opt for a given blockage ratio σ and downstream water depth h2.

(see § 4.1), the mixing losses are low for high ηV,opt. For σ → 1 and thus ηV → 1,
due to the turbine streamtube confinement of the channel walls, the mixing loss
ε vanishes as no mixing occurs. For subcritical downstream flow, the normalised
volumetric efficiency and the mixing loss are less dependent on the downstream
water depth and strongly depend on the blockage ratio. For supercritical downstream
flow, the influence of the downstream water depth dominates and the influence of the
blockage ratio vanishes.

5. Conclusion
Sophisticated models of hydrokinetic turbines are a crucial step towards further

exploitation of tidal and run-of-river power plants. Therefore, we examined the power
extraction of a hydrokinetic turbine with full blockage in the vertical direction and
lateral bypass in quasi-stationary flow. Due to symmetry, the turbine may be part
of an array completely spanning the channel width. The chosen set-up allowed us
to treat the problem as strictly axiomatic and thus to generalise the results of Pelz
(2011) for blockages less than 1.

A model was developed to calculate the extracted power and thus to derive the
coefficient of performance CP as a function of the independent variables blockage
ratio σ (design parameter), dimensionless turbine head HT (operational parameter) and
downstream flow condition Fr2 or h2 (boundary condition).

The axiomatic model was validated using conducted experiments (see § 3.2).
Therefore, a test rig was designed with a perforated plate serving as a generic turbine.
The validity of the model was confirmed by comparing predicted and observed turbine
drag D as well as predicted and observed water depth h∗ (figure 9). Compared to the
models of Whelan et al. (2007, 2009) and especially of Garrett & Cummins (2005),
the results are more consistent for high blockage and energy extraction. This applies
even for a bypass above and below the turbine as recent investigations show.
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An analysis of the analytic results shows a distinct dependence of the coefficient
of performance on Fr2, with the optimum close to Fr2 = 1.0. However, the possible
operation range is limited due to the transient behaviour: a rarefaction wave or a surge
wave occurs (figure 16). The water head drop and turbine streamtube deformation are
negligible for low Froude number Fr2 → 0, low blockage σ < 0.25 or low turbine
head HT < 0.1 and the models of Garrett & Cummins (2005) and Whelan et al. (2007,
2009) and others serve as an approximation to the presented model. For higher values,
there is a significant influence as the comparison of the known models I and II and
the presented model III in § 4.1 shows. When neglecting the deformation of the
turbine streamtube, i.e. models I and II, the power extraction is overestimated and for
at latest σ > 0.75, models I and II sometimes even yield physically impossible results,
conflicting with conservation laws. This reveals that more detailed models such as
the one presented are necessary for adequately describing hydrokinetic turbines. The
results reveal further that there is an optimal operating point HT,opt for the turbine
yielding the upper limit CP,opt(σ , h2). The operating parameter HT,opt is of high
importance for the operator to maximise the power extraction and depends on the
blockage ratio and downstream flow conditions. The upper limit CP,opt is relevant for
investment and design decisions concerning of low-head hydropower plants.

Since the presented model is derived for a complete vertical blockage with lateral
bypass, it provides an upper limit for any immersion depth of a turbine of width σb.
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Appendix A
It is meaningful that the coefficient of performance should be smaller than one.

Otherwise the available energy or the shaft power is not suitably defined. Furthermore,
there should be a constant limit of the coefficient of performance, which cannot be
exceeded (Betz 1920). Since this limit should be a benchmark for the overall system
quality, it has to be independent of the boundary conditions.

Betz (1920) defines the available power

Pavail,Betz := %u2
0Q0/2 (A 1)

for a wind turbine to be the initial kinetic energy flux through the reference
cross-section AT , which equals the projected area of the turbine in the flow
direction. It should be noted that this power can only be extracted by a hypothetical
turbine without downstream flow. With this definition, the maximum coefficient of
performance of a wind turbine with Q0= u0AT is expressed as CP,Betz,max= 16/27ηT =

0.59ηT . This limit is well known as an upper limit for the power extraction by a
wind turbine of efficiency ηT . Therefore, in the context of wind energy (A 1) serves
as a constant and thus as a feasible scale for the shaft power of a wind turbine (Betz
1920).

In the context of tidal power, it becomes more and more obvious that the ‘Betz
limit’ CP,Betz,max = 16/27ηT is exceeded using this scale for ideal and non-ideal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.99
https://doi.org/10.1017/jfm.2020.99


889 A32-28 P. F. Pelz, M. Metzler, C. Schmitz and T. M. Müller

turbine fences and arrays (Garrett & Cummins 2007; Vennell 2013). The reason
is the influence of the free surface on the available power. In the following, the
maximum shaft power derived by Pelz (2011) from the energy equation is used to
discuss the coefficient of performance with differently defined available power:

PT,max = ηT%bg3/2
(

2
5 Heff

)5/2
. (A 2)

For an ideal turbine fence, i.e. σ = 1, in a free-surface flow with Q0 = u0bh0 and
AT = h0b, the optimal coefficient of performance yields

CP,Betz,max :=
PT,max

Pavail,Betz
= 2ηT

(
2
5

)5/2
(1+ Fr2

0/2+1z/h0)
5/2

Fr3
0

∼ 2ηT

(
2
5

)5/2

Fr−3
0 (A 3)

and is shown for 1z= 0 depending on Fr0 in figure 3. Thus, the ‘Betz limit’ is no
longer a constant for a free-surface flow and exceeds one. It is self-evident that a
varying scale is not reasonable. In fact, it is singular for Fr0→ 0.

Betz (1920) defines the available power in terms of a hypothetical ideal wind
turbine extracting all headflow energy as a reference. In accordance with Betz (1920),
Pelz (2011) proposed an equivalent hypothetical ideal machine for a free-surface
flow which extracts all the energy in the headwater, and thus has no tailwater. In a
thought experiment this can be realised by a vertical blade moving downstream, e.g.
a moving dam. A straightforward calculation yields the maximum shaft power of that
hypothetical machine as

Pavail := 2%bg3/2
(

2
5 Heff

)5/2
. (A 4)

Using (A 4) as the available power, the maximum coefficient of performance for an
ideal hydrokinetic turbine, i.e. σ = 1, in a free-surface flow with maximum power
output PT,max is written as

CP,max :=
PT,max

Pavail
=

1
2
ηT . (A 5)

Here CP,max is smaller 1 and independent of the inflow conditions (see figure 3), and
thus is a feasible limit for power extraction. Hence, throughout this paper Pavail is used
as the reference power to calculate the coefficient of performance CP.

Appendix B
We will point out the analogy of the treated problem to compressible flow (Chanson

2004). The free-surface flow from one basin of high water head through a turbine field
into a second basin of lower head is analogous to the flow of a compressible gas
from one high-pressure plenum chamber through a gas turbine into a second plenum
chamber of lower pressure. Engineers working with gas turbines know that the flow
velocity and gas density upstream of the described gas turbine do indeed depend on
both turbine design and operation. Here too, only one measure, the total enthalpy
(the effective head analogue Heff ), is preserved in the upstream flow. In addition to
this upstream boundary condition, the turbine’s power output also depends on the
turbine head and on the downstream condition, i.e. the static pressure (the flow depth
in the tailwater h2) of the second plenum chamber. This is true for subsonic flow
downstream of the turbine. In fact, the mass flux through the gas turbine depends
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on the ratio of downstream to upstream pressure, as measured in the two plenum
chambers. For supersonic flow, a stationary shock wave (a rarefaction wave analogue)
might occur downstream of the turbine, depending on the pressure at the free jet in
relation to the pressure of the downstream chamber. This is again analogous to the
flow through the turbine field, even though a rarefaction wave is unlikely to occur
downstream of the turbine field for a realistic downstream boundary condition. Instead
of the downstream static pressure, the downstream Mach number can serve as an
equivalent boundary condition. The downstream Mach number is analogous to the
downstream Froude number Fr2.
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