
Math. Struct. in Comp. Science (2006), vol. 16, pp. 553–555. c© 2006 Cambridge University Press

doi:10.1017/S0960129506005305 Printed in the United Kingdom

Developments in computational models: introduction

MARIBEL FERNÁNDEZ† and IAN MACKIE†‡

†King’s College London, Department of Computer Science, Strand, London WC2R 2LS, U.K.
‡LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Received 15 March 2006

In recent years several new models of computation have emerged that have been

inspired by the physical sciences, biology and logic, to name but a few (for example,

quantum computing, chemical machines and bio-computing). Also, many developments of

traditional computational models have been proposed with the aim of taking into account

the new demands of computer systems users and the new capabilities of computation

engines.

A new computation model, or a new feature in a traditional one, is usually reflected in

a new family of programming languages, and new paradigms of software development.

Thus, an understanding of the traditional and emergent models of computation facilitates

the use of modern programming languages and software development tools, informs the

choice of the correct language for a given application, and is essential for the design of

new programming languages.

To understand what we mean by a computational model, we briefly recall a little history.

The notion of computability and computable functions goes back to the beginning of

the 20th century. It refers to a general notion of ‘algorithm’, but does not refer to a

specific programming language or physical computational device. A computation model

abstracts away from the material details of the programming language and the processor

we are using. In the 1930s, logicians (in particular, Alan Turing and Alonzo Church)

studied the meaning of computation as an abstract (mental) process, and started to design

theoretical devices to model the process of computation. Since the 1930s, it has been

known that certain basic problems cannot be solved by computation; the typical example

being the halting problem. To prove this, Turing and Church (independently) constructed

two abstract models of computation that later became the basis of the modern theory

of computing: Turing Machines (designed by Alan Turing around 1936, with the aim

of solving Hilbert’s decision problem, the Entscheidungsproblem, which asks if there is a

definite method or process by which it could be decided whether any given mathematical

assertion in the functional calculus is provable), and the lambda calculus (designed by

Alonzo Church, also in the late 1930s, as a foundation for the mathematical theory of

functions). Kleene’s theory of recursive functions was also developed in the 1930s, and

gave an alternative view of computable functions. These are the ‘traditional’ models of

‡ Project Logical, Pôle Commun de Recherche en informatique du plateau de Saclay, CNRS, École

Polytechnique, INRIA, Université Paris-Sud.

https://doi.org/10.1017/S0960129506005305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005305


M. Fernandez and I. Mackie 554

computation; but several other models of computation, or idealised computers, have been

proposed and studied since then.

It is well known that the class of computable functions is the same for all the traditional

computational models, and so imperative or functional languages (which are based on the

traditional models) can describe exactly the same class of computable functions. However,

there is no equivalent thesis for some of the emergent, non-conventional, models of

computation. Moreover, there is actually hope that some of these new models can solve

some outstanding non-feasible problems (that is, problems that cannot be solved in a

realistic time scale in traditional models). The wealth of new results and the opening of

new and exciting research directions in recent years in the area of the theory of computing

led us to organise the First International Workshop on Developments in Computational

Models (DCM), in Lisbon, Portugal, on the 10th July 2005, as a satellite event of ICALP

2005, focusing on abstract models of computation and their associated programming

paradigms.

The aim of DCM 2005 was to bring together researchers who are currently developing

new computational models, or new features for traditional computational models, in

order to foster their interaction, to provide a forum for presenting new ideas and work in

progress, and to enable newcomers to learn about current activities in this area.

Thirteen papers were presented in the first DCM workshop, covering a wide range of

topics: functional calculi, object-oriented languages, rewriting calculi, mobility, interaction

nets, calculi for reconfiguration, quantum computing, evolutionary processors and chemical

machines.

This special issue on Developments in computational models came out of an open call

for papers after the workshop. Six articles were selected for this special issue, covering a

range of computation models.

Chemical machines

The article Generalised multisets for chemical programming by Jean-Pierre Banâtre, Pascal

Fradet and Yann Radenac provides an extension to the Gamma chemical computation

model, by making the chemical reaction rules first class. This extension leads to the

introduction of a higher-order chemical programming language.

Quantum computation

There are two papers addressing issues on quantum computation. First, the article Quantum

programming languages: survey and bibliography by Simon Gay gives an introduction

to quantum computing, and provides a comprehensive survey of the research to date

on quantum programming languages. Simon Perdrix and Philippe Jorrand’s article,

Classically-controlled quantum computation, gives a model of quantum computation that

interfaces, and is controlled by, classical computation.

The article Reversible Combinatory Logic by Alessandra Di Pierro, Chris Hankin

and Herbert Wiklicky investigates a reversible model of combinatory logic, which was

motivated by the interest in reversible computation arising from quantum computation.

https://doi.org/10.1017/S0960129506005305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005305


Developments in computational models: introduction 555

Functional computations

François-Régis Sinot’s article, Call-by-need in token-passing nets, investigates a way to

bridge the gap between interaction net implementations of the λ-calculus and more

traditional abstract machines, specifically with respect to reduction strategies.

Term rewriting and object calculi

The article Addressed term rewriting systems: application to a typed object calculus by

Daniel J. Dougherty, Pierre Lescanne and Luigi Liquori introduces a new notion of

rewriting on terms, which are annotated by addresses that model memory locations. The

expressivity of this formalism is exploited to define a calculus of objects with explicit

addresses.

Acknowledgements

We would like to thank the authors who contributed to this special issue, and the referees

who worked diligently to evaluate and help improve the papers. We are grateful to all

the Programme and Organising Committee members of DCM 2005 for their enthusiasm

and support. Very special thanks are due to Giuseppe Longo, the editor-in-chief of

Mathematical Structures in Computer Science, for his constant support, which has made

this issue possible.

https://doi.org/10.1017/S0960129506005305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005305

