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Abstract

Recent advances in high-power, high-repetition-rate laser systems are driving the adoption of data-driven experimental
approaches in high-energy density science. To fully realise the potential of these methodologies, automated and high-
throughput analysis of key diagnostics is essential for effective feedback and real-time optimisation. We present a novel
algorithm, ARISE (Algorithm for Rapid Ion Spectrum Extraction), developed for fast and reliable extraction of laser-
accelerated ion spectra from Thomson parabola spectrometers, capable of operating at repetition rates exceeding 20 Hz.
ARISE enables real-time, data-driven experimentation through features including background subtraction, automatic
identification of the zero-deflection reference point, and automated determination of maximum ion energy. We validate
the accuracy of ARISE in spectrum extraction and energy detection, and demonstrate its integration within a Bayesian
optimisation framework during a proof-of-concept experiment conducted using the 350 TW SCAPA laser, enabling real-
time optimisation of laser-accelerated ion beam parameters.

1. Introduction

Beams of high-energy ions can be generated during intense
laser-solid interactions, with maximum proton energies ex-
ceeding 100 MeV demonstrated to date [1–3]. Novel features
such as ultra-short bunch duration mean these ion sources
have a wide array of potential applications, including fast-
ignition inertial confinement fusion (ICF) [4,5], proton radio-
graphy [6], radiation damage testing [7,8], and radiobiological
research [9–11]. Until now, much of the development in laser-
driven ion acceleration has been undertaken using high-
energy (tens-to-hundreds of Joules) lasers and targetry sys-
tems that were inherently limited to low (≪1 Hz) repetition
rates [12–14]. This limitation has significantly hindered the
implementation of statistical and data-driven methodologies,
which could be crucial for optimising and stabilising ion
acceleration mechanisms.

Supported by advances in high-power laser technology
in recent years, a number of petawatt-class high-repetition
rate laser systems have been developed that are capable
of ≥1 Hz operation [15]. Such systems have motivated the
development of rapidly replaceable targetry such as tape-
drive systems [16], liquid crystals [17], cryogenic [18] and liquid
jets [19]. As a consequence, it is now possible to produce
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high-energy laser-driven ion beams at 1 Hz, and beyond (see
for example reference [20]). These efforts have enabled sta-
tistical and data-driven experimentation, including machine
learning (ML)-based optimisation of the ion source [21,22] and
the generation of training data sets for neural networks to
build surrogate models [23–26]. These emerging approaches
will support the active optimisation and stabilisation of laser-
plasma ion sources, facilitate deeper investigation of the
underpinning physics and enhance experimental design -
as demonstrated in inertial confinement fusion (ICF) ex-
periments [27]. To fully realise data-driven ion acceleration
experiments, it is essential to automate the extraction of
key ion beam parameters — such as the energy spectrum,
conversion efficiency and maximum energy — at a rate that
matches or exceeds the laser repetition rate.

In this article, we present the algorithm for rapid ion
spectrum extraction (ARISE) - a software tool designed for
extracting ion energy spectra from a Thomson parabola spec-
trometer at Hertz-scale repetition rates, enabling data-driven
experimentation with live-feedback. ARISE incorporates
background subtraction, automatic identification of the zero-
deflection reference point (defining the origin of parabolic
ion tracks), and automatic determination of the maximum
ion energy. At the Scottish Centre for the Application of
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Plasma-based Accelerators (SCAPA) at the University of
Strathclyde, we have developed a laser-driven ion acceler-
ation beamline, which uses the 5 Hz, 350 TW laser for
investigation of the physics underpinning laser-driven ion
acceleration and for applications such as ultra-high dose
rate radiobiology [28] and radiation damage studies [29,30]. We
demonstrate the performance of the ARISE algorithm using
the SCAPA laser–ion beamline operating at 0.2 Hz, a rate
constrained solely by data transfer speeds and the readout
time of the diagnostic camera. Integrated into a feedback
loop, ARISE performed real-time ion spectral analysis to
autonomously guide and optimise the maximum energy
of laser-accelerated protons. Furthermore, we show that
ARISE can process ion spectra at rates exceeding 20 Hz
when applied to representative archival experimental data.
We validate its accuracy in both spectrum extraction and
automatic detection of the maximum proton energy (Ep,max),
highlighting its suitability for high-throughput ion diagnosis
in data-driven laser–plasma experiments.

2. Ion Spectrometer Design and Data Capture

A Thomson parabola spectrometer (TPS) separates ions
based on their kinetic energy and charge-to-mass ratio,
producing characteristic parabolic traces [31]. In this work,
we employed the TPS design reported in Carroll et al. [32],
the operating principle of which is illustrated in figure 1. The
spectrometer featured a 500 µm diameter pinhole to limit
angular acceptance. Ions were deflected by a 0.6 T magnetic
dipole pair and a pair of wedged electric plates, across which
a total potential difference of 5 kV was applied. The ions
were then detected by a microchannel plate (MCP) coupled
to a phosphor screen (Hamamatsu F2226-14PF143). The
end of the electric plates was positioned 75 mm upstream of
the MCP. The resulting parabolic ion traces were recorded
using a 16-bit sCMOS camera (Andor Neo) and example
measurements are shown in figure 2(a). The geometry
and dimensions of the magnetic and electric field regions
matched those described in Carroll et al. [32].

2.1. Charged Particle Trajectories in a Thomson Parabola
Spectrometer

Charged particles entering a Thomson parabola spectrometer
are deflected by electric and magnetic fields, with their
motion governed by the non-relativistic Lorentz force:

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(1)

where q is the particle charge and v⃗ is its velocity, E⃗ and B⃗
are the electric and magnetic fields, respectively.

In the small-angle approximation, the transverse displace-
ments resulting from the electric and magnetic fields —
accounting for a drift region between the field termination
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Figure 1 : Schematic view of the Thomson parabola spectrometer in the x-
z plane. The electric and magnetic fields are both oriented along the x-axis,
resulting in ion dispersion along the x- and y-axes due to their respective

influences.
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Figure 2 : (a) Representative MCP phosphor screen image showing the
reference zero point (ZP), corresponding to undeflected neutral atoms and
X-rays, and a set of ion tracks (H - hydrogen, C - carbon, O - oxygen,
with given charge states). (b) An example MCP phosphor screen image
showing the filtered ion signal through 200 µm-thick Mylar, for the energy

calibration.

and the detector — are approximately given by:

x ∼
q|E⃗|LE

mv2z

(
LE

2
+ dE

)
(2)

y ∼
q|B⃗|LB

mvz

(
LB

2
+ dB

)
(3)

where LE and LB are the effective lengths of the electric and
magnetic field regions, dE and dB are the distances from the
end of each field region to the detector plane, m is the mass
of the particle, and vz is the longitudinal component of the
velocity.

These expressions describe the characteristic parabolic
traces observed in a TPS under the assumption of uni-
form fields. However, in the present setup employing
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a wedged electrode design, the fields are inherently non-
uniform, necessitating a more general approach to modelling
ion trajectories.

Assuming a constant particle mass m, and defining the
velocity and position vectors as v⃗ = (vx, vy, vz)

T and r⃗ =
(x, y, z)T , Newton’s second law provides the time evolution
of the velocity:

dv⃗

dt
=

q

m

(
E⃗ + v⃗ × B⃗

)
(4)

To determine the full trajectory, we also evolve the posi-
tion:

dr⃗

dt
= v⃗ (5)

Rather than integrating these equations in time and check-
ing when the particle reaches a fixed longitudinal position
(e.g., z = zdet), it is often advantageous to reparameterise the
system using z as the independent variable. This approach
simplifies numerical integration in systems where z increases
monotonically.

Applying the chain rule:

d

dt
=

dz

dt
· d

dz
= vz

d

dz
(6)

the equations of motion can be rewritten as:

dr⃗

dz
=

v⃗

vz
(7)

dv⃗

dz
=

q

mvz

(
E⃗ + v⃗ × B⃗

)
(8)

Equations (7) and (8) form a coupled system of six first-
order ordinary differential equations (ODEs) with respect to
z: three governing the components of velocity and three for
the components of position.

The equations of motion are then solved numerically
using the solve ivp solver from the scipy.integrate
module in Python [33], over a predefined range of particle
energies and charge states for the electric and magnetic fields
determined by the TPS design geometry, potential difference
and magnetic field strength. The resulting transverse dis-
placements (x, y) at the detector produce the characteristic
parabolic traces of a TPS.

2.2. Data Capture

To enable data acquisition and preparation for ARISE at the
necessary repetition rate, we employ custom data capture
and management software. This system facilitates real-
time acquisition and handling of all laser data, metadata,
and diagnostics associated with a given experiment. It also
supports automated control of the laser system and target
delivery, and can execute grid scans or implement Bayesian
optimisation algorithms [35,36]. When combined with ARISE,
this analysis framework enables fully automated, real-time

optimisation of key proton beam parameters on the SCAPA
beamline, as elaborated in section 4.1.

3. ARISE Structure and Functionality

This section outlines the core functionality provided by
ARISE for the automated extraction of ion spectra from
unprocessed images of the TPS parabolae. Key features
include automatic background subtraction, zero-point detec-
tion, spectral extraction, and identification of the maximum
ion energy. The implementation of these components for
spectral analysis is illustrated schematically in figure 3.

START

(i): Build Parabolas
– Define configuration file
– Build & save parabolae

(ii): Data Acquisition
– Capture MCP image

(iii): Image Processing
– Auto ZP detection
– Background subtraction

(iv): Spectrum Extraction
– Overlay prebuilt parabolae
– Extract energy spectra

(v): Auto-Cutoff & Analysis
– Max energy, total signal
– Real-time feedback

END

Ep,max

Figure 3 : Flow diagram illustrating the main components of the ARISE
processing pipeline. The workflow begins with user-defined parameters
specified in the configuration file, followed by data acquisition from the
CCD (MCP image). The image then undergoes a series of processing
steps, including zero-point detection, cropping, rotation, and background
subtraction. The resulting image is subsequently passed to the spectral

extraction module and the automated detection of Ep,max.

The various steps are as follows:
(i): The initial stage of ARISE analysis requires the user

to define fixed design parameters of the TPS within a con-
figuration file. These parameters include the spectrometer
geometry, the potential difference across the electrode plates,
magnetic field strength, the spatial calibration of the camera,
and the range of ion energies to be extracted.

Based on this configuration, ARISE constructs the pre-
dicted ion parabolic tracks for a given TPS design, ion
species, and specified energy range. For each predefined en-
ergy increment, the ion deflection coordinates are computed
using a numerical solver for the coupled system of ordinary
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differential equations (ODEs) described in section 2, which
models the ion trajectory through the regions LE , LB , dE
and dB . The resulting deflections are first calculated in
real space and subsequently converted into pixel coordinates
using the spatial calibration. These coordinates define
sampling paths along the parabolic tracks, enabling the
extraction of ion signal intensity corresponding to discrete
energy bins.

One of the inherent limitations of a TPS is the potential
overlap of neighbouring species’ tracks as they converge at
higher ion energies. To address this, the ARISE algorithm is-
sues an alert when track overlap is detected, enabling the user
to take corrective action to minimise such occurrences—for
example, by increasing dispersion through a higher field
strength or by positioning the detector further from the fields.
The algorithm includes a dedicated class that can be activated
by setting a corresponding flag in the configuration file to
True, which enables the detection of ion species overlap. A
second flag can similarly be set to True to construct truncated
parabolas; that is, the parabolas are terminated at the point
of overlap, beyond which the ion species can no longer
be identified with certainty. This truncation feature can be
enabled via the configuration file, and the newly generated
parabolas can be stored for subsequent use.

Due to the nonlinear relationship between particle energy
and deflection, the spatial separation between adjacent en-
ergy bins decreases at higher energies. To mitigate the
resampling of identical pixels across adjacent bins, ARISE
removes duplicate pixel coordinates and assigns each pixel a
representative energy value, calculated as the average of its
contributing energies.

While ion trajectories (parabolae) can be recalculated for
each newly acquired signal, doing so can be computation-
ally intensive depending on the energy resolution, thereby
limiting the repetition rate of analysis. However, as the
ion deflection paths depend only on fixed geometrical and
field parameters — which are assumed to remain constant
between shots — ARISE addresses this limitation by storing
precomputed parabolae for each TPS configuration. This
significantly reduces processing speed by enabling their
reuse in subsequent analyses.

(ii): Once the ion trajectories have been either calculated
or loaded from a prebuilt parabola file, unprocessed MCP
images can be acquired for analysis.

(iii): The acquired image of the MCP phosphor screen is
then processed to extract the ion spectra. ARISE includes
an automatic detection routine to identify the point of zero
deflection — hereafter referred to as the zero-point (ZP)
— which typically consists of undeflected neutral particles
and X-rays. The ZP represents the origin of the processed
image and is the convergence point of all ion parabolae. An
example of the ZP position relative to the ion tracks is shown
in figure 2(a).

The ZP detection feature initially employs image erosion

techniques (see for example [37]) to eliminate saturated pixels
and then identifies the coordinates of maximum intensity.
Optionally, a region of interest (ROI) can be specified around
the expected ZP location, reducing computation time and
minimising interference from other bright regions in the
image. The approximate ZP coordinates are defined in the
configuration file, from which ARISE constructs the ROI for
targeted erosion and peak detection.

Once the ZP has been identified, the next stage involves
subtracting the background from the image. Initially, a
median filter (see for example [33,38]) may be applied across
the entire image. This filter computes, for each pixel, the me-
dian value within its surrounding region—defined by a user-
specified kernel size—in order to suppress impulse noise
such as isolated high-signal pixels resulting from detector
noise or high-energy X-rays, as well as to mitigate the effects
of dead or abnormally responsive pixels, while preserving
sharp edges. The filtering process has been implemented in a
multi-threaded manner to enhance computational efficiency
by dividing the image into smaller segments—whose num-
ber is specified in the configuration file—processing them in
parallel, and subsequently reconstructing the full image.

Empirical analysis of hundreds of measurements indicated
that assuming a radially symmetric background centred on
the ZP provides the best agreement with observed back-
ground signal characteristics. To ensure accurate back-
ground estimation, regions beyond the phosphor screen and
areas surrounding the ion tracks are masked out to avoid
contamination of the background model. A saturation check
is then performed within the ion track region, during which
the user is notified if saturation occurs and to what extent.
Specifically, if the proportion of saturated pixels exceeds
a user-defined threshold (for example, >1%), an alert is
issued, prompting the user to adjust the MCP amplification
accordingly. Then, for each radial distance from the ZP,
the average signal value is calculated and adjusted using
a standard deviation multiplier, configurable by the user,
to determine the threshold for background subtraction. In
our dataset, we found that subtracting values exceeding the
average by four standard deviations yielded the most reliable
results in terms of isolating the ion signal.

Alternative methods for background subtraction — includ-
ing Otsu’s method [39], sampling from tracks parallel to the
ion trajectories, and background region-of-interest sampling
— were also investigated. However, these approaches
were found to perform less effectively, both in terms of
background removal accuracy and computational efficiency.

(iv): Following background subtraction, the ion spectrum
is extracted along the previously defined ion tracks. For each
track, two additional bounding parabolae are constructed to
enclose the full spatial width of the ion signal, determined
by the dimensions of the TPS pinhole. The sampled track
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width, δ, is calculated using the TPS geometry as:

δ = d+ (s+ d)
LE + dE + dp

L
(9)

where d is the pinhole diameter, s is the effective source
size, dp is the distance from the pinhole to the start of the
electric plates, and L is the source-to-pinhole distance [40].
At each energy step, a lineout is extracted perpendicular to
the trajectory defined between the bounding parabolae. The
sum of pixel values along this lineout provides a measure of
signal intensity as a function of ion energy, corresponding to
the relative number of detected ions.

While it is possible to convert these pixel counts into
absolute ion numbers using established calibration meth-
ods [41–43], an absolute calibration has not yet been imple-
mented in the current version of ARISE. Work is underway
to perform such a calibration, following methodologies sim-
ilar to those described in Harres et al. [43].

(v): Finally, from the extracted spectrum, key physical
quantities are derived in real time, including the maximum
ion energy and total signal intensity, corresponding to the
total ion flux. The approach can easily be extended to
extract other quantities, such as the spectral temperature
of the distribution. These outputs are used both to inform
experimental decision-making and to support data-driven
optimisation routines aimed at enhancing the quality and
performance of the ion source.

4. Code Performance and Validation

In this section, we evaluate the performance of key features
within the ARISE framework, through both verification tests
and application to real-time experimental data.

Verification of model accuracy and energy measurements:
A central requirement of ARISE is the robust and reliable
automatic detection of the maximum proton energy for
a given proton spectrum. This capability is critical for
supporting optimisation and stability studies of laser-driven
ion sources. Prior to implementing and assessing automated
detection routines, we first validated the accuracy of the ion
energies predicted by the ARISE deflection model.

To validate both the accuracy of the ion deflection model
within ARISE and the energy resolution of the TPS, selected
regions of the MCP were covered with Mylar foils of known
thickness, designed to stop protons of specific energies as
calculated using SRIM [34]. Calibration was performed using
multiple filter configurations to provide several reference
points. This involved applying Mylar sheets with thicknesses
of 100 µm, 200 µm or 500 µm across the entire MCP, with an
example MCP phosphor screen image shown in figure 2(b)
(corresponding to the 200 µm case). Each filter thickness im-
poses a minimum detectable proton energy, Ep,min, beyond
which protons can reach the detector without being stopped
in the Mylar. The values of Ep,min, calculated using SRIM
simulations [44], were 2.76±0.07 MeV, 4.16±0.10 MeV, and

7.04±0.17 MeV for the respective filters. These values were
used as benchmarks to validate the energy calibration and
accuracy of the ARISE deflection model.
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Figure 4 : Measured proton spectra from energy calibration shots.
Dashed red, blue and green lines denote the expected minimum transmission
energies, Ep,min based on SRIM simulations. Dash-dotted orange, purple
and light green lines indicate the corresponding Ep,min values calculated
using ARISE. Shaded regions represent uncertainties in the SRIM-derived

energy thresholds, defined by the extent of lateral straggling.

As shown in figure 4, there is good agreement between
the minimum proton energies Ep,min predicted by ARISE
and those expected based on filter thickness. Specifically,
ARISE returned values of 2.72 MeV, 4.28 MeV, and 6.50
MeV, compared to the expected values of 2.76±0.07 MeV,
4.16±0.10 MeV, and 7.04±0.17 MeV, respectively. For the
thickest filter, there is evidence of increased ion scattering,
manifested as a broadening of the apparent minimum energy.
Additionally, the nonlinear spacing of energy bins at higher
energies, inherent to the TPS geometry, leads to reduced
accuracy in the predicted Ep,min in this regime. Neverthe-
less, across all cases, the predicted values remain in good
agreement with those calculated using the SRIM model,
confirming the reliability of the ODE-based deflection solver
within ARISE.

Following this validation of the modelled energy values,
we evaluated several approaches for automatic detection
of the maximum proton energy, Ep,max. A dataset of 15
randomly selected spectra was extracted from experimen-
tally acquired measurements. For each spectrum, a ground
truth value of Ep,max was established through blind manual
assessment by four independent researchers, each unaware
of the others’ selections and the results of any automated
method. The ground truth value was defined as the mean
of these manual assessments, and the associated standard
deviation was used to quantify uncertainty. An automated
method is considered well calibrated if its output lies within
this confidence interval.

To assess performance, we present the two best-performing
Ep,max detection methods and summarise their results against
the ground truth data.
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The first of these methods — the less effective of the two
— identifies Ep,max by evaluating the local gradient of the
ion spectrum and selecting the energy at which the gradient
consistently falls below a user-defined threshold. Although
conceptually straightforward, this approach is highly sensi-
tive to the chosen threshold parameter, which is somewhat
arbitrary and set in the configuration file. As a result, the
method is prone to false positives or premature termination,
particularly in the presence of noise or weak signal gradients
near the high-energy cut-off.

The second method evaluated is based on a least squares
regression technique previously applied to time-of-flight ion
spectrometers [45]. For a given spectrum, a sliding least
squares regression is implemented for successive windows
of neighbouring data points along the spectrum. For each
window, the gradient and intercept of the best-fit line is
computed according to equations (10) and (11):

m =
N

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi

N
∑N

i=1 x
2
i −

(∑N
i=1 xi

)2 (10)

c =

∑N
i=1 x

2
i

∑N
i=1 yi −

∑N
i=1 xi

∑N
i=1 xiyi

N
∑N

i=1 x
2
i −

(∑N
i=1 xi

)2 (11)

Here, x and y denote the particle energy and particle flux,
respectively, and N = 2r + 1 is the number of data
points included in each local fit, with r being a user-
defined parameter specified in the configuration file. The
gradient and intercept of each local fit are denoted by m
and c, respectively. The maximum proton energy, Ep,max, is
identified as the point where the final calculated local slope
crosses the x-intercept, corresponding to zero flux.

Empirical testing showed that this method performs most
reliably for small window sizes, specifically when r ≤ 2 and
N ≤ 5. This approach offers a key advantage over the fixed-
threshold method, as the transition to the background level is
determined intrinsically from the spectral shape, rather than
through a user-defined parameter.

A comparative analysis of the two methods is presented in
figure 5 and table 1.

Figure 5 (a) shows a representative ion spectrum with
the ground truth and automatically detected Ep,max values
annotated. In this case, the gradient threshold method signifi-
cantly underperforms relative to the least squares regression,
with respect to the ground truth. To explore this further,
figure 5(b) presents a comparison of both methods against
ground truth values across all 15 analysed spectra. The black
dashed line indicates the case of ideal agreement between
the ground truth and detected Ep,max values, with the error
bars representing the standard deviation in the ground truth
value. While neither method is perfectly calibrated, the least
squares approach consistently outperforms the threshold
method.
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Figure 5 : (a) Example spectrum comparing automatic Ep,max detection
using two methods: least squares regression (blue dashed line) and the
threshold method (orange dashed line), compared against the ground truth
(red solid line). (b) Comparison of Ep,max values across 15 spectra, showing
results from least squares regression (blue circles) and the threshold method
(red circles) relative to the ground truth. The black dashed line indicates the
ideal y = x agreement. Error bars represent standard deviations from the
ground truth. A representative case where the threshold method fails is also

highlighted (red dashed line).

Table 1 quantitatively compares the two methods using
multiple performance metrics, including Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). Across all metrics, the
least squares method outperforms the thresholding approach
by more than a factor of two. The ‘Within 1σhuman’
row further highlights that approximately two-thirds of least
squares results fall within one standard deviation of the
human-assessed ground truth, compared to just over one-
third for the threshold method.

To assess performance in relation to the uncertainty in-
herent in the ground truth itself, we introduce a normalised
metric: the RMSE of each method divided by the mean stan-
dard deviation of the human inspection values, σhuman. This
dimensionless metric reflects model performance relative to
typical human disagreement. A ratio ≤ 1 indicates parity
with human reliability; values > 1 suggest inferior accuracy.
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Metric Least Squares Threshold

MAE [MeV] 0.18 0.41
RMSE [MeV] 0.22 0.61
MAPE [%] 2.06 5.49
Within 1σhuman 66.7% 35.7%
Failure Rate 0% 6.7%
RMSE/σhuman 1.01 2.82

Table 1 : Performance comparison of Ep,max detection methods. The least
squares method significantly outperforms the threshold method, achieving
a root mean square error (RMSE) of 0.22 MeV compared to 0.61 MeV.
To contextualise these results, we introduce a normalised error metric that
compares the automated detection error to the uncertainty in the human-
assessed ground truth. Specifically, RMSE values are normalised by the
mean standard deviation of the ground truth estimates. Using this metric,
the performance of the least squares method is found to be comparable to

that of human assessment.

The least squares method yields a value of 1.01, suggesting
performance on par with human annotation, while the thresh-
old method returns 2.82, indicating significantly poorer ac-
curacy. Additionally, the gradient threshold method exhibits
a higher failure rate and a tendency for ‘brittleness’ [46], with
catastrophic failures observed in certain cases (e.g. no value
returned, indicated by the red dashed line in figure 5(b)).
This behaviour makes it unsuitable for use in unsupervised
data-driven optimisation processes.

Testing ARISE repetition rate - A key aspect of ARISE
development is not only the ability to automatically extract
ion spectra, but do so at repetition rates exceeding 1 Hz.
This capability is essential for real-time optimisation of the
ion source, as well as for collecting statistically significant
datasets and large-scale training sets for machine learning
models.

To validate the maximum effective repetition rate of
ARISE, 200 MCP phosphor images from an existing
dataset acquired at the SCAPA facility were analysed
using ARISE. The analysis was initialised using a prebuilt
proton parabola covering the energy range 0.25–20 MeV.
The time taken to complete each major processing step in
ARISE — background subtraction, multi-threaded median
filtering, image handling (including cropping and rotation),
automatic ZP detection, and automatic Ep,max extraction
— was recorded to identify potential bottlenecks affecting
throughput. The computer system used is equipped with an
AMD EPYC 9454 processor operating at 2.75 GHz.

When all processing steps are enabled, the average time
per image is 292±6 ms, corresponding to a repetition rate
of 3.42±0.07 Hz. The dominant time contributions arise
from image processing — particularly background subtrac-
tion and median filtering — which together account for
approximately 83% of the total analysis time. Median
filtering was originally implemented to mitigate noise and
suppress hot pixels due to hard x-ray hits in earlier datasets.
However, more recent data obtained with improved detector
shielding indicate that this step is unnecessary. As shown
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Figure 6 : (a) Bar chart showing the average processing time for key
stages of ARISE, with and without median filtering, across 200 data points.
The most time-consuming steps are median filtering (when applied) and
background subtraction. Without filtering, the pipeline achieves an average
repetition rate of 20.40 Hz; applying median filtering reduces this rate
significantly to 3.42 Hz. (b) Average repetition rate as a function of the
number of ion species, based on 200 shots. Error bars represent one standard

deviation in processing time.

in Figure 6(a), when median filtering is omitted, the repe-
tition rate increases significantly to 20±2 Hz, with a mean
processing time of 49±6 ms — substantially exceeding the
repetition rate of many high-power laser systems and leaving
significant allowance for data transfer and the execution of
optimisation routines [47].

To evaluate the impact of analysing multiple ion species
(e.g., various charge states of carbon and oxygen), the
average repetition rate was measured as a function of the
number of species processed using the same dataset. Results
are shown in figure 6(b). Each species was analysed over the
energy range 0.25–20 MeV (total energy, not per nucleon),
using 0.1 MeV energy bins. As expected, the repetition
rate decreases with increasing species number, falling from
its maximum for a single species to 8.60±0.47 Hz when
eight species are included. Since image processing is only
performed once per image, the overall analysis time scales
sub-linearly with the number of species, and the observed
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reduction in repetition rate represents only a factor of ∼2.3.

4.1. Real-time Experimental Demonstration

A real-time experimental validation of ARISE was con-
ducted using the 5 Hz, 350 TW SCAPA laser. Laser pulses of
5.39±0.08 J energy and 29.6±0.4 fs duration were focused
to a 1.57±0.04 µm (FWHM) spot onto 10 µm thick steel tape
and, in a separate run, onto 13 µm thick Kapton tape targets.
During this demonstration the effective repetition rate was
limited to 0.2 Hz due to constraints in data transfer speed to
the server where data was stored for analysis by ARISE and
the readout rate of the diagnostic camera.

In a preliminary demonstration of real-time capability,
repeat proton beam measurements were performed without
deliberate modification of experimental parameters. Un-
der these stable conditions, ARISE consistently measured
Ep,max, as shown in figure 7(a), highlighting its ability to
actively monitor proton beam properties during periods of
stable operation.

To further demonstrate the performance of ARISE in un-
dertaking real-time ion spectra analysis and facilitating data-
driven optimisation, the automatically determined Ep,max

values were used as the objective function in a Bayesian
optimisation feedback loop [48], implemented within our ex-
perimental control software [35] and interfaced directly with
SCAPA control systems.

The results of the optimisation run are presented in figure
7(b). To initialise the Bayesian optimisation process, five
shots were taken with randomised laser energy and pulse
duration values, within the ranges 0.28–2.7 J (restricted to
mitigate risk of damaging the focusing optic) and 25–135
fs, respectively. The pulse duration was varied using the
Group Delay Dispersion (GDD) of a Dazzler [49]. The
GDD value corresponding to the shortest pulse duration was
23,000 fs2. During optimisation, this value was allowed
to vary within the range 21,800–24,000 fs2. Owing to the
relationship between GDD and pulse duration, this range
enables variation of the pulse duration around its minimum
value, and the explored pulse duration range corresponds to
a GDD variation of approximately 1,000 fs2. For each shot,
ARISE determined the maximum proton energy, Ep,max,
which was then used to train an initial Gaussian Process
Regression (GPR) model [50], thereby initiating the Bayesian
optimisation routine targeting maximisation of Ep,max.

In this simple two-parameter optimisation example, figure
7(b) shows that ARISE successfully returns the variation in
Ep,max from the random parameter sampling (unfilled sym-
bols) to construct the GPR model that enables the Bayesian
optimisation routine to rapidly reach a plateau for maximum
laser energy (filled symbols), as expected. Variation in pulse
duration variation across the set GDD range was found to
have negligible impact on Ep,max, consistent with Zimmer et
al. [51]. This proof-of-principle demonstration of real-time
optimisation using only two parameters highlights the ca-
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Figure 7 : (a) Example of automatic Ep,max extraction (colour axis)
across more than 60 shots at a repetition rate of 0.2 Hz. The shaded region
corresponds to 1 standard deviation. (b) Results from an experiment where
ARISE-derived Ep,max values were used as the objective function in an
open-source Bayesian optimisation feedback loop, in which laser energy
and pulse duration were varied by the optimiser. Unfilled symbols represent
initial random sampling, while filled symbols correspond to values selected
using the Gaussian Process Regression model. The dashed red line separates

the random sampling phase from the model-driven optimisation phase.

pability of ARISE for integration into more complex multi-
parameter optimisation frameworks [21,35] and its potential to
enable fully automated tuning of laser-driven proton sources
in future experimental campaigns.

5. Conclusions

In summary, we have developed and demonstrated ARISE —
an algorithm capable of real-time extraction of laser-driven
ion spectra at repetition rates exceeding 20 Hz. Its key
features include automatic detection of the zero-deflection
reference point, background subtraction, and identification
of the maximum ion energy. Additionally, it has been
deployed to support real-time optimisation of the maxi-
mum proton energy via a Bayesian optimisation algorithm.
ARISE autonomously extracted Ep,max in real time and this
value was used by the Bayesian optimisation algorithm to
determine the optimal drive laser parameters. During this
experiment, the maximum achievable repetition rate was
0.2 Hz, constrained solely by data transfer speed and the
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diagnostic CCD readout time. Performance testing has
demonstrated that ARISE can be applied at multi-Hertz
repetition rates.

The development of ARISE represents a significant step
towards automated, high-repetition-rate, data-driven optimi-
sation of laser-driven ion sources. Beyond experimental con-
trol, it enables the rapid generation of training datasets for
neural network–based synthetic diagnostics [26] during live
experiments, using the well-established Thomson parabola
spectrometer. This capability will facilitate the discovery of
new strategies to stabilise and control ion beam properties,
advancing progress towards real-world applications [27]. Fur-
thermore, ARISE is easily adaptable to the automated anal-
ysis of other charged-particle spectrometers, including elec-
tron spectrometers [52] and wide-angle ion spectrometers [53],
promoting broader adoption of data-driven approaches in
laser–plasma diagnostics.
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