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This paper investigates linear and nonlinear evolution of a radiating mode in a supersonic
boundary layer in the presence of an impinging sound wave. Of special interest is the case
where the sound wave has wavenumber and frequency twice those of the radiating mode,
and so the two share the same phase speed and hence the critical layer. In this case, a
radiating mode is sensitive to a small-amplitude sound wave due to effective interactions
taking place in their common critical layer. The sound wave influences the development of
the radiating mode through the mechanism of subharmonic parametric resonance, which
is often referred to as Bragg scattering. Amplitude equations are derived to account for
this effect in the two regimes where non-equilibrium and non-parallelism play a leading-
order role, respectively. A composite amplitude equation is then constructed to account
for both of these effects. These amplitude equations are solved to quantify the impact
of the impinging sound wave on linear and nonlinear instability characteristics of the
radiating mode. Numerical results show that the incident sound makes the amplification
and attenuation of the radiating mode highly oscillatory. With sufficiently high intensity,
the impinging sound enhances the radiating mode. For a certain range of moderate
intensity, the impinging sound inhibits the growth of the radiating mode and may eliminate
the singularity, which would form in the absence of external acoustic fluctuations. The far-
field analysis shows that the incident sound alters the Mach wave field of the radiating
mode significantly, rendering its pressure contours spiky and irregular.
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1. Introduction
Laminar–turbulent transition of supersonic boundary-layer flows has been regarded as one
of the most challenging problems in the design and optimisation of many aerodynamic
configurations. Accurate prediction of transition has immense practical importance
because a drastic increase of skin friction and heat transfer will occur when the flow
changes from its laminar state to turbulence (Fedorov 2011; Schneider 2015). This complex
physical process involves several stages: receptivity (Goldstein & Hultgren 1989), linear
amplification of instability modes, nonlinear inter-modal interactions and final breakdown
to random motions (Kachanov 1994; Wu 2019). While transition is underpinned by internal
dynamics, i.e. intrinsic instabilities, of the flow, it is also known to be affected strongly by
external disturbances in the free stream and/or on the body surface (Schneider 2001). In
particular, ambient acoustic waves play a crucial role in transition of supersonic boundary
layers (Pate & Schueler 1969; Schneider 2001). To gain a deep understanding of the
underlying flow physics, we study the evolution of instability waves in a supersonic
boundary layer under the influence of impinging sound waves, with the goal to identify
mechanisms through which the latter affects linear and nonlinear development of the
former.

1.1. Subharmonic resonance of intrinsic instabilities
Subharmonic resonance is a common nonlinear wave phenomenon. In particular,
subharmonic resonance of instability modes has been proposed as an important nonlinear
process causing boundary-layer transition. It involves triadic interactions between a
plane wave and a pair of symmetrical oblique waves, the latter having subharmonic
frequency and streamwise wavenumber half of that of the former. Existence of such
a triad of Tollmien–Schlichting (T-S) modes in the Blasius boundary layer was noted
by Raetz (1959), and a heuristic theoretical description, put forward by Craik (1971)
on the basis of finite Reynolds number, showed that the resonance leads to continual
energy transfer between the mean flow and the disturbance, energising the oblique
modes especially. Kachanov & Levchenko (1984) and Saric & Thomas (1984) performed
controlled experiments and observed rapid growth of the oblique subharmonics. Prompted
by these experiments, Smith & Stewart (1987) studied the resonant-triad interaction of
T-S waves in a Blasius boundary layer based on a high-Reynolds-number approach,
showing that subharmonic triads of three nearly neutral modes always exist in the so-
called high-frequency limit of the lower-branch regime. On noting that in experiments,
subharmonic-resonance induced rapid growth occurred near the upper branch of the
neutral curve, where a distinct critical layer arises, Mankbadi, Wu & Lee (1993) and Wu
(1993) presented asymptotic theories on the resonant triad in the upper-branch instability
regime for the Blasius and the accelerating boundary layers, respectively. They showed
that the dominant nonlinear interactions occur in the critical layer and the surrounding
diffusion layer (cf. Smith & Stewart 1987). The oblique modes, typically having small
amplitude initially, experience super-exponential growth through interaction with the
planar mode at quadratic level, but the latter continues to amplify in accordance with
linear stability theory without the feedback effect from the former. If the amplitude of
the oblique modes is algebraically small, following the parametric resonance, the cubic
interactions of the subharmonics suppress the growth (Wu 1993). If the oblique modes
have an exponentially small initial amplitude, its rapid super-exponential growth leads to
a fully coupled stage (Goldstein 1994; Wu 1995; Wu et al. 2008).

Resonant-triad interactions of long- and O(1)-wavelength Rayleigh instabilities were
studied by Goldstein & Lee (1992) and Wu (1992), respectively. Similar to the resonant
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triad of T-S modes, the development of the interacting Rayleigh waves starts with a
parametric resonance stage when the initial size of the oblique modes is significantly
smaller than that of the planar wave. In this stage, the subharmonic oblique waves undergo
super-exponential amplification while the fundamental planar wave grows exponentially,
playing the role of a catalyst (Wu et al. 2008; Wu 2019). Owing to the continual fast growth
of the oblique modes, the triad eventually enters a fully interactive regime. The evolution
equations for the fully coupled triad were extended to the supersonic regime, where there
exists a resonant triad consisting of a planar second Mack mode and a pair of oblique first
modes (Al-Salman 2003).

When the subharmonic modes in the triad become two-dimensional, the resonance
takes in a simpler form between a planar fundamental and a planar subharmonic. Such
a subharmonic resonance consisting of two Rayleigh instability modes was proposed as a
mechanism explaining vortex pairing on mixing layers and jets (Monkewitz 1988). More
generally, the two waves in resonance do not both have to be eigenmodes: one of them
(e.g. the fundamental) may be externally imposed or sustained. Resonance in such a case is
often referred to as Bragg scattering (Bragg 1913). An example is a water wave propagating
in a layer of fluid over a spatially periodic topography (Mei 1985; Mei, Hara & Naciri
1988). A similar resonance may take place between stationary cross-flow vortices and
periodic-roughness-induced modes (He, Butler & Wu 2019; Xu & Wu 2022). As it will
transpire, the subharmonic parametric resonance in the present work is akin to that in these
studies, but the critical layer, where resonant interaction takes place, plays an important
role as observed by Goldstein & Lee (1992) and Wu (1995).

1.2. Role of acoustic disturbances in supersonic boundary-layer transition
Naturally present physical external disturbances that may have a substantial impact on
transition consist of surface roughness elements, vortical disturbances and sound waves
in the oncoming flow. Depending on their length/time scales, intensity and location, they
may affect the transition route and position through a variety of mechanisms including
receptivity, local scattering, participation in modal interaction, modification of linear
stability characteristics and even induction of new instability. A survey of the role of
roughness and vortical disturbances in these mechanisms was given by Qin & Wu (2024).
Here, we focus on acoustic waves.

Acoustic waves represent a form of external disturbances that significantly influence
supersonic boundary-layer transition, particularly in the context of conventional wind
tunnel experiments (Schneider 2001), where intensive noise is emitted from turbulent
boundary layers on the tunnel walls and/or radiated due to turbulence being scattered by
wall inhomogeneities such as roughness elements (Laufer 1961, 1964). Numerous wind
tunnel experiments have been conducted to characterise the relationship between noise
levels and transition locations. In the case of a supersonic flat-plate boundary layer, a
comparative analysis of transition measurements in nine distinct wind tunnels varying
in diameter from 30 cm to 130 cm indicated that a reduction in noise intensity leads
to an increase of the transition Reynolds number (Pate & Schueler 1969). This general
trend was confirmed by a parallel investigation on a cone in six different hypersonic
facilities at NASA Langley (Stainback 1971). By relaminarising the boundary layers
on the tunnel walls to mitigate the acoustic radiation, a significant delay in transition
was observed (Kendall 1971). The wind tunnel experiment conducted by Kendall (1975)
further elucidated intricate interplay between free stream facility noise and boundary-layer
instability, revealing an increasingly pronounced impact of the noise as the Mach number
progresses into the hypersonic regime.
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Given the intense acoustic disturbances that test models are exposed to in conventional
wind tunnels, the transition process differs notably from that observed in quieter
environments (Beckwith & Miller 1990; King 1992; Schneider 2008). Modern hypersonic
quiet wind tunnel technology aims to replicate flight conditions as closely as possible
(Schneider 2015). Nevertheless, acoustic waves may still be radiated from engines or
turbulent boundary layers over adjacent aircraft surfaces, potentially exerting a substantial
impact on transition. In view of this, conventional tunnels share certain similarities with
flight conditions, and the experimental data obtained from them regarding instability and
transition may still provide valuable insights (Duan et al. 2014, 2019).

1.3. Scope of the present study
Our concern is with supersonic modes in compressible boundary layers. The existence of
these modes is well known (Mack 1984), and has been reported for various configurations
including flows over flat plates (Mack 1987; Bitter & Shepherd 2015), wedges (Chang
et al. 1990, 1997) and cones (Knisely & Zhong 2017; Mortensen 2018). A prominent
feature of the mode is that its eigenfunction is oscillatory while attenuating, or remains
bounded in the far field when the mode is neutral. Sound radiation by supersonic modes
in a hypersonic blunt-cone boundary layer was studied numerically by Knisely & Zhong
(2019a,b), whereas the radiation by these modes in supersonic free shear layers and jets
had been studied theoretically by Tam & Burton (1984a,b) and Wu (2005).

High-enthalpy impulse facilities have been designed to replicate flight conditions, but
the detrimental effects are short test time and high levels of free stream noise. In such high-
enthalpy environment, supersonic modes are found to exist if the wall is cooled sufficiently
below the adiabatic temperature, and may become unstable over a wider frequency band
than subsonic modes (Bitter & Shepherd 2015; Chuvakhov & Fedorov 2016; Salemi &
Fasel 2018). In view of the co-existence of free stream acoustic waves and supersonic
modes, it is important to study the evolution of the latter under the influence of the former.
The theoretically predicted instability characteristics would help conduct better informed
and targeted quantitative measurements. However, the problem is of interest in its own
right since the phenomenon and mechanism are rather fundamental in the broad context
of waves on shear flows.

The present paper considers the interaction between an impinging sound wave and a
supersonic mode. We shall demonstrate a new and potentially important mechanism by
which sound affects the evolution of a radiating mode. The interaction problem considered
herein is in the same vein of the earlier work of Qin & Wu (2024), who studied the
excitation and evolution of radiating modes in the presence of impinging sound waves.
There, the key mechanism is a fundamental resonance taking place between the incident
wave and the radiating mode, which have the same frequency and wavenumber. The
essential new feature studied in this paper is that the sound wave has frequency and
wavenumber twice those of the radiating mode, and in this case, the sound wave influences
the nonlinear evolution of the mode through a subharmonic resonance mechanism.
Otherwise, the overall approach is similar to that outlined by Qin & Wu (2024).

The rest of the paper is organised as follows. In § 2, the problem is formulated
where a free stream acoustic wave impinges upon a supersonic boundary layer which
supports radiating modes. The frequency and wavenumber of the sound are assumed to
be twice those of the radiating mode so that a subharmonic resonance takes place, in
contrast to the fundamental resonance considered by Qin & Wu (2024). The distinguished
asymptotic scalings under which the incident sound wave affects the evolution of the
radiating mode are deduced pertaining to the non-equilibrium parallel and the equilibrium
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non-parallel regimes. In § 3, we present the asymptotic descriptions of the radiating mode
and boundary-layer response to the impinging sound wave. The focus will be on the
interaction between the radiating mode and the acoustic signature. Dominant interactions
in the critical layer are analysed to derive the amplitude equations in the two regimes
mentioned earlier. These equations are solved numerically to demonstrate the role of the
incident sound in the linear and nonlinear evolution of the radiating mode. To take into
account effects of both non-equilibrium and non-parallelism, we construct a composite
amplitude equation in § 4. Numerical results of this amplitude equation are presented and
discussed. In § 5, the Mach wave emitted spontaneously by the radiating mode under the
influence of the incident sound is computed. Finally, the main findings are summarised
and conclusions are drawn in § 6.

2. Formulation
We consider a supersonic boundary layer that forms over a semi-infinite flat plate
underneath a uniform free stream, where the density, velocity, shear viscosity and sound
speed are denoted by ρ∞, U∞, μ∞ and a∞, respectively. Based upon these quantities, the
Reynolds number Re and the Mach number Ma are defined by

Re = ρ∞U∞δ∗/μ∞, Ma = U∞/a∞, (2.1)

where δ∗ is the characteristic boundary-layer thickness. To adopt an asymptotic approach
and focus on the supersonic regime, we take Re � 1 and 1< Ma = O(1).

The flow will be described in a Cartesian coordinate system (x, y, z), where x and
y are along and normal to the wall, respectively, and z is in the spanwise direction, all
non-dimensionalised by δ∗. The time variable t is normalised by δ∗/U∞. The density ρ,
velocity u = (u, v, w), pressure p, temperature T , and shear and bulk viscosities μ and
μb are non-dimensionalised by ρ∞, U∞, ρ∞U 2∞, T∞ and μ∞, respectively. The flow is
governed by the compressible Navier–Stokes (N-S) equations (e.g. Stewartson 1964),

∂ρ

∂t
+ ∇ · (ρu)= 0, (2.2a)

ρ
Du
Dt

= −∇ p + 1
Re

[
∇ · (2μe)+ ∇

((
μb − 2

3
μ

)
∇ · u

)]
, (2.2b)

ρ
DT

Dt
= (γ − 1)Ma2 Dp

Dt
+ 1

Pr Re
∇ · (μ∇T )+ (γ − 1)Ma2

Re
Φ, (2.2c)

γMa2 p = ρT, (2.2d)

where e and Φ denote the strain-rate tensor and dissipation function, respectively,

ei j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, Φ = 2μe:e +

(
μb − 2

3
μ

)
(∇ · u)2, (2.3)

Pr is the Prandtl number and γ the ratio of specific heats. Furthermore, the conventional
assumption of vanishing bulk viscosity, μb = 0, is invoked.

2.1. Base flow and the radiating mode
The boundary layer develops on a long length scale, and can be described by introducing
the slow variable

x3 = x/Re. (2.4)
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The base-flow density RB , velocity field (UB, VB), pressure PB and temperature TB can
be expressed as

(RB,UB, VB, PB, TB)=
(
R̄(x3, y), Ū (x3, y), Re−1V̄ (x3, y), 1/(γMa2), T̄ (x3, y)

)
.

(2.5)
The steady boundary-layer equations admit the similarity solution (Stewartson 1964)

Ū = F ′(η), T̄ = T̄ (η), (2.6)

where η is the similarity variable defined, via the Dorodnitsyn–Howarth coordinate
transformation, by

η= 1√
x3

∫ y

0
R̄ dy. (2.7)

In terms of η, F and T̄ , the steady boundary-layer equations reduce to
1
2

F F ′′ + (K̄ F ′′)′ = 0,

T̄ ′′ + Pr F + 2K̄ ′

2K̄
T̄ ′ + Pr(γ − 1)Ma2(F ′′)2 = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where we have put K̄ (T̄ )= μ̄(T̄ )/T̄ . For Sutherland’s law, K̄ is given by

K̄ = 1 + C0

T̄ + C0
T̄ 1/2, (2.9)

where C0 = 110.4 K/T∞ with T∞ being the free stream temperature in Kelvin. The
corresponding boundary conditions are

F(0)= F ′(0)= 0; F ′ → 1 as η→ ∞, (2.10)

and

T̄ (0)= T̄w; T̄ → 1 as η→ ∞ (2.11)

if the wall is isothermal with a prescribed temperature T̄w.
We consider a perfect gas with ratio of specific heats γ = 1.4 and Prandtl number

Pr = 0.72. The free stream temperature is taken to be T∞ = 300 K, and the Mach number
Ma = 6. The chosen parameters are representative of flight conditions (Chuvakhov &
Fedorov 2016). The base-flow equations (2.8) were solved using a shooting method based
on a fourth-order Runge–Kutta integrator as in Qin & Wu (2024), where the streamwise
velocity and temperature for various cooling ratios, rc, defined as the wall temperature
over the adiabatic wall temperature, were presented.

The stability of the boundary layer is studied by introducing to it small-
amplitude disturbances, (ρ̃, ũ, ṽ, p̃, θ̃ ), and the perturbed flow field can be written as
(ρ, u, v, p, T )= (RB,UB, VB, PB, TB)+ (ρ̃, ũ, ṽ, p̃, θ̃ ). For a neutral radiating mode,
its pressure is governed by the Rayleigh equation, with the boundary condition consisting
of the impermeability condition at the wall and a finite amplitude at infinity. Qin & Wu
(2024) showed that a radiating mode exists only for rc below a certain value less than unity.
In particular, using the base-flow quantities with rc = 0.427 (T̄w = 3), a two-dimensional
neutral radiating mode was found, whose streamwise wavenumber and phase velocity are

α= 0.355336, c = 0.723147. (2.12)

This radiating mode and the particular base flow (rc = 0.427) will be used in our
calculations. We choose to focus on a two-dimensional mode partly for simplicity and
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partly because its growth prior to becoming neutral is greater than that of the oblique
modes. For adiabatic walls, a radiating mode does not exist at least for the present
base-flow parameters. In this case, subsonic modes are important and likely influenced by
impinging noise. However, the mechanism to be described in this paper does not apply to
them, and one would have to seek viable alternative mechanisms for such modes.

2.2. Free stream acoustic waves
Acoustic waves are an important type of elementary disturbances in the free stream.
The density, velocity and pressure components of a two-dimensional acoustic wave,
εs(ρs, us, vs, ps), where εs 	 1 is the magnitude, satisfy, to leading-order accuracy, the
linearised Euler equations about the uniform background field. Eliminating ρs , us and vs
from these equations leads to the equation for pressure ps ,

Ma2
(
∂

∂t
+ ∂

∂x

)2

ps − ∇2 ps = 0. (2.13)

The solution takes the form

ps = pI ei(αs x+γs y−ωs t) + c.c., (2.14)

where αs and γs denote the streamwise and normal wavenumbers, respectively, and ωs
and pI denote the frequency and the rescaled intensity, respectively; here, γs is taken to
be positive so that the group velocity in the wall-normal direction is negative, i.e. the
disturbance represents an incoming wave. A two-dimensional sound wave is considered
because only such a wave can, even with a small amplitude, influence the like neutral
radiating mode through subharmonic resonance.

Substitution of (2.14) into (2.13) yields the dispersion relation for slow acoustic waves,

cs ≡ωs/αs = 1 − 1
Ma

√
1 + (γs/αs)2, (2.15)

where cs is the phase velocity. Here, as indicated by the sign of the second term on the
right-hand-side, we have chosen to consider a slow sound wave, which has a critical layer,
where the viscous effect has to be considered to obtain a regular solution and determine
the reflection coefficient. The presence of this layer is instrumental for the sound wave to
influence, even with a moderate amplitude, the radiating mode. In contrast, the fast sound
wave has no critical layer, and is considered to be less effective in affecting the instability.
We define an incident angle θs by cos θs = αs/

√
α2

s + γ 2
s . Use of (2.15) shows that

θs = cos−1{1/[(1 − cs)Ma]}. (2.16)

A sound wave in the free stream is characterised by its frequency and incident angle.
Since the slow acoustic wave that we consider is the first superharmonic of the radiating
mode, the latter specifies its propagation direction.

2.3. Asymptotic scaling
We are interested in slow acoustic waves and instability modes with wavenumber α and
frequency ω. Their wavelengths are comparable with the boundary-layer thickness (i.e.
αs, α = O(1)). When a slow acoustic wave impinges on the boundary layer, the response
of the latter is in the form of an absorbed disturbance and a reflected wave. Subharmonic
resonance takes place when the sound wave is the first superharmonic of the radiating
mode, i.e.

αs = 2α, ωs = 2ω. (2.17)
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It follows from this relation that the oncoming sound wave shares a common critical level
with the radiating mode, since

cs =ωs/αs =ω/α= c. (2.18)

The impinging acoustic wave affects the development of the instability mode through an
effective quadratic interaction within the common critical layer. We will investigate this in
the non-equilibrium parallel and equilibrium non-parallel regimes, respectively.

2.3.1. Non-equilibrium parallel regime
As an inviscid Rayleigh instability mode propagates downstream, its magnitude amplifies
exponentially until it approaches the neutral position, x3,n say. Due to the accumulated
growth, the mode is likely to enter a nonlinear stage in the vicinity of the neutral position
(Goldstein & Leib 1989; Wu 2019). Let this region be represented as

x3 ≈ x3,n + μ̃x̄1, (2.19)

where μ̃	 1 is to be determined in terms of ε̃ or Re, and x̄1 = O(1) is negative. The local
base-flow velocity and temperature profiles are expanded as(

Ū (x3, y), T̄ (x3, y)
) ≈ (

Ū (x3,n, y), T̄ (x3,n, y)
) + μ̃

(
Ū1(y), T̄1(y)

)
x̄1. (2.20)

In this region, the growth rate of the mode is O(μ̃), correspondingly, the amplitude
develops over the length scale of O(μ̃−1), and so we introduce the slow variable

x̃ = μ̃(x − x0)= O(1) with x0 = Re(x3,n + μ̃x̄1). (2.21)

The nonlinear evolution takes place in a region centred at x0 with a length scale of O(μ̃−1),
which is much larger than the boundary-layer thickness.

In the presence of the instability mode and an incident sound, the disturbance in the
main layer can be expressed, to leading order, as

(ρ̃, ũ, ṽ, p̃, θ̃ )= ε̃A(x̃)
(
ρ̂0(y), û0(y), v̂0(y), p̂0(y), θ̂0(y)

)
E +ε̃s(ρ̌s, ǔs, v̌s, p̌s, θ̌s)Es

+ c.c. + · · · , (2.22)

where E = eiαζ , ζ = x − ct is the coordinate moving at the phase speed with α and c =
ω/α being the streamwise wavenumber and phase speed, respectively, and ε̃	 1 measures
the magnitude of the radiating mode with A(x̃) being the amplitude function describing its
evolution; the second term in (2.22) represents the acoustic signature with Es = eiαs(x−cs t)

being its carrier wave, and ε̃s 	 1 measures the magnitude of the sound. The derivative
with respect to x then becomes

∂

∂x
→ ∂

∂ζ
+ μ̃

∂

∂ x̃
. (2.23)

To derive the scaling, let us first write down the streamwise momentum equation (of the
incompressible N-S equations for convenience) for the perturbation,[
(Ū − c)

∂

∂ζ
+ μ̃Ū

∂

∂ x̃

]
ũ + Ū ′ṽ− Re−1 ∂

2ũ

∂ ỹ2 = −∂ p̃

∂ζ
− ũ

∂ ũ

∂ζ
− ṽ

∂ ũ

∂y
− μ̃ũ

∂ ũ

∂ x̃
+ · · · .

(2.24)
The scaling is fixed by considering the main and critical layers. In the main layer, the
disturbance (the radiating mode and acoustic response included) remains, to the required
order of accuracy, linear and inviscid, and the streamwise velocity of the radiating mode
exhibits a jump of O(ε̃μ̃), which is to be determined by analysis of the critical layer
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(Goldstein & Leib 1989). Suppose that the critical-layer width is O(δc). It follows that
the advection term in (2.24) is of O(δc), whereas the terms associated with the non-
equilibrium and viscous effects are O(μ̃) and O(Re−1/δ2

c ), respectively. The requirement
that these terms are all balanced leads to

δc = O (μ̃) , δc = O
(
Re−1/3). (2.25)

In the critical layer, the wall-normal velocities of the radiating mode and acoustic response
are of O(ε̃) and O(ε̃s), respectively, but the logarithmic singularity ln(y − yc) of the
inviscid solutions for the streamwise velocities suggests that the corresponding vorticities,
ε̃û0,y and ε̃s ǔs,y , are of O(ε̃δ−1

c ) and O(ε̃sδ
−1
c ), respectively (Leib 1991). Consideration

of the self-nonlinear interactions of the radiating mode leading to the regeneration of the
fundamental shows that if μ̃= O(ε̃2/5), the nonlinear effect enters the amplitude equation
(Leib 1991; Wu & Cowley 1995). Under this scaling, the temperature fluctuation also
contributes a nonlinear effect (Goldstein & Leib 1989).

However, in the common critical layer, the vorticity of the acoustic disturbance, ε̃s ǔs,y ,
is O(ε̃sδ

−1
c ), as noted earlier. The forcing proportional to the product of the wall-normal

velocity of the radiating mode ε̃v̂0 and ε̃s ǔs,y is thus O(ε̃ε̃sδ
−1
c ). Note that this forcing

is of the form E∗Es = E according to (2.17), and represents the quadratic interaction of
subharmonic resonance type between the radiating mode and the acoustic signature. It
induces an O(ε̃ε̃sδ

−2
c ) streamwise velocity of the fundamental as is deduced by balancing

the forcing and the non-equilibrium terms in (2.24). This streamwise velocity exhibits a
jump across the critical layer. If it is comparable with the O(ε̃μ̃) jump in the main layer, the
subharmonic resonance effect enters the amplitude equation, leading to the characteristic
threshold intensity of the sound

ε̃s = O
(
μ̃δ2

c

) = O
(
μ̃Re−2/3), (2.26)

where use has been made of the second relation in (2.25).
With (2.25) and (2.26), we write

μ̃= ε̃2/5 = δc, Re−1 = λμ̃3, ε̃s = ε̃6/5, (2.27)

where λ is the O(1) Haberman parameter measuring the importance of viscosity. In terms
of Re, the threshold sound intensity ε̃s = O(Re−1). The scaling relations (2.27) form the
basis of non-equilibrium critical-layer theory describing the mutual interaction between
the incident sound and the radiating mode as well as the self-interaction of the latter.

2.3.2. Equilibrium non-parallel regime
Non-parallelism is a salient feature of boundary-layer flows, and its effect on instability
may be significant especially as a mode evolves through the vicinity of its neutral positions
(Smith 1979b; Bodonyi & Smith 1981; Smith 1989). An asymptotic approach is required
to characterise systematically the combined effects of non-parallelism and nonlinearity
as shown by Smith (1979a) and Hall & Smith (1984) for lower-branch viscous T-S
instability modes. For inviscid instability modes, such as the present radiating mode, the
equilibrium non-parallel regime is pertinent to the region where the length scales over
which the growth rate and the amplitude vary are comparable (Wu 2005). This region is
represented by

x3 = x3,n + Re−1/2 x̄ with x̄ = O(1). (2.28)

We take δ∗ to be the boundary-layer thickness at the neutral position, and it follows
that x3,n = 1. Inspection of (2.24) shows that in this region, the non-equilibrium effect,
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μ̄= O(Re−1/2), is much smaller than the viscous effect. The critical layer is thus
of equilibrium type and viscosity dominated, resulting in a critical layer width δc =
O(Re−1/3). A similar scaling argument shows that the self-nonlinear effect of the
radiating mode comes into play when its amplitude reaches the threshold

ε̃ = δ2
c μ̄

1/2 = O
(
Re−11/12). (2.29)

The quadratic interaction between the sound and the radiating mode regenerates the
fundamental of the radiating mode with streamwise velocity of O(ε̃ε̃sδ

−2
c ). When this is

comparable with the O(ε̃Re−1/2) jump in the outer solution, i.e. ε̃ε̃sδ
−2
c = O(ε̃Re−1/2),

the evolution of the radiating mode is affected by the incident sound wave. It follows that
the threshold magnitude of the incident sound is

ε̃s = O
(
Re−1/2δ2

c

) = O
(
Re−7/6), (2.30)

which is asymptotically smaller than the O(Re−1) threshold intensity in the non-
equilibrium regime.

The local mean velocity and temperature profiles can be approximated by(
Ū (x3, y), T̄ (x3, y)

) ≈ (
Ū (x3,n, y), T̄ (x3,n, y)

) + Re−1/2(Ū1(y), T̄1(y)
)
x̄, (2.31)

to the required order. With the key scalings identified, the effects of the sound wave on the
evolution of the radiating mode will be analysed in a self-consistent manner.

The non-equilibrium parallel and equilibrium non-parallel regimes, while distinguished,
are intrinsically linked. The connection can be understood by noting that (2.30), also
follows from (2.26) by setting μ̃= O(Re−1/2). The relation (2.26) holds in both regimes,
and may be rewritten as

μ̃= ε̃s Re2/3, (2.32)

which determines the growth-rate modification by the impinging sound in terms of its
intensity. The modification is comparable to the local unmodified growth rate in the
streamwise region specified by (2.19). The non-equilibrium parallel and equilibrium
non-parallel regimes correspond to the distinguished thresholds ε̃s = O(Re−1) and
O(Re−7/6), respectively. As ε̃s is reduced from O(Re−1) to O(Re−7/6), the non-
equilibrium parallel regime acquires the character of the equilibrium non-parallel regime.
This observation forms the basis for constructing the composite amplitude equation in § 4.

The scaling relations derived earlier are pertinent to a two-dimensional radiating mode
and an associated incident wave. We realise that a planar radiating mode can be continued
to a band of oblique ones, each of which, (α, β, ω) say, may be in resonance with an
impinging sound wave (2α, 2β, 2ω). Moreover, when a pair of oblique modes (α,±β, ω)
are present, subharmonic triadic resonance (cf. Wu 1995) can take place between them
and a planar sound wave (2α, 0, 2ω). In these cases, the interactions are associated with
the simple-pole singularity of the spanwise and streamwise velocities of the oblique
mode(s), and the required threshold amplitude of the incident sound wave(s) would be
ε̃s = O(Re−4/3) and O(Re−3/2) in the non-equilibrium parallel and equilibrium non-
parallel regimes, respectively, as can be deduced by a similar scaling argument. These
scenarios are interesting but are left for future investigation.

3. Subharmonic resonance
We consider the evolution of a pre-existing radiating mode in the presence of an impinging
sound wave. The direct effect of the latter can be accounted for by an appropriate amplitude
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y

Common critical layer

Incident sound wave

θs

Ma > 1

Amplifying radiating mode

Mach waveReflected sound wave

O (Re–1/3)

U (y)

U (yc) = c

εs pI [ei(αsx+γsy –ωst) +    ei(αsx–γsy–ωst)]

Figure 1. A sketch of reflection of the sound wave and interaction with the radiating mode.

equation of the mode, which is to be derived. The physical process is illustrated in
figure 1. The incident wave generates response within the boundary layer while being
reflected. More importantly, it influences the development of the radiating mode through a
subharmonic resonance and, in turn, the spontaneous emission of Mach waves. Depending
on the intensity of the acoustic wave, the critical-layer dynamics takes two distinguished
forms. The evolution of the radiating mode in both cases will be analysed in the following.
Since much of the analysis is similar to that by Qin & Wu (2024), we outline, without
repeating the derivations, the results in the earlier paper that are used in the present work,
and our main focus will be on the new aspect: the interaction between the radiating mode
and the acoustic signature.

3.1. Non-equilibrium parallel regime
As the scaling relations in (2.27) indicate, the radiating mode evolves nonlinearly with
the rate μ̃= ε̃2/5 when its amplitude ε̃ = O(Re−5/6), and is simultaneously affected by
the incident sound with a smaller magnitude ε̃s = ε̃6/5 = O(Re−1) due to subharmonic
resonance. Moreover, detuning effects may be included by allowing the wavenumber of
the sound to differ from twice that of the radiating mode by an O(μ̃) amount, that is,

αs = 2 (α+ μ̃α̃d) , (3.1)

where α̃d is an O(1) detuning parameter.

3.1.1. Main layer
In the main layer, the disturbance expands as(

ρ̃, ũ, ṽ, p̃, θ̃
) = ε̃

[
Ã
(
x̃
)(
ρ̂0, û0, v̂0, p̂0, θ̂0

) + μ̃
(
ρ̂1, û1, v̂1, p̂1, θ̂1

)]
E (3.2)

+ ε̃s
(
ρ̌s, ǔs, v̌s, p̌s, θ̌s

)
Es + c.c. + · · · ,

where the first term represents a nearly neutral radiating mode, which propagates from
upstream with Ã(x̃) being its amplitude function, and E = eiα(x−ct) its carrier wave.
Here, the second term is the deviation from neutrality, while the third term represents
the impinging acoustic perturbation with Es = e2iα(x−ct)+2iα̃d x̃ being its carrier wave.
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Substitution of (3.2) into (2.2) followed by linearisation yields the leading-order
equations for the mode,

iα(Ū − c)ρ̂0 + R̄′v̂0 + R̄(iαû0 + v̂′
0)= 0, (3.3a)

iα(Ū − c)û0 + Ū ′v̂0 = −iαT̄ p̂0, (3.3b)

iα(Ū − c)v̂0 = −T̄ p̂′
0, (3.3c)

iα(Ū − c)θ̂0 + T̄ ′v̂0 = iα(γ − 1)Ma2(Ū − c)T̄ p̂0, (3.3d)

γMa2 p̂0 = R̄θ̂0 + T̄ ρ̂0. (3.3e)

Elimination of ρ̂0, û0, v̂0 and θ̂0 leads to the compressible Rayleigh equation for p̂0,

L p̂0 ≡
{
∂2

∂y2 +
(

T̄ ′

T̄
− 2Ū ′

Ū − c

)
∂

∂y
− α2

[
1 − Ma2(Ū − c)2

T̄

]}
p̂0 = 0. (3.4)

As y → ∞,

p̂0 ∼ C∞e−iαqy with q =
√

Ma2(1 − c)2 − 1, (3.5)

which represents an outgoing wave that persists away from the main layer. Here, C∞ is a
constant that is determined by normalisation of the eigenfunction.

The solution near the critical level yc is obtained using the Frobenius method (Leib
1991; Boyce & DiPrima 2012) as

p̂0 ∼ Ū ′
c

T̄c

{
α2

3
a±φa + φb + α2

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂|φa

}
, (3.6)

where η̂≡ y − yc → 0, and

φa = η̂3 + χa η̂
4 + · · · , φb = 1 − α2

2
η̂2 + χbη̂

4 + · · · , (3.7)

with χa and χb being constants, whose expressions are given by (3.8) and (3.9) of Qin
& Wu (2024) with α replacing αs , and are reproduced in Appendix A for completeness;
here, the subscript c represents the value evaluated at the critical level. It follows from
(3.3b)–(3.3d) that as η̂→ 0,

û0 ∼ −
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂| + 5

6
Ū ′′

c

Ū ′
c

− 1
3

T̄ ′
c

T̄c
− a± + · · · , (3.8)

v̂0 ∼ −iα
{

1 −
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)
η̂ ln |η̂| +

(
2
3

T̄ ′
c

T̄c
− 1

6
Ū ′′

c

Ū ′
c

− a±
)
η̂+ · · ·

}
, (3.9)

θ̂0 ∼ T̄ ′
c

Ū ′
cη̂
. (3.10)

The temperature perturbation exhibits the same simple-pole singularity as that of an
inflectional mode (Goldstein & Leib 1989), while the logarithmic singularity is present
only for a supersonic mode, whose critical level does not correspond to the generalised
inflection point (Leib 1991). Equation (3.8) indicates a jump of û0,

û+
0 − û−

0 = −(a+ − a−)+ · · · . (3.11)
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At the next order, the second terms in the expansion (3.2), (ρ̂1, û1, v̂1, p̂1, θ̂1), are found
to satisfy the inhomogeneous version of (3.3a)–(3.3e), which are given in Appendix A. By
eliminating ρ̂1, û1, v̂1 and θ̂1, we can show that p̂1 satisfies an inhomogeneous Rayleigh
equation (Wu 2005; Qin & Wu 2024),

L p̂1 = Ã′ 2ic
α

{
Ū ′ p̂′

0

(Ū − c)2
+ α2

c

[
Ma2Ū (Ū − c)

T̄
− 1

]
p̂0

}
− x̄1 Ã�1, (3.12)

where we have put

Δ1=
{

2Ū ′

Ū − c

(
Ū1

Ū − c
− Ū ′

1

Ū ′

)
+ T̄ ′

T̄

(
T̄ ′

1

T̄ ′ − T̄1

T̄

)}
p̂′

0 + α2 Ma2 (Ū − c)2

T̄

(
2Ū1

Ū − c
− T̄1

T̄

)
p̂0.

(3.13)
As y → ∞,

p̂1 ∼ pR(x̃)e−iαqy + q−1[1 − Ma2(1 − c)]C∞ Ã′ye−iαqy . (3.14)

However, by the method of dominant balance, we deduce that as y → yc,

p̂1 ∼ α2

T̄c

(
ic
α

Ã′ − Ū1c x̄1 Ã

){
η̂−

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
η̂2 ln |η̂| (3.15)

−
[

a± + 1
3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)]
η̂2 + 1

3
j η̂3 ln |η̂|

}
+ Ū ′

c

T̄c
(iα Ã′)η̂2

+
(
α2Ū ′

c

3T̄c
x̄1 Ã

)
j1η̂

3 ln |η̂| + c±φa + d

[
φb + α2

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂|φa

]
,

where c± and d are arbitrary functions of x̃ , and

j = T̄ ′′
c

T̄c
− Ū ′′′

c

Ū ′
c

−
(

T̄ ′
c

T̄c

)2

+
(

Ū ′′
c

Ū ′
c

)2

+ 3
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)2

− 2
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)
Ū ′

c

Ūc
,

j1 = T̄ ′
c

T̄c

(
T̄ ′

1c

T̄ ′
c

− T̄1c

T̄c

)
+ Ū ′′

c

Ū ′
c

(
Ū ′

1c

Ū ′
c

− Ū ′′
1c

Ū ′′
c

)
− 2

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
Ū1c

Ūc
. (3.16)

It follows from the x- and y-momentum equations, (A3b) and (A3c), that

û1 = − T̄

Ū − c
p̂1 − T̄ Ū ′

α2(Ū − c)2
p̂1,y + · · · . (3.17)

Thus, the jump of û1 is found to relate to (c+ − c−) by the equation

û+
1 − û−

1 = − 3T̄c

α2Ū ′
c

(c+ − c−)+ · · · . (3.18)

For the inhomogeneous equation (3.12) to have an acceptable solution, it has to satisfy a
solvability condition. This can be derived by multiplying both sides of (3.12) by p̂0T̄ /(Ū −
c)2 and integrating from 0 to ∞, leading to

3(c+ − c−)− 2α2

T̄c

(
ic
α

Ã′ − Ū1c x̄1 Ã

) (
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
(a+ − a−)− α2d(a+ − a−)

= −Ū ′
c

(
2ic
α

I2 Ã′ − I1 x̄1 Ã

)
, (3.19)
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where use has been made of the impermeability condition p̂′
0(0)= p̂1,y |y=0 = 0 and the

far-field condition (3.5) and (3.14), and the expressions for the integrals, I1 and I2, are
given by (4.19) and (4.20) of Qin & Wu (2024), respectively, and are reproduced in
Appendix A for completeness. The jumps (a+ − a−) and (c+ − c−) will be determined
by analysing the critical-layer dynamics.

The acoustic components, (ρ̌s, ǔs, v̌s, p̌s, θ̌s), satisfy the same equation as (3.3) with αs

and cs replacing α and c, respectively. Elimination of ρ̌s , ǔs , v̌s and θ̌s leads to the familiar
compressible Rayleigh equation for pressure p̌s , L p̌s = 0. This equation must be solved
subject to the impermeability condition, p̌s,y(0)= 0. In the far field, the pressure takes the
form

p̌s ∼ pI

[
eiγs y + R e−iγs y

]
as y → ∞, (3.20)

which consists of an incident wave and a reflected wave, where γs =
αs

√
Ma2(1 − cs)2 − 1, and R is the reflection coefficient. As η̂→ 0, the local

solution to L p̌s = 0 is constructed by using the Frobenius method as

p̌s = a±
s φsa + b±

s

[
φsb + α2

s

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂|φsa

]
, (3.21)

where φsa and φsb have the same expressions as φa and φb given by (3.7), with αs
replacing α. The pressure, velocities and temperature of the acoustic disturbance have
the expressions

p̌s = b±
s

[
1 − α2

s

2
η̂2 + α2

s

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
η̂3 ln |η̂| + (a±

s /b
±
s )η̂

3
]

+ O(η̂4 ln |η̂|),
(3.22a)

v̌s = −iαsb±
s

T̄c

Ū ′
c

[
1 −

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
η̂ ln |η̂| +

(
2
3

T̄ ′
c

T̄c
− 1

6
Ū ′′

c

Ū ′
c

− 3a±
s

α2
s b±

s

)
η̂

]
+O(η̂2 ln |η̂|),

(3.22b)

ǔs = b±
s

T̄c

Ū ′
c

[
−

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂| + 5

6
Ū ′′

c

Ū ′
c

− 1
3

T̄ ′
c

T̄c
− 3a±

s

α2
s b±

s

]
+ O(η̂ ln |η̂|), (3.22c)

θ̌s = b±
s

T̄cT̄ ′
c

(Ū ′
c)

2

[
1
η̂

−
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)
ln |η̂|

]
+ O(1). (3.22d)

It is worth noting that in the main layer and free stream, the acoustic wave and radiating
mode bear much resemblance, both being governed by linearised Euler equations and
having similar forms of solutions. Clearly, the temperature perturbation θ̌s and the
streamwise velocity ǔs exhibit a simple-pole singularity and a logarithmic singularity,
respectively, indicating that the main-layer solution breaks down as η̂→ 0. Thus we need
to analyse the critical layer.

3.1.2. Critical layer
The singularity of the main-layer solution is to be removed by introducing viscous effects
within the critical layer, which determine the critical layer width to be of order Re−1/3,
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which is O(ε̃2/5), and so the appropriate local transverse coordinate is

Y = (y − yc)/ε̃
2/5. (3.23)

The asymptote of the inviscid solution, (3.6) and (3.8)–(3.10), suggests that the
perturbation in the critical layer expands as

ũ = ε̃
(
U1 E + ε̃1/5UM + ε̃2/5U2 E

) + ε̃sUs1 Es + c.c. + · · · , (3.24a)

ṽ = ε̃
(
V0 E + ε̃2/5V1 E + ε̃3/5VM + ε̃4/5V2 E

) + ε̃s Vs0 Es + c.c. + · · · , (3.24b)

p̃ = ε̃
(
P0 E + ε̃2/5 P1 E + ε̃4/5 P2 E

) + ε̃s Ps0 Es + c.c. + · · · , (3.24c)

θ̃ = ε̃3/5(Θ1 E + ε̃1/5ΘM + ε̃2/5Θ2 E
) + ε̃s ε̃

−2/5Θs1 Es + c.c. + · · · , (3.24d)

where the subscript M denotes the mean-flow distortion. Strictly speaking, the expansions
actually contain logarithm terms, but they are not needed in the calculation of the jumps
and hence are not written out for brevity. Substituting (3.24) into (2.2) and noting (2.23)
and (3.23), we then obtain the equations governing the terms at different orders in the
expansion.

At leading order, inspection of the x- and y-momentum equations gives

P0 = (
Ū ′

c/T̄c
)

Ã, V0 = −iα Ã. (3.25)

Expansion of the energy equation shows that

LpΘ1 + T̄ ′
c V0 = 0, (3.26)

with the operator Lp being defined by

Lp = c
∂

∂ x̃
+ iα

(
Ū ′

cY + Ū1c x̄1
) − λT̄cμ̄c Pr−1 ∂

2

∂Y 2 . (3.27)

Equation (3.26) is solved by use of Fourier transform to give

Θ1 = iαT̄ ′
c

∫ ∞

0
exp

( − spξ
3 − iαŪ ′

cȲ ξ
)

Ã(x̃ − cξ) dξ, (3.28)

where we have put Ȳ ≡ Y + (Ū1c/Ū ′
c)x̄1 and sp = 1/3λ(αŪ ′

c)
2T̄cμ̄c Pr−1.

At the next order, expansion of the continuity and x-momentum equations yields

− cΘ1,x̃/T̄ 2
c + iα

(
Ū ′

cY + Ū1c x̄1
)( −Θ1/T̄ 2

c

) + 1
T̄c

(
iαU1 + V1,Y

) − T̄ ′
c

T̄ 2
c

V0 = 0,

(3.29a)

LμU1 + Ū ′
cV1 + (

Ū ′′
c Y + Ū ′

1c x̄1
)

V0 = −iαT̄c P1 − T̄c P0,x̃ − iα
(
T̄ ′

cY + T̄1c x̄1
)

P0

+ λT̄cμ̄
′
cŪ ′

cΘ1,Y , (3.29b)

where μ̄′
c = (dμ̄/dT̄ )|y=yc , and Lμ is the same as Lp provided that Pr is set to unity;

here, the subscript Y denotes the differentiation with respect to Y . These two equations
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are combined to obtain an equation for U1,Y , which is solved to give

U1,Y =iαŪ ′
c

T̄ ′
c

(
T̄cμ̄

′
c−μ̄c Pr−1)

T̄cμ̄c(1−Pr−1)

∫ ∞

0

[
1−e−(sp−s)ξ3

]
exp

(− sξ3 − iαŪ ′
cȲ ξ

)
Ã(x̃ − cξ) dξ

−iαŪ ′
c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)∫ ∞

0
exp

( − sξ3 − iαŪ ′
cȲ ξ

)
Ã (x̃ − cξ) dξ,

(3.30)

where s = 1/3λ(αŪ ′
c)

2T̄cμ̄c. Matching U1 with its outer counterpart determines the
jump

a+ − a− =
(

T̄ ′
c

T̄c
− Ū ′′

c

Ū ′
c

)
π i. (3.31)

We now consider the acoustic component. At leading order, the y-momentum equation
gives Ps0,Y = 0. Matching with the main-layer solution leads to

b+
s = Ps0 = b−

s ≡ bs . (3.32)

The continuity, x-momentum and energy equations for the leading-order terms read
Vs0,Y = 0, and

Ū ′
cVs0 = −iαs T̄c Ps0, (3.33a)

iαsŪ ′
cYΘs0 + T̄ ′

c Vs0 = λT̄cμ̄c Pr−1Θs0,Y Y , (3.33b)
respectively. The solution is found to be

Vs0 = −iαsbs T̄c/Ū
′
c, (3.34a)

Θs0 = iαs
T̄cT̄ ′

c

Ū ′
c

bs

∫ ∞

0
exp

( − sspξ
3 − iαsŪ ′

cY ξ
)
dξ with ssp = 1

3λ
(
αsŪ ′

c

)2
T̄cμ̄c Pr−1.

(3.34b)
At the next order, the continuity and x-momentum equations yield

iαsŪ ′
cY (−Θs0/T̄ 2

c )+ (iαsUs1 + Vs1,Y )/T̄c − (T̄ ′
c/T̄ 2

c )Vs0 = 0, (3.35a)

LsUs1 + Ū ′
cVs1 + Ū ′′

c Y Vs0 = −iαs T̄ ′
cY Ps0 + λT̄cŪ ′

cμ̄
′
cΘs0,Y , (3.35b)

where the operator Ls is defined by

Ls = iαsŪ ′
cY − λT̄cμ̄c

∂2

∂Y 2 . (3.36)

Eliminating Vs1 between (3.35a) and (3.35b), and solving the resulting equation, we obtain

Us1,Y = iαs
T̄ ′

c(T̄cμ̄
′
c − μ̄c Pr−1)

μ̄c(1 − Pr−1)
bs

∫ ∞

0

[
1−exp(−(ssp − ss)ξ

3)
]

exp(−ssξ
3−iαsŪ ′

cY ξ) dξ

−iαs T̄c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
bs

∫ ∞

0
exp(−ssξ

3 − iαsŪ ′
cY ξ) dξ,

(3.37)

where ss = 1/3λ(αsŪ ′
c)

2T̄cμ̄c. Matching Us1 with its outer counterpart (3.22c) determines
the jump

a+
s − a−

s = α2
s

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
bsπ i. (3.38)
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This jump is used together with (3.21) to solve the Rayleigh equation numerically where by
we obtain the reflection coefficient R and the boundary-layer response bs ; the details were
given by Qin & Wu (2024). There it was showed that both R and bs are extraordinarily
large for a small subset of the sound incident angle and frequency. Furthermore, resonant
over-reflection occurs for a specific pairing of incidence angle and frequency, and the
reflected wave coincides with a locally neutral radiating mode.

The solution for the mean-flow distortion is presented in Appendix B.1. We now
proceed to consider the fundamental regenerated by the cubic interaction, as well as
the interaction between the acoustic component and the leading-order fundamental. The
governing equations are found to be[

c
∂

∂ x̃
+ iα(Ū ′

cY + Ū1c x̄1)

]
(−Θ2/T̄ 2

c )+
1
T̄c
(iαU2 + V2,Y )= V0

T̄ 2
c

ΘM,Y

+ 1
T̄ 2

c

(V ∗
0 Θs1,Y + Vs0Θ

∗
1,Y )e

2iα̃d x̃ + · · · , (3.39a)

LμU2 + Ū ′
cV2 = −iαT̄c P2 − V0UM,Y − iαP0ΘM + λT̄cμ̄

′
cŪ ′

cΘ2,Y (3.39b)

+(−V ∗
0 Us1,Y − Vs0U∗

1,Y + iαP∗
0Θs1 − 2iαPs0Θ

∗
1 )e

2iα̃d x̃ + · · · ,
LpΘ2 = −V0ΘM,Y + (−V ∗

0 Θs1,Y − Vs0Θ
∗
1,Y )e

2iα̃d x̃ + · · · . (3.39c)

Equation (3.39c) is solved first to give

Θ2 = −iα5(Ū ′
c)

2T̄ ′
c

∫ ∞

0

∫ ∞

0

∫ ∞

−ζ
ζ 2 exp[−spξ

3 − iαŪ ′
cȲ ξ − 2spζ

3 − 3spζ
2η]

× Ã(x̃ − cξ − cζ ) Ã(x̃ − cξ − cζ − cη) Ã∗(x̃ − cξ − 2cζ − cη) dξ dη dζ

+iα3T̄cT̄ ′
cbs

[ ∫ ∞

0

∫ ∞

−ζ
2ζ exp[−spξ

3 − iαŪ ′
cȲ ξ − 2spζ

3] Ã∗(x̃ − cξ − 2cζ ) dξ dζ

+
∫ ∞

0

∫ ∞

ζ

ζ exp[−spξ
3 − iαŪ ′

cȲ ξ + spζ
3/2] Ã∗(x̃ − cξ + cζ ) dξ dζ

]
.

(3.40)

Equations (3.39a) and (3.39b) can be reduced to

LμU2,Y = − V0UM,Y Y − iαP0ΘM,Y + λŪ ′
c(T̄cμ̄

′
c − μ̄c Pr−1)Θ2,Y Y

+ (−V ∗
0 Us1,Y Y − Vs0U∗

1,Y Y + iαP∗
0Θs1,Y − 2iαPs0Θ

∗
1,Y )e

2iα̃d x̃ + · · · .
(3.41)

The jump of U2 is obtained by Fourier transforming (3.41) and setting the transform
variable in the solution to zero. Matching U2 with the outer solution (3.18) yields the
jump

c+ − c− = 1
3
α2

T̄c

(
ic
α

Ã′ − Ū1c x̄1 Ã

)
jπ i +

(
α2Ū ′

c

3T̄c
x̄1 Ã

)
j1π i + d

α2

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
π i

−2π iα6(Ū ′
c)

3T̄ ′
c

3T̄ 2
c

∫ ∞

0

∫ ∞

0
K (ξ, η) Ã(x̃ − cξ) Ã(x̃ − cξ − cη) Ã∗(x̃ − 2cξ − cη) dηdξ

+4π iα4Ū ′
cT̄ ′

cbs

3T̄c

∫ ∞

0
e2iα̃d (x̃−cξ)Kb(ξ) Ã

∗(x̃ − 2cξ) dξ,

(3.42)
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where the linear part of the jump corresponds to the (−π) phase jump of the logarithmic
singularity in (3.15), and the kernel functions

K (ξ, η)=ξ2 exp[−s(2ξ3+3ξ2η)]
{

exp[−(sp−s)ξ3]+exp[−(sp−s)ξ3 − 3(sp − s)ξ2η]

− T̄cμ̄
′
c − μ̄c Pr−1

μ̄c(1 − Pr−1)

[
1 − exp(−(sp − s)(2ξ3 + 3ξ2η))

] + T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)}
, (3.43)

Kb(ξ)= ξe−2sξ3
{

e−(sp−s)ξ3 − T̄cμ̄
′
c − μ̄c Pr−1

μ̄c(1 − Pr−1)

[
1 − e−2(sp−s)ξ3] + T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)}
.

(3.44)

The last term in (3.42) is contributed by the subharmonic parametric resonance between
the radiating mode and the boundary-layer response to the incident wave.

Inserting the jumps (3.31) and (3.42) into (3.19), we obtain the evolution equation for
the amplitude function Ã (cf. Qin & Wu 2024),

Ã′(x̃)= σ x̄1 Ã +Υ

∫ ∞

0

∫ ∞

0
K (ξ, η) Ã(x̃ − cξ) Ã(x̃ − cξ − cη) Ã∗(x̃ − 2cξ − cη) dηdξ

+Υb

∫ ∞

0
e2iα̃d (x̃−cξ)Kb(ξ) Ã

∗(x̃ − 2cξ) dξ, (3.45)

where

σ = (−iα/c)
{

I1 + α2

T̄c

[
Ū1c

Ū ′
c

(
j − 2

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)2)
− j1

]
π i

}/
G, (3.46)

Υ = 2πα7(Ū ′
c)

2T̄ ′
c/(cT̄ 2

c G), Υb = −4πα5T̄ ′
cbs/(cT̄cG), (3.47)

with bs = bs(pI ) given by (3.32) and

G = 2I2 + α2

T̄cŪ ′
c

[
j − 2

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)2]
π i. (3.48)

In addition to the cubic self-nonlinear term, the amplitude equation (3.45) consists also
of a linear non-local term, which accounts for the impact of the incident sound on the
evolution of the radiating mode.

3.1.3. Effects of incident sound on the linear growth rate
The solution to the amplitude equation (3.45) can be written as

Ã = A0(x̃)eiα̃d x̃ . (3.49)

By substituting (3.49) into (3.45), we obtain

A′
0(x̃)= (κ0 − iα̃d)A0

+Υ

∫ ∞

0

∫ ∞

0
K (ξ, η)A0(x̃ − cξ)A0(x̃ − cξ − cη)A∗

0(x̃ − 2cξ − cη) dηdξ

+Υb

∫ ∞

0
Kb(ξ)A

∗
0(x̃ − 2cξ) dξ, (3.50)
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where we have put κ0 = σ x̄1. In the upstream regime, where the amplitude of the radiating
mode is small, the nonlinear term in (3.50) can be neglected, leading to the equation

A′
0(x̃)= (κ0 − iα̃d)A0 +Υb

∫ ∞

0
Kb(ξ)A

∗
0(x̃ − 2cξ) dξ as x̃ → −∞. (3.51)

Let us seek a solution of the form

A0 = A0r + iA0i , (A0r , A0i )= (ar , ai )eκ x̃ + c.c., (3.52)

where ar and ai are both complex constants, and so is κ with its real part representing the
linear growth rate modified by the incident sound. Then, A0 can be written as

A0 = (ar + iai )eκ x̃ + (a∗
r + ia∗

i )e
κ∗ x̃ . (3.53)

Substitution of (3.53) into (3.51) and collection of terms proportional to eκ x̃ and eκ
∗ x̃ lead

to the eigenvalue problem,(
κ0r +Υbrχb −κ0i + α̃d +Υbiχb

κ0i − α̃d +Υbiχb κ0r −Υbrχb

) (
ar
ai

)
= κ

(
ar
ai

)
, (3.54)

where we have put

χb(κ)=
∫ ∞

0
Kb(ξ)e−2κcξ dξ. (3.55)

The requirement for non-zero solutions (ar , ai ) gives the characteristic equation for κ ,

F ≡ (κ − κ0r )
2 + (κ0i − α̃d)

2 − (|Υb|χb)
2 = 0. (3.56)

The function F is real if κ is, and thus if the equation F = 0 admits a complex root κ , so
is its complex conjugate. The equation is solved numerically using Newton iteration. The
corresponding eigenvector (ar , ai ) is obtained from (3.54) and written as

ar = a0ar0 ≡ |a0||ar0|ei(θ1+φ0), ai = a0ai0 ≡ |a0||ai0|ei(θ2+φ0), (3.57)

where (ar , ai ) is normalised such that |ar0|2 + |ai0|2 = 1, and a0 = |a0|eiφ0 is a complex
constant. Thus, the perturbation A0 can be written as

A0 = 2|a0|eκr x̃[|ar0| cos(κi x̃ + θ1 + φ0)+ i|ai0| cos(κi x̃ + θ2 + φ0)
]
. (3.58)

The coefficient of the subharmonic resonance term in (3.45) is proportional to bs ,
which depends on pI . We now estimate its values pertinent to applications. The noise
level p̃s in conventional wind tunnels is of O(10−3) (Masutti et al. 2012; Cerminara
et al. 2019), but in flight conditions, it can be one to two orders of magnitude lower
(Schneider 2008, 2015). Thus, we estimate that p̃s = O(10−4). Typical Reynolds numbers
are in the range of 104–105. Recall that the pressure of the acoustic wave takes the form
p̃s = ε̃s pI ei(αs x+γs y−ωs t) + c.c. It follows that

pI = p̃s/ε̃s = p̃s/Re−1 ≈ 1–10. (3.59)

Figure 2 shows the effects of pI on the modified growth rate κr . Depending on
the position x̄1 and the detuned parameter α̃d , κr is either enhanced or reduced by
the impinging sound. The modified growth rate increases with pI in a narrow region
corresponding to a moderate range of x̄1, beyond which it decreases with pI over
a broader range, suggesting that the sound plays a stabilising role. As |x̄1| → ∞, κr
approaches the unperturbed growth rate κ0r . This can be inferred by examining (3.56).
Since κ0r and κ0i are proportional to x̄1, the dominant balance for large |x̄1| yields
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Figure 2. Effects on κ of the impinging sound intensity with α̃d = −1 and λ= 1: (a) κr and (b) κi . The
dashed line represents the linear growth rate in the absence of the incident sound.
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Figure 3. Effects on κ of the detuning with pI = 5 and λ= 1: (a) κr and (b) κi . The dashed line represents
the linear growth rate in the absence of the incident sound.

(κ − κ0r )
2 + (κ0i − α̃d)

2 = 0 so that κr = κ0r and κi = ±(κ0i − α̃d). Since the function
F is real for real values of κ , it may admit real roots for certain parameters. Indeed, the
solution changes from a complex conjugate pair to a single real root at certain positions,
as is shown by the trend of κi in figure 2(b). Destabilising effect of the subharmonic
resonance is observed primarily in the regions where κ is real. As pI increases to a high
value, the range over which the acoustic wave destabilises the radiating mode broadens,
and the peak modified growth rate becomes significantly larger. These trends align with the
behaviour illustrated in figure 2(a). Figure 3 shows the variation of the modified growth
rate with x̄1 for three values of α̃d . Altering α̃d shifts the distribution of both κr and κi .
Again, the complex roots κ develop into real roots in a narrow region in each case. All
these results indicate that for the parameters examined, the impinging sound in general
weakens slightly the linear development of the radiating mode, but in a small region, it
enhances significantly the modal growth.

3.1.4. Nonlinear evolution
We proceed to consider effects of the impinging sound on the nonlinear development by
solving numerically the nonlinear amplitude equation (3.50), subject to the appropriate
initial condition (3.58) as x̃ → −∞. The six-order Adams–Moulton method is used, and
the integral terms are approximated by Simpson’s rule. Results are shown in figures 4
and 5. Note that the impinging sound wave modifies the linear growth rate only slightly
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Figure 4. Effects of incident sound intensity and viscosity on the nonlinear evolution of the radiating mode. (a)
Nonlinear development for different values of pI with λ= 1. (b) Nonlinear development for different values
of λ with pI = 40. The dashed lines represent the corresponding linear solution (3.58). Here, we have taken
x̄1 = −4, α̃d = −1 and a0 = 1.
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Figure 5. Effects of incident sound intensity and viscosity on the nonlinear evolution of the radiating mode.
(a) Nonlinear development for different values of pI with λ= 1. (b) Nonlinear development for different values
of λ with pI = 10. The dashed lines represent the corresponding linear solution (3.58). Here, we have taken
x̄1 = −7.25, α̃d = −1 and a0 = 1.

in the case shown in figure 4, but significantly in the case displayed in figure 5. The
amplitude always develops into a singularity at a finite distance. Increasing the intensity
of the sound wave advances appreciably its occurrence (figures 4a and 5a). This is so
even though the effect on the linear growth rate is rather limited (figure 4a). We also
examine the effects of viscosity on the nonlinear development, which generally delays
the occurrence of the finite-distance singularity (figures 4b and 5b), similar to what has
been found previously for free-mode evolution (Goldstein & Leib 1989; Leib 1991) and
for fundamental resonance with impinging sound (Qin & Wu 2024). One may note that
the solutions in figure 4 are more oscillatory than those in figure 5. This is due to the fact
that linear modes in figure 4 have non-zero κi , which renders the solutions oscillatory as
(3.58) indicates, whereas those in figure 5 are non-oscillatory with κi = 0.

3.2. Equilibrium non-parallel regime
As was shown in § 2.3.2, a sound influences nonlinearly the evolution of the
radiating mode in the equilibrium regime when its magnitude ε̄s = O(Re−7/6), and its
wavenumber/frequency is close to/the same as twice those of the radiating mode, that is,
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αs = 2(α + Re−1/2ᾱd), ωs = 2ω, (3.60)

where ᾱd is an O(1) detuning parameter. For Re = 104–105, p̄I = p̃s/ε̄s = p̃s/Re−7/6 ≈
4.64–68.13.

3.2.1. Main layer
The analysis in the main layer is only slightly modified with expansion (3.2) being
replaced by

(ρ̃, ũ, ṽ, p̃, θ̃ )= ε̄
[
Ā(x̄)(ρ̂0, û0, v̂0, p̂0, θ̂0)+ Re−1/2(ρ̂1, û1, v̂1, p̂1, θ̂1)

]
E (3.61)

+ ε̄s(ρ̌s, ǔs, v̌s, p̌s, θ̌s)Es + c.c. + · · · .
The corresponding solvability condition (3.19) becomes

3(c+ − c−)− 2α2

T̄c

(
ic
α

Ā′ − Ū1c x̄ Ā

) (
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
(a+ − a−)− α2d(a+ − a−)

= −Ū ′
c

(
2ic
α

I2 Ā′ − I1 x̄ Ā

)
, (3.62)

which corresponds to (3.19) but with the parameter x̄1 being replaced by variable x̄ . The
jumps (a+ − a−) and (c+ − c−) are determined by analysing the critical-layer dynamics.

3.2.2. Critical layer
The singularity in the main-layer solution is removed by reintroducing viscosity in
the critical layer with an O(Re−1/3) width, and so the appropriate local transverse
coordinate is

Y = (y − yc)/Re−1/3. (3.63)

The perturbation expands as

ũ = ε̄(U1 E + Re−1/6U2 E + Re−1/4UM + Re−1/2U3 E)+ ε̄sUs1 Es + c.c. + · · · ,
(3.64a)

ṽ = ε̄(V0 E + Re−1/3V1 E + Re−1/2V2 E + Re−7/12VM + Re−5/6V3 E)+ ε̄s Vs0 Es + c.c. + · · · ,
(3.64b)

p̃ = ε̄(P0 E + Re−1/3 P1 E + Re−1/2 P2 E + Re−5/6 P3 E)+ ε̄s Ps0 Es + c.c. + · · · ,
(3.64c)

θ̃ = ε̄Re1/3(Θ1 E+Re−1/6Θ2 E+Re−1/4ΘM+Re−1/2Θ3 E)+ε̄s Re1/3Θs1 Es+c.c.+· · · .
(3.64d)

Substituting (3.64) into (2.2) and noting (2.28) and (3.63), we then obtain the equations
governing the terms at different orders in the expansion.

At leading order, inspection of the x-momentum and y-momentum equations gives

P0 = (Ū ′
c/T̄c) Ā, V0 = −iα Ā. (3.65)

Expansion of the energy equation shows that

L̄pΘ1 + T̄ ′
c V0 = 0, (3.66)

where the operator L̄p is defined by

L̄p = iαŪ ′
cY − T̄cμ̄c Pr−1 ∂

2

∂Y 2 . (3.67)
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Non-equilibrium regime Intermediate regime 

Composite

Re2/3δ∗

Re1/3
δ
∗

ε̃s
–1

 Re–2/3
δ
∗

ε̃ ¯¯ x3,n + s  Re2/3x1x3,n + Re–1/3x1 x3,n

Re1/2
δ
∗

Equilibrium regime 

Figure 6. A sketch illustrating different evolution regimes.

Equation (3.66) is solved by use of Fourier transform to give

Θ1 = iαT̄ ′
c Ā

∫ ∞

0
exp(−spξ

3 − iαŪ ′
cY ξ) dξ, (3.68)

where sp is the same as that given in (3.28) provided that λ is set to unity.
At the next order, expansion of the continuity and x-momentum equations yields two

coupled equations for U1 and V1. These equations are combined to obtain an equation for
U1,Y , which is solved to give

U1,Y = iαŪ ′
c

T̄ ′
c(T̄cμ̄

′
c − μ̄c Pr−1)

T̄cμ̄c(1 − Pr−1)
Ā
∫ ∞

0
[1 − exp(−(sp − s)ξ3)] exp(−sξ3 − iαŪ ′

cY ξ) dξ

− iαŪ ′
c Ā

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

) ∫ ∞

0
exp(−sξ3 − iαŪ ′

cY ξ) dξ, (3.69)

where s is the same as that given in (3.30) provided that λ is set to unity. Matching U1
with its outer counterpart determines the jump, which is the same as (3.31) (as expected).

The acoustic signature is the same as that given in § 3.1.2 provided that λ is set to unity.
The pressure, wall-normal velocity, temperature and streamwise velocity components of
the acoustic disturbance are given by (3.32), (3.34a), (3.34b) and (3.37), respectively.

Further analysis of the critical layer is related to Appendix B.2, where we present at
quadratic order the solution for the mean-flow distortion, and at the cubic level, the jump
(c+ − c−) is determined and given by (B10).

Inserting the jumps (3.31) and (B10) into (3.62), we obtain the amplitude equation for
Ā (cf. Qin & Wu 2024),

Ā′(x̄)= σ x̄ Ā + l Ā| Ā|2 + lb Ā∗e2iᾱd x̄ , (3.70)

where σ is given in (3.46), and

l = iαΛ/(cŪ ′
cG), lb = iαΛb/(cŪ ′

cG). (3.71)

As expected, both the self-nonlinearity and the subharmonic resonance terms are now
local. The amplitude equation (3.70) describes the nonlinear evolution of the radiating
mode under the influence of the incident sound in the regime where non-parallelism is
important.

4. Non-parallelism and the composite amplitude equation
The amplitude equations derived in the non-equilibrium parallel and equilibrium non-
parallel regimes are pertinent to the two distinguished intensities of the impinging sound
wave, and their respective validity regions and the associated length scales of evolution are
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shown in figure 6. The two regimes are connected with each other via an intermediate one
that operates as the sound intensity ε̃s is varied between the distinguished levels O(Re−1)
and O(Re−7/6). We now construct, by following the same consideration as Wu & Huerre
(2009) and Qin & Wu (2024), a composite amplitude equation that accounts for both the
non-equilibrium and non-parallelism effects, and accommodates all the regimes including
the intermediate one.

4.1. Construction of the composite amplitude equation
Recall that in the equilibrium regime, the evolution occurs in the vicinity of the neutral
position (figure 6)

x3 = x3,n + Re−1/2 x̄ with x̄ = O(1), (4.1)

and the amplitude equation is (3.70) with ᾱd being defined by (3.60). However, in the
non-equilibrium regime, the evolution occurs in the vicinity of the neutral position

x3 ≈ x3,n + Re−1/3 x̄1 with x̄1 = O(1), (4.2)

and the amplitude is governed by (3.45) with α̃d being specified by (3.1).
Let us first construct the composite amplitude equation starting from the non-

equilibrium regime. Noting (2.21), i.e.

x̃ = Re2/3(x3 − (x3,n + Re−1/3 x̄1)), (4.3)

we can approximate the base flow by

(Ū (x3, y), T̄ (x3, y))≈ (Ū (x3,n, y), T̄ (x3,n, y))+ Re−1/3(Ū1(y), T̄1(y))(x̄1 + Re−1/3 x̃).
(4.4)

Following Wu & Huerre (2009), we construct a composite amplitude equation by retaining
the O(Re−2/3) term in (4.4) so that the first term on the right-hand side of (3.45) is
modified to σ(x̄1 + Re−1/3 x̃), and the exponential involving x̃ in the last term becomes
e2iα̃d (x̃+Re1/3 x̄1+Re2/3x3,n).

From (4.1) and (4.3), it follows that

x̄ = Re1/6 x̄1 + Re−1/6 x̃ . (4.5)

Note that in the equilibrium regime, we expanded the perturbation as

p = ε̄[ Ā(x̄) p̂0 + Re−1/2 p̂1 + · · · ], (4.6)

where ε̄ = Re−11/12, and the threshold intensity of the sound is ε̄s = Re−7/6 with p̄I =
p̃s/ε̄s , whilst in the non-equilibrium regime, we expanded the perturbation as

p = ε̃[ Ã(x̃) p̂0 + Re−1/3 p̂1 + · · · ], (4.7)

where ε̃ = Re−5/6, and the threshold intensity of the sound is ε̃s = Re−1 with pI = p̃s/ε̃s .
Thus, we have the relations Ā(x̄)= Re1/12 Ã(x̃) and p̄I = Re1/6 pI (b̄s = Re1/6bs). On
using these relations as well as (4.5), and noting ᾱd = Re1/6α̃d , the amplitude equation
(3.45) is rewritten as

Ā′(x̄)= σ x̄ Ā +Υ Re2/3
∫ ∞

0

∫ ∞

0
K (ξ, η; s̄) Ā(x̄−cξ) Ā(x̄−cξ−cη) Ā∗(x̄−2cξ−cη) dηdξ

+ Ῡb Re1/3
∫ ∞

0
e2iᾱd (x̄−cξ)Kb(ξ ; s̄) Ā∗(x̄ − 2cξ) dξ, (4.8)
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where s̄ = s Re1/2 and Ῡb = Ῡb( p̄I ) given by (3.47), and we have taken x3,n = 0 without
loss of generality.

The same composite amplitude equation may alternatively be constructed starting from
the equilibrium regime by retaining the small non-equilibrium term in the critical-layer
operator, which then becomes

Re−1/6c
∂

∂ x̄
+ iαŪ ′

cY − T̄cμ̄c Pr−1 ∂
2

∂Y 2 . (4.9)

In Appendix C, we show that the evolution problems in the equilibrium and non-
equilibrium regimes can be properly recovered from the composite theory.

The initial condition for the composite amplitude equation (4.8) is obtained by
neglecting the nonlinear term, leading to

Ā′(x̄)= σ x̄ Ā + Ῡb Re1/3
∫ ∞

0
e2iᾱd (x̄−cξ)Kb(ξ ; s̄) Ā∗(x̄ − 2cξ) dξ as x̄ → −∞.

(4.10)
It appears impossible to find an analytical solution to this equation, but we can seek the
solution in the form of an approximation. To this end, we write Ā as

Ā(x̄)= Â(x̄)eσ x̄2/2. (4.11)

Equation (4.10) reduces to

Â′(x̄)= Ῡb Re1/3e−iσi x̄2
I, (4.12)

where I is defined by

I =
∫ ∞

0
e2iᾱd (x̄−cξ)ξK0 Â∗(x̄ − 2cξ)eσ

∗(−2x̄cξ+2c2ξ2) dξ, (4.13)

and we have put K0 = Kb/ξ . Performing the substitution ξ̄ = −2x̄cξ in the integral I and
taking the limit x̄ → −∞ lead to

I = e2iᾱd x̄ K0(0) Â∗(x̄)
4x̄2c2σ ∗2 . (4.14)

We expand Â = ă0 + Â1 + · · · , where Â1 is a small correction. Substitution of this
expansion along with (4.14) into (4.12) gives

Â′
1(x̄)= Ῡb Re1/3K0(0)

e−iσi x̄2+2iᾱd x̄

4x̄2c2σ ∗2 ă∗
0 . (4.15)

The solution is found to be

Â1(x̄)= Ῡb Re1/3K0(0)
ă∗

0
4c2σ ∗2

∫ x̄

−∞
e−iσi τ

2+2iᾱdτ
1
τ 2 dτ. (4.16)

As x̄ → −∞, integration by parts yields the asymptotic approximation

Â1(x̄)∼ −Ῡb Re1/3K0(0)
ă∗

0
4c2σ ∗2

e−iσi x̄2+2iᾱd x̄

2iσi x̄3 . (4.17)

Therefore, the initial condition for the composite amplitude equation (4.8) reads

Ā(x̄)= eσ x̄2/2
{

ă0 − Ῡb Re1/3K0(0)
ă∗

0
4c2σ ∗2

e−iσi x̄2+2iᾱd x̄

2iσi x̄3 + · · ·
}

as x̄ → −∞.

(4.18)
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Figure 7. Resolution check on the solution to the composite amplitude equation (4.8) with Re = 104, ă0 = 3,
p̄I = 40 and ᾱd = 0. The step size of ‘Grid2’ is half that of ‘Grid1’.

It is worth noting that the second term on the right-hand side of (4.18) is tied to the
amplitude of the incoming acoustic wave since Ῡb is a function of p̄I (see (3.47)).

4.2. Numerical results
The composite amplitude equation (4.8) is solved numerically for a moderate value of p̄I
using the same method as that for (3.45). A resolution check is performed first, where two
grid sizes are employed. The results overlap to graphical accuracy as is shown in figure 7,
indicating a satisfactory accuracy.

To see how nonlinearity affects the solutions in the presence of sound, we fix p̄I =
40 and vary the initial amplitude ă0 when solving (4.8) subject to the initial condition
(4.18). The results are displayed in figure 8. As expected, there is little difference between
the linear and nonlinear solution for small initial amplitude ă0 = 1 (figure 8a). As the
initial magnitude of ă0 increases, nonlinear effects are no longer negligible. For ă0 = 3, the
nonlinear and linear solutions are qualitatively similar, but there is appreciable quantitative
difference with the amplitude acquiring a larger value under the influence of nonlinearity
(figure 8b). A similar trend is observed for ă0 = 4 (figure 8c). Increasing further the initial
amplitude to ă0 = 5, the nonlinear solution blows up at a finite distance, whereas the linear
solution still undergoes oscillatory attenuation (figure 8d). A more remarkable feature is
the striking differences between the nonlinear solutions with and without the effect of
the incident sound. For small values of ă0 (figure 8a,b), the amplitude grows followed
by attenuation, both in a monotonic manner in the absence of incident sound, and, in
contrast, in the presence of the sound, the amplification and decay are highly oscillatory.
For moderate ă0 (figure 8c), there arises a qualitative difference: the nonlinear solution in
the absence of sound develops a singularity at a finite distance, while the incident sound
eliminates the singularity, rendering the amplitude to undergo oscillatory amplification
and attenuation. For large ă0 (figure 8d), the amplitude blows up at a finite distance both
with and without the impinging sound, but the amplification exhibits repeated oscillations
in the former while monotonic in the latter. In all the cases shown in figure 8, the incident
sound inhibits the radiating mode.

The phase of the initial amplitude also plays an important role in the evolution, and
this is displayed in figure 9 for the two representative cases. The first corresponds to a
small initial amplitude (ă0 = 3), for which the radiating mode undergoes amplification-
attenuation in the absence of the impinging sound. When the incident sound is present, the
radiating mode with certain phases blows up at a finite distance, whereas the mode with
other phases decays following amplification (figure 9a). The second case corresponds to a
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Figure 8. Effects of the initial amplitude ă0 on the solution to the composite amplitude equation (4.8) with
Re = 104, p̄I = 40 and ᾱd = 0: (a) ă0 = 1; (b) ă0 = 3; (c) ă0 = 4; (d) ă0 = 5. Thick solid lines, solution to
(4.8); thin solid lines, solution to (4.10); dashed lines, nonlinear solution without impinging sound.
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Figure 9. Effects of the phase of the initial amplitude, ă0 ≡ |ă0|eiψ , on the evolution of the radiating mode
with Re = 104, p̄I = 40 and ᾱd = 0 for (a) |ă0| = 3 and (b) |ă0| = 5.

relatively large initial amplitude (ă0 = 5), for which the radiating mode develops a finite-
distance singularity when the incident sound is absent. In the presence of the impinging
sound with a fixed intensity, the singularity remains, but altering the phase shifts the
location of the singularity downstream or upstream (figure 9b). In both cases, changing
the phase may make the impinging sound wave to play a stabilising or destabilising role.
These behaviours may have important implications for artificial control of modal growth
by manipulating phase relation between the instability mode and sound wave (cf. Goldstein
& Lee 1992).
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Figure 10. Effects of p̄I on the evolution of the radiating mode with Re = 104, ᾱd = 0 and an initial
amplitude ă0: (a) ă0 = 3 and (b) ă0 = 5.

Figure 10 shows effects of p̄I on the evolution of the radiating mode. Two cases are
considered, for which the mode without the impinging sound remains bounded (figure 10a)
and blows up (figure 10b). While the amplitude upstream increases monotonically in the
case of a free mode with no incident sound (see also figure 8), once the incident sound is
present, the amplitude becomes oscillatory even in its earlier linear stage. Figure 10(a)
shows that impinging sound of moderate intensity inhibits the mode, whereas further
increase of the sound intensity enhances the amplification of the radiating mode and may
lead to blow-up. That the incident sound changes its role as its intensity is increased
also features in figure 10(b), where moderate sound intensities delay the formation of a
finite-distance singularity, and may even cause the radiating mode to saturate even though
it would blow up in the absence of sound. This stabilising effect is reversed when the
intensity is sufficiently strong: the incident sound energises the mode again, and may
resurrect finite-distance singularity, which shifts upstream, consistent with the behaviour
observed in the non-equilibrium regime.

5. Mach wave radiation
Similar to its counterpart on a free shear layer and a circular jet (Tam & Burton 1984a,b),
a supersonic instability mode on a boundary layer undergoing amplification-attenuation
can radiate a highly directional sound wave in the form of a Mach wave beam, as was
described by Wu (2005). We shall follow his asymptotic approach to determine the
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complete structure of the Mach wave beam, formally in the non-parallel equilibrium
regime. The disturbance outside of the boundary layer, (ρ̃, ũ, ṽ, p̃, θ̃ ), is governed by the
linearised Euler equations. Eliminating ρ̃, ũ, ṽ and θ̃ from these equations leads to the
wave equation for the pressure p̃,

Lw p̃ ≡
{

Ma2
(
∂

∂t
+ ∂

∂x

)2

−
(
∂2

∂x2 + ∂2

∂y2

)}
p̃ = 0. (5.1)

5.1. Near-field of the Mach wave beam
As observed by Wu (2005), the main-layer expansion (3.61) becomes disordered when
y = O(Re1/2) in view of the solution (3.14) for the pressure. The appropriate solution can
be sought by introducing the variable

ȳ = Re−1/2y = O(1). (5.2)

The perturbation in this region, referred to as the ‘near-field’ of the Mach wave beam,
expands as

p̃ = ε̄(p0 + Re−1/2 p1 + Re−1 p2 + · · · )+ ε̄s p̄I eiα(x−ct+qy) + c.c. (5.3)

Substitution of this expansion into (5.1) leads to the equation for the leading-order
pressure, Lw p0 = 0. The solution may be written in the form

p0 = p̄0(x̄, ȳ)eiα(x−ct−qy) + c.c., (5.4)

where q = √
Ma2(1 − c)2 − 1, and p̄0(x̄, ȳ) characterises the acoustic pressure

amplitude. By considering the second-order term p1, p̄0(x̄, ȳ) is determined as (Wu 2005)

p̄0(x̄, ȳ)= C∞ Ā
(
x̄ − q−1[Ma2(1 − c)− 1]ȳ

)
, (5.5)

which indicates that a Mach wave beam forms as a result of the amplitude modulation
propagating along the characteristic lines

ξ̄ ≡ x̄ − q−1[Ma2(1 − c)− 1]ȳ = constant. (5.6)

5.2. Far-field of the Mach wave beam
As was pointed out by Wu (2005), the expansion (5.3) and the solution (5.5) are no longer
valid in the far field corresponding to the region where

ȳ = O(Re1/2), ξ̄ = O(1). (5.7)

To construct the valid solution in this far field, we introduce the variable

ỹ = Re−1/2 ȳ = Re−1 y. (5.8)

The expansion for the pressure takes the form

p̃ = ε̄
[

p̃0(ξ̄ , ỹ)+ Re−1 p̃1(ξ̄ , ỹ)+ · · · ]eiα(x−ct−qy) + ε̄s p̄I eiα(x−ct+qy) + c.c. (5.9)

Again, the leading-order term satisfies the wave equation for an arbitrary p̃0, but the
secular condition for p̃1 leads to an equation for p̃0, which is solved, subject to a matching
condition with the near-field solution (5.5), to give (Wu 2005)

p̃0(ξ̄ , ỹ)= eπ i/4√
ỹ

√
αq3

2πMa2c2 C∞
∫ ∞

−∞
Ā(ζ ) exp

{
− iαq3

2Ma2c2 ỹ
(ξ̄ − ζ )2

}
dζ. (5.10)
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For a linear free mode, Ā(x̄)= ā0eσ x̄2/2, and the solution has the explicit expression

| p̃0(ξ̄ , ỹ)| =
∣∣∣∣1 + iMa2c2σ

αq3 ỹ

∣∣∣∣
−1/2∣∣∣∣C∞ā0 exp

{
1
2
σ ξ̄2

/(
1 + iMa2c2σ

αq3 ỹ

)}∣∣∣∣. (5.11)

5.3. Numerical evaluation
To evaluate the sound field, we rewrite the far-field pressure (5.10) as

p̃0(x̌, y̌)= Re1/4eπ i/4

|σr |1/4
√

y̌

√
αq3

2πMa2c2 C∞
∫ ∞

−∞
Ā(ζ/

√|σr |) exp
{

− iαq3 Re1/2

2Ma2c2√|σr |y̌
×[x̌ − q−1(Ma2(1 − c)− 1)y̌ − ζ ]2

}
dζ,

(5.12)

where we have introduced

x̌ = √|σr |x̄, y̌ = √|σr |ȳ. (5.13)

The acoustic field of a nonlinearly evolving mode with and without the incident sound is
computed. The pressure contours predicted using the solutions to the composite amplitude
equation (4.8) with Re = 104 are displayed in figure 11. The pressure contours without an
impinging sound are shown in figure 11(a) with the very far field displayed in figure 11(b).
The emitted sound wave focuses first towards the point where the intensity attains its
maximum, beyond which the contours feature a main lobe flanked by two secondary beams
(Qin & Wu 2024). The contours are rather smooth. In the presence of the incident sound
with p̄I = 10, the smooth beam characteristic of Mach wave radiation is replaced by a
rough one, featuring several spikes (figure 11c, d). Figure 11(e) shows the sound field
when the impinging sound intensity is increased to p̄I = 40. The contours become more
spiky and irregular, presumably due to amplitude oscillations caused by the interaction
with the sound. The structure in the far field is illustrated in figure 11( f ).

Effects of the radiating mode initial amplitude on the acoustic field are studied. Contours
of the far-field pressure for the case of ă0 = 3 are depicted in figure 12(a). The far-field
region in figure 12(b) shows that multiple spikes are again present as a result of amplitude
oscillations. Figure 12(c) shows pressure contours for the case of ă0 = 5 with the far field
in figure 12(d). The contours appear to have more sharp spikes compared with the case of
ă0 = 3. In summary, the pattern of the Mach wave field is radically changed in the presence
of the impinging sound, and at a fixed intensity of the incident sound, the alteration
becomes more enhanced as the amplitude of the radiating mode is increased. However,
the main orientation of the Mach wave beam remains little changed, which is expected
since our analysis shows that the far-field distribution is a continuation of the near-field
distribution, which forms as a result of the amplitude modulation propagating along the
characteristic lines. The fact that the Mach wave beam in the far field remains similar to
the direction of the characteristic lines can also be deduced from the near-field formula
(5.5) and the far-field formula (5.10).

6. Summary and conclusions
In this paper, the impact of an impinging sound wave on the radiating mode in a supersonic
boundary layer is investigated theoretically in the limit of asymptotically large Reynolds
number. The characteristic wavelength of the sound wave is taken to be comparable with
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Figure 11. Contours of the far-field pressure | p̃0| calculated using the solution to the composite amplitude
equation (4.8) with Re = 104, ă0 = 3 and ᾱd = 0 for (a) p̄I = 0, (c) p̄I = 10 and (e) p̄I = 40. Panels (b), (d)
and ( f ) show the far field of panels (a), (c) and (e), respectively.

the boundary-layer thickness. We consider the scenario in which the acoustic waves are
the superharmonics of the radiating mode. In this case, the sound wave influences the
evolution of the radiating mode through subharmonic parametric resonance or Bragg
scattering mechanism. The threshold amplitude for the impinging sound wave to affect the
radiating mode is obtained, and the physical processes are then described in the framework
of nonlinear critical-layer theory.

The ensuing boundary-layer response, which is essentially inviscid, is considered, and
the key quadratic interaction between it and the radiating mode within the critical layer
is analysed to derive the amplitude equations governing the nonlinear evolution of the
radiating mode in the non-equilibrium parallel and equilibrium non-parallel regimes. In
the non-equilibrium regime, the growth rate of the radiating mode is modified in the
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Figure 12. Contours of the far-field pressure | p̃0| calculated using the solution to the composite amplitude
equation (4.8) with Re = 104, p̄I = 80 and ᾱd = 0 for (a) ă0 = 3 and (c) ă0 = 5. Panels (b) and (d) show the
far field of panels (a) and (c), respectively.

upstream linear region, whilst in the nonlinear stage downstream, the amplitude of the
radiating mode blows up at a finite-distance singularity, the occurrence of which is shifted
upstream by the incident sound wave. Subsequently, a composite amplitude equation that
takes into account both non-parallel and non-equilibrium effects is constructed, and then
solved for a range of parameters to evaluate the effects of the initial amplitude and sound
intensity on linear and nonlinear development of the radiating mode. The results show
that for a certain range of parameters, the impinging sound wave plays a stabilising role in
the evolution of the mode. An impinging sound wave of moderate intensity may suppress
the growth of the mode, and may even eliminate the singularity which would occur in
the absence of sound. When sound intensity exceeds a threshold, the stabilising trend is
reversed and the incident sound wave may cause the amplitude of the mode to develop
a finite-distance singularity. The most robust effect of the incident sound wave is that it
renders amplification and attenuation of the radiating mode highly oscillatory. Finally, the
composite amplitude equation is used to study the spontaneous Mach wave radiation of the
instability mode. The incident sound alters the pattern of the Mach wave field significantly:
the characteristic smooth beam in the absence of the incident sound is rendered rough and
spiky, whilst the overall direction of the beam remains almost intact.

Given the fact that subharmonic parametric resonance usually plays a destabilising role,
the stabilising effects of the impinging sound waves come as a surprise. This finding may
have implications for laminar flow control using acoustic actuation. While most control
strategies focus on linear growth of disturbances (e.g. Mughal 1998), the present work is
perhaps most relevant to the control of disturbances in the nonlinear regime. Our results
indicate that a particular type of acoustic wave is capable of suppressing the explosive
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growth of the instability mode in its nonlinear stage. Since transition to turbulence quickly
follows the onset of nonlinearity, appropriate acoustic actuation based on the present
mechanism may serve as a tool for delaying or even avoiding transition in flows of practical
importance.

The present work is, to the best of our knowledge, the first investigation of an
interesting and potentially important physical mechanism of subharmonic resonance.
The mathematical analysis has revealed some rather striking impact of certain sound
waves on the stability and acoustic characteristics of supersonic boundary layers. This
is a case of theory advancing ahead of experiments and computations, which are yet to
explore the present mechanism despite considerable interest and extensive research efforts
in/on the effects of incident sound waves on transition. Presently, we cannot find any
experimental or computation data to validate or support the theoretical predictions. We
hope that our theoretical effort could promote experimental measurements and numerical
simulations.

Finally, we comment on the issue arising from the blow-up behaviour exhibited by
solutions to the amplitude equations when the incident sound intensity and/or initial
amplitude is sufficiently high. As was pointed out by Qin & Wu (2024), the present
weakly nonlinear theory loses validity near the blow-up point, and in the next stage,
the disturbances would evolve on a short scale comparable to the boundary-layer
thickness and be governed by the Euler equations (cf. Leib 1991). Additionally, during
its evolution towards the Euler stage, the primary disturbance may become susceptible
to secondary instability. Both scenarios suggest a cascade into small scales, though
precise consequences remain unclear. This process perhaps will have to be investigated
through numerical solutions of the Euler or Navier–Stokes equations, since the presence
of increasingly short length scales makes it difficult to obtain an asymptotic description
(Cowley 2001). Predicting the subsequent rapid evolution or onset of small-scale motions
presents a significant challenge. However, it is conceivable that for moderate incident
sound intensity and initial amplitude of radiating modes, the disturbance still retains the
characteristics of a wavepacket. The near-field and far-field formulae, (5.5) and (5.10),
remain valid and can still be used to compute the emitted sound waves in the respective
regions once the disturbance envelope is extracted from numerical solutions.
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Mathematics of Imperial College London. The referees are thanked for their comments and suggestions, which
helped us improve the manuscript.
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Appendix A. Details related to main-layer analysis
The constants χa and χb in (3.7) are given by

χa = −3
4

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
, (A1)

χb = α2

4

[
T̄ ′′

c

T̄c
−

(
T̄ ′

c

T̄c

)2

+ 1
2

(
Ū ′′

c

Ū ′
c

)2

− 2
3

Ū ′′′
c

Ū ′
c

− Ma2(Ū ′
c)

2

T̄c
− α2

2
+ 11

12

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)2]
.

(A2)

The second terms in the expansion (3.2), (ρ̂1, û1, v̂1, p̂1, θ̂1), are found to be governed
by the equations,
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iα(Ū − c)ρ̂1 + R̄′v̂1 + R̄(iαû1 + v̂′
1)= Fc, (A3a)

iα(Ū − c)û1 + Ū ′v̂1 = −iαT̄ p̂1 + Fx , (A3b)

iα(Ū − c)v̂1 = −T̄ p̂′
1 + Fy, (A3C)

iα(Ū − c)θ̂1 + T̄ ′v̂1 = iα(γ − 1)Ma2(Ū − c)T̄ p̂1 + Fe, (A3d)

γMa2 p̂1 = R̄θ̂1 + T̄ ρ̂1 + Fs, (A3e)
where the forcing terms, Fc, Fx , Fy , Fe and Fs , are given by (Qin 2024)

Fc = − Ã′(Ū ρ̂0 + R̄û0)− x̄1 Ã(iαŪ1ρ̂0 + iα R̄1û0 + R̄1v̂
′
0 + R̄′

1v̂0), (A4)

Fx = − Ã′(Ū û0 + T̄ p̂0)− x̄1 Ã[iαŪ1û0 + Ū ′
1v̂0 + iαT̄ R̄1(Ū − c)û0 + T̄ R̄1Ū ′v̂0], (A5)

Fy = − Ã′Ū v̂0 − x̄1 Ã[iαŪ1v̂0 + iαT̄ R̄1(Ū − c)v̂0], (A6)

Fe = − Ã′[Ū θ̂0 − (γ − 1)M2T̄ Ū p̂0] − x̄1 Ã[iαŪ1θ̂0 + T̄ ′
1v̂0 + iαT̄ R̄1(Ū − c)θ̂0

+ T̄ R̄1T̄ ′v̂0 − iα(γ − 1)Ma2T̄ Ū1 p̂0], (A7)

Fs = x̄1 Ã(R̄1θ̂0 + T̄1ρ̂0), (A8)
with R̄1 = −T̄1/T̄ 2.

The integrals I1 and I2 in (3.19) are given by

I1 =
∫ ∞

0

{[
2Ū ′

Ū − c

(
Ū1

Ū − c
− Ū ′

1

Ū ′

)
+ T̄ ′

T̄

(
T̄ ′

1

T̄ ′ − T̄1

T̄

)]
T̄ p̂0 p̂′

0

(Ū − c)2

+ α2 Ma2
(

2Ū1

Ū − c
− T̄1

T̄

)
p̂2

0

}
dy, (A9)

I2 =
∫ ∞

0

{
T̄ Ū ′ p̂0 p̂′

0

(Ū − c)4
+ α2

c

[
Ma2Ū

Ū − c
− T̄

(Ū − c)2

]
p̂2

0

}
dy. (A10)

Appendix B. Details of critical-layer analysis

B.1. The mean-flow distortion in the non-equilibrium regime
The nonlinear interaction of the fundamental wave generates a mean-flow distortion,
(UM , VM , ΘM); see the expansion (3.24) in the main text. The solutions required for
deriving the amplitude equation are found as (Qin & Wu 2024)

UM,Y Y = α4(Ū ′
c)

3 T̄ ′
c

T̄c

∫ ∞

0

∫ ∞

0
ξ2 exp(−spξ

3 − 3sξ2η+ iαŪ ′
cȲ ξ)

×
[

1 − T̄cμ̄
′
c − μ̄c Pr−1

μ̄c(1 − Pr−1)

(
e(sp−s)ξ3 − e3(s−sp)ξ

2η
) + T̄c

T̄ ′
c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
e(sp−s)ξ3

]
× Ã(x̃ − cη) Ã∗(x̃ − cη− cξ) dηdξ, (B1)

VM = λμ̄c Pr−1ΘM,Y , (B2)

ΘM=iα3T̄ ′
cŪ ′

c

∫ ∞

0

∫ ∞

0
ξ exp(−spξ

3−3spξ
2η+iαŪ ′

cȲ ξ) Ã(x̃−cη) Ã∗(x̃ − cη− cξ) dηdξ.

(B3)
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B.2. Mean-flow distortion and interaction at cubic level in the equilibrium regime
The nonlinear interaction of the radiating mode generates a mean-flow distortion,
(UM , VM , ΘM); see the expansion (3.64) in the main text. The relevant solutions are found
as (Qin & Wu 2024)

UM,Y Y = −α
2Ū ′

cT̄ ′
c(T̄cμ̄

′
c − μ̄c Pr−1)

T̄ 2
c μ̄

2
c(1 − Pr−1)

| Ā|2

×
∫ ∞

0
[exp(−(s − sp)ξ

3)− s/sp] exp(−spξ
3 + iαŪ ′

cY ξ) dξ

+ α2Ū ′
c

T̄cμ̄c

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
| Ā|2

∫ ∞

0
exp(−sξ3 + iαŪ ′

cY ξ) dξ

+ α2Ū ′
cT̄ ′

c

T̄ 2
c μ̄c

| Ā|2
∫ ∞

0
exp(−spξ

3 + iαŪ ′
cY ξ) dξ, (B4)

VM = μ̄c Pr−1ΘM,Y , (B5)

ΘM,Y = − α2T̄ ′
c

T̄cμ̄c Pr−1
| Ā|2

∫ ∞

0
exp(−spξ

3 + iαŪ ′
cY ξ) dξ. (B6)

We now proceed to consider the fundamental regenerated by the cubic interaction, as
well as by the subharmonic resonance between the acoustic component and the leading-
order fundamental. The governing equations are found to be

iαŪ ′
cY (−Θ3/T̄ 2

c )+
1
T̄c
(iαU3+V3,Y )= V0

T̄ 2
c

ΘM,Y + 1
T̄ 2

c

(V ∗
0 Θs1,Y +Vs0Θ

∗
1,Y )e

2iᾱd x̄ + · · · ,
(B7a)

L̄μU3 + Ū ′
cV3 = −iαT̄c P3 − V0UM,Y − iαP0ΘM + T̄cμ̄

′
cŪ ′

cΘ3,Y

+ (−V ∗
0 Us1,Y − Vs0U∗

1,Y + iαP∗
0Θs1 − 2iαPs0Θ

∗
1 )e

2iᾱd x̄ + · · · ,
(B7b)

L̄pΘ3 = −V0ΘM,Y + (−V ∗
0 Θs1,Y − Vs0Θ

∗
1,Y )e

2iᾱd x̄ + · · · , (B7c)

where the operator L̄μ is the same as L̄p in (3.66) with Pr = 1. Equation (B7c) is solved
first to give

Θ3 = − iα3T̄ ′
c

T̄cμ̄c Pr−1
Ā| Ā|2

∫ ∞

0

∫ ∞

0
exp[−2spξ

3 + sp(ξ − η)3 + iαŪ ′
c(ξ − η)Y ] dξdη

+iα3T̄cT̄ ′
cbs Ā∗e2iᾱd x̄

[ ∫ ∞

0

∫ ∞

0
2ξ exp[−2spξ

3 + sp(ξ − η)3 + iαŪ ′
c(ξ − η)Y ] dηdξ

+
∫ ∞

0

∫ ∞

0
ξ exp[spξ

3/2 − sp(ξ + η)3 − iαŪ ′
c(ξ + η)Y ] dηdξ

]
.

(B8)

Equations (B7a) and (B7b) can be reduced to

L̄μU3,Y = − V0UM,Y Y − iαP0ΘM,Y + Ū ′
c(T̄cμ̄

′
c − μ̄c Pr−1)Θ3,Y Y

+ (−V ∗
0 Us1,Y Y − Vs0U∗

1,Y Y + iαP∗
0Θs1,Y − 2iαPs0Θ

∗
1,Y )e

2iᾱd x̄ + · · · .
(B9)
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Again solve (B9) by Fourier transform, and matching U3 with the outer solution (3.18)
determines the jump

c+ − c− = 1
3
α2

T̄c

(
ic
α

Ā′ − Ū1c x̄ Ā

)
jπ i +

(
α2Ū ′

c

3T̄c
x̄ Ā

)
j1π i + d

α2

3

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)
π i

+ Λ

3
Ā| Ā|2 + Λb

3
Ā∗e2iᾱd x̄ , (B10)

where we have put

Λ= −2π iα4Ū ′
c

3T̄ 2
c μ̄c

{
T̄ ′

c(T̄cμ̄
′
c − μ̄c Pr−1)

T̄cμ̄c(1 − Pr−1)
(Pr4/3 − 1)+

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)

+ T̄ ′
c

T̄c
(1 + Pr)2/3(2Pr)1/3

}
(2s)−1/3Γ (1

3), (B11)

Λb = 4π iα4Ū ′
cb̄s

3

{
T̄ ′

c(T̄cμ̄
′
c − μ̄c Pr−1)

T̄cμ̄c(1 − Pr−1)
(Pr2/3 − 1)+

(
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

)

+ T̄ ′
c

T̄c
(1 + Pr)−2/3(2Pr)2/3

}
(2s)−2/3Γ (2

3), (B12)

with b̄s = b̄s( p̄I ) being given by (3.32) and Γ denoting the gamma function.

Appendix C. Recovery of the equilibrium and non-equilibrium regimes from the
composite theory
In this appendix, we show that the amplitude equations in the equilibrium and non-
equilibrium regimes can be recovered from the composite amplitude equation (4.8) as
the appropriate limiting cases.

First, consider recovery of the equilibrium regime. Following Wu & Huerre (2009), we
perform the substitution ξ → Re−1/6ξ and η→ Re−1/6η, and take the limit Re � 1 in
(4.8). The latter then reduces to (3.70).

We consider next the nonlinear evolution of the perturbation with the modified growth
rate. The perturbation in the non-equilibrium regime satisfies the initial condition (3.58)
with the modified growth rate κ being given by (3.56), and the eigenvector (ar , ai ) given
in (3.57). Let Ā0 denote the corresponding perturbation under the scaling of the composite
theory, that is, Ā0(x̄)= Re1/12 A0(x̃). On noting (4.5), the perturbation can be written as

Ā0 = 2|ā0|eκ̄r x̄ [|ā0r | cos(κ̄i x̄ + θ̄1 + φ̄0)+ i|ā0i | cos(κ̄i x̄ + θ̄2 + φ̄0)], (C1)

where the modified growth rate κ̄ ≡ Re1/6κ and the eigenvector (ār , āi ) satisfy the same
equations as (3.56) and (3.57) in the non-equilibrium regime, respectively, provided that
the parameter x̄1 is replaced by the variable x̄ and the parameters Υb and s are replaced by
Ῡb and s̄ with

Ῡb =Υb Re1/3, s̄ = s Re1/2. (C2)

Similarly, the rescaled nonlinear evolution equation for the perturbation in the composite
theory has the same form as (3.50) in the non-equilibrium regime, provided that x̄1 is
replaced by x̄ , Υ by Ῡ with Ῡ =Υ Re2/3, and the rescaled quantities in (C2) are used.

To compare the solution to the composite amplitude equation (4.8) with that to
(3.50), the constants |ā0| and φ̄0 are first determined by fitting Ā0 with the composite
solution at a particular location x̄ = −10. The resulting initial condition (C1) is used
to solve the rescaled version of the nonlinear evolution equation (3.50). Figure 13
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Figure 13. Comparison between the solutions to (3.50) and the composite amplitude equation (4.8) with
ă0 = 3 for p̄I = 200, ᾱd = 0 and Re = 104.

shows the comparison between the two solutions, with Ā0 representing the nonlinear
perturbation under the scaling of the composite theory. There is good agreement between
the two solutions, indicating that the composite theory captures the characteristics of the
non-equilibrium effects.
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