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Abstract

We prove that Zpn and Zp[t]/(tn) are polynomially equivalent if and only if n ≤ 2 or pn = 8. For the proof,
employing Bernoulli numbers, we explicitly provide the polynomials which compute the carry-on part
for the addition and multiplication in base p. As a corollary, we characterize finite rings of p2 elements
up to polynomial equivalence.
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1. Introduction

One of the most basic objectives of algebra is to characterize different algebraic
structures up to certain equivalences. Very often, characterization up to isomorphism
is considered. In this paper, we investigate certain finite rings, and characterize them
up to polynomial equivalence.

A polynomial function over an algebra is a function built up from projections, con-
stant functions and basic operations using composition. Two algebras are polynomially
equivalent if they are defined on the same domain and have the same polynomial
functions [5]. It is easy to see that two algebras are polynomially equivalent if and
only if the basic operations of one algebra can be expressed as polynomials of the
other algebra, and vice versa.

The question of characterizing algebras up to polynomial equivalence arises quite
naturally. From a computer science perspective, polynomials capture the functions
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computable by the algebra, and polynomially equivalent algebras can compute exactly
the same functions. In many cases, though, different algebras are not defined on the
same domain, but can still be polynomially equivalent if the elements are identified via
some bijection ϕ. Therefore in this paper we use the following definition of polynomial
equivalence.

D 1.1. Let R1 = (R1, +1, ×1) and R2 = (R2, +2, ×2) be two rings, and let
ϕ : R1→ R2 be a bijection. We say that the ringsR1 andR2 are polynomially equivalent
via ϕ if there exist polynomial functions f1, g1 over R1 and polynomial functions f2, g2

over R2 such that for arbitrary x, y ∈ R1,

ϕ(x +1 y) = f2(ϕ(x), ϕ(y)),

ϕ(x ×1 y) = g2(ϕ(x), ϕ(y)),

ϕ( f1(x, y)) = ϕ(x) +2 ϕ(y),

ϕ(g1(x, y)) = ϕ(x) ×2 ϕ(y).

In particular, R1
ϕ
' (R2, f2, g2) and (R1, f1, g1)

ϕ
' R2. One can extend this notion to

arbitrary algebras in a natural way, but we skip the general definition as the scope of
this paper is limited to rings. Note, however, that if the elements of the two rings are
identified via the bijection ϕ, then our definition for polynomial equivalence coincides
with the usual one.

One of the most interesting cases of nonisomorphic algebras that are polynomially
equivalent comes from group theory. Any nonabelian simple group is polynomially
complete by [9], thus its polynomial equivalence type is determined by its order. There
are nonisomorphic nonabelian simple groups of the same order; for example, both
PSL(4, 2) and PSL(3, 4) have 20 160 elements [11]. Similarly, any two simple unital
rings of the same order are polynomially equivalent [8] but not necessarily isomorphic.
In particular, the full matrix ring Mm(q) is isomorphic to Mn(r) if and only if m = n and
q = r, but they are polynomially equivalent if and only if qm2

= rn2
.

In our paper we consider the rings Zpn and Zp[t]/(tn) for positive integers n and
primes p. These rings are isomorphic only for n = 1, but always have the same
number of elements, the same number of unary polynomial functions [4] and the
same ideal structure. Their elements even have a natural correspondence: for P =

{0, 1, . . . , p − 1}, every element of Zpn can be uniquely written in the form
∑n−1

i=0 ai pi

(ai ∈ P), and every element of Zp[t]/(tn) can be uniquely written in the form
∑n−1

i=0 aiti

(ai ∈ P). We determine when these two rings are polynomially equivalent via some
bijection.

T 1.2. Let p be a positive prime and n a positive integer. Let P = {0, 1, . . . ,
p − 1}. The two rings Zpn and Zp[t]/(tn) are:

(1) polynomially equivalent via ϕ : Zpn → Zp[t]/(tn),
∑n−1

i=0 ai pi 7→
∑n−1

i=0 aiti (ai ∈ P)
for n ≤ 2 and for pn = 8;

(2) not polynomially equivalent via any bijection Zpn → Zp[t]/(tn) if n ≥ 3, except
for pn = 8.
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The proof of Theorem 1.2 consists of two main parts. We prove item (1) in
Section 3 and item (2) in Section 4. For proving item (1) we give the polynomials
for f1, g1, f2, g2. The main differences between the addition and multiplication of
the two rings Zp2 and Zp[t]/(t2) are essentially the carry-on parts of addition and
multiplication in base p. It turns out that to make f1, g1, f2, g2 explicit, one has to
determine the polynomials for these carry-on functions. Note that the existence of
such polynomials follows from the fact that Zp is polynomially complete, hence every
function (and, in particular, the carry-on functions) can be represented as polynomials
(see, for example, [10]). Moreover, the polynomial equivalence of Zp2 and Zp[t]/(t2)
follows from the results of [1, 6]; in particular, the existence of f1 and f2 is proved in
[1, Lemma 22]. We in fact provide the polynomials expressing the carry-on part of the
addition and multiplication in base p, therefore making the polynomial equivalence of
these rings explicit. We introduce these polynomials employing Bernoulli numbers in
Sections 2.4 and 2.5, then prove the addition part of item (1) in Section 3.1 and the
multiplication part of item (1) in Section 3.2.

All the required notions and lemmas for the proof are summarized in Section 2.
Finally, in Section 5 we apply Theorem 1.2 to characterize the rings containing p2

elements up to polynomial equivalence and prove the following corollary.

C 1.3. Let us use the notation of [3] for rings having p2 elements, that is,
let A = Zp2 , B = pZp3 , C = p2Zp4 , D = Zp ⊕ Zp, E and F be the two noncommutative
p2-element rings, G = Zp[t]/(t2), H = Zp ⊕ pZp2 , I = tZp[t]/(t3), J = pZp2 ⊕ pZp2 , and
K be the p2-element field, where ⊕ denotes the direct sum of rings. Then the rings A,
E, F, G are polynomially equivalent to each other, B is polynomially equivalent to I
for p = 2, and no other two rings having p2 elements are polynomially equivalent.

In Section 5.1 we give the details on another path to some of the results, based on
the theory of polynomially rich algebras.

2. Preliminaries

2.1. Notation. Throughout this paper, p always denotes a positive prime, n a positive
integer, and m a nonnegative integer. We use i and j for running indices, k for indexing
Bernoulli numbers. We use ≡p to indicate that the two sides are congruent modulo p.
By P we denote the set {0, 1, . . . , p − 1}.

For rings R1 and R2, a function from Ri will be denoted by using the index i ∈ {1, 2}.
We denote the addition of Ri by +i, the subtraction of Ri by −i, and the multiplication
of Ri by ×i (i ∈ {1, 2}). For p > 2 we write +p and ×p for the modulo p addition and
multiplication over P. Finally, we use the usual + and · for the usual addition and
multiplication over the integers, unless we explicitly indicate otherwise.

2.2. Polynomially equivalent rings via a bijection. Let R1 and R2 be two finite
rings having the same number of elements. Let ϕ : R1→R2 be a bijection and assume
that R1 and R2 are polynomially equivalent via ϕ. Conjugating every polynomial
function over R2 by adding ϕ(01) to them, we can assume that ϕ(01) = 02.
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L 2.1. Let R1 and R2 be finite rings, ϕ : R1→R2 a bijection. Assume that R1

and R2 are polynomially equivalent via ϕ. Then there exists a bijection ϕ′ : R1→R2

such that ϕ′(01) = 02, and R1 and R2 are polynomially equivalent via ϕ′. Moreover, if
I1 C R1, then ϕ′(I1) C R2.

P. Let h2 be an arbitrary invertible unary polynomial over R2 such that h2(02) =

ϕ(01). Such a polynomial exists, for example h2(x) = x +2 ϕ(01) suffices. Denote the
inverse polynomial of h2 by h−1

2 . Let h1 : R1→R1 be the corresponding polynomial
over R1, that is, ϕ(h1(x)) = h2(ϕ(x)). Let h−1

1 denote the inverse of h1. Then for

ϕ′ : R1→R2, x 7→ h−1
2 (ϕ(x)),

f ′1 : R1 × R1→R1, (x, y) 7→ h1( f1(h−1
1 (x), h−1

1 (y))),

g′1 : R1 × R1→R1, (x, y) 7→ h1(g1(h−1
1 (x), h−1

1 (y))),

f ′2 : R2 × R2→R2, (x, y) 7→ h−1
2 ( f2(h2(x), h2(y))),

g′2 : R2 × R2→R2, (x, y) 7→ h−1
2 (g2(h2(x), h2(y))),

the rings R1 and R2 are polynomially equivalent via ϕ′, where f ′1 , g
′
1 correspond to +2

and ×2, and f ′2 , g
′
2 correspond to +1 and ×1; moreover, ϕ′(01) = 02.

If I1 C R1 is an ideal, then the congruence defined by I1 is preserved by
polynomials of R1, in particular by f ′1 and g′1. Therefore the ϕ′-image of this
congruence is preserved by +2 and ×2, and thus is a congruence of R2. As every
congruence of a ring is defined by an ideal and ϕ′(I1) 3 ϕ′(01) = 02, ϕ′(I1) must be an
ideal of R2. �

Note that a similar proof shows that for general algebras the ϕ-image of a coset of
a congruence has to be a coset of a congruence.

2.3. Bernoulli numbers. Bernoulli numbers are defined by the recurrence formula

m∑
k=0

(
m + 1

k

)
Bk = 0

for m ≥ 1, and B0 = 1 [7, Ch. 15]. With this definition we have B1 = −1/2, and Bk = 0
for every other odd k.

A basic property of Bernoulli numbers [7, Ch. 15, Theorem 1] is that for all
m ≥ 0, y ≥ 1 integers,

1
m + 1

m∑
k=0

(−1)k

(
m + 1

k

)
Bkym+1−k =

y∑
k=1

km. (2.1)

For 2 | k, Clausen [2] and Von Staudt [12] proved the following on the denominators
of the Bernoulli numbers:

Bk +
∑

q prime
(q−1)|k

1
q
∈ Z.
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In particular, B0 = 1 is an integer, and if p − 1 > k ≥ 1, then p does not divide
the denominator of Bk (in its simplified form). Thus Bk for p − 1 > k can be
calculated modulo p. Furthermore, we use a consequence of Voronoi’s congruence
[7, Proposition 15.2.3], which relates the numerator and denominator of a Bernoulli
number modulo an integer. Let p ≥ 3 be a prime and x an integer not divisible by p.
For positive even k < p − 1 one can compute Bk/k modulo p, and then

Bk

k
(xk − 1) ≡p xk−1

p−1∑
j=1

jk−1
⌊ jx

p

⌋
. (2.2)

Finally, for an odd prime p and for a ∈ {1, . . . , p − 1}, after evaluating the sum of the
corresponding geometric series, one has

p−1∑
i=1

ai ≡p

0 if a , 1,

−1 if a = 1,
(2.3)

p−3∑
k=2
2|k

ak−1 ≡p


−

1
a

if a2 .p 1,

−
3
2a

if a2 ≡p 1,
(2.4)

where the second sum runs only on the even indices for a prime p > 3.

2.4. Carry-on for addition modulo p.

L 2.2. Let p be an odd prime, and let P = {0, 1, . . . , p − 1}. Let a : P × P→ P be
the carry-on for the modulo p addition, that is,

a(x, y) =

0 if x + y < p,

1 if x + y ≥ p.

Let A(x, y) be defined by

A(x, y) =

p−1∑
i=1

p−i−1∑
k=0

1
p − i

(−1)k+i+1Bk

(
p − i

k

)
xiyp−i−k,

where every sum and multiplication is considered modulo p. Then a(x, y) = A(x, y)
for arbitrary x, y ∈ P.

P. First, we prove that A is well defined. Now, Bk appears in the formula only
for k < p − 1, and thus can be calculated modulo p. The fraction 1/(p − i) can be
calculated modulo p as well. Hence, A is a well-defined polynomial over Zp.

If y = 0, then A(x, y) = 0 = a(x, y). Otherwise, y ∈ {1, . . . , p − 1}, and

A(x, y) ≡p

p−1∑
i=1

xi 1
p − i

p−i−1∑
k=0

(−1)k+i+1Bk

(
p − i

k

)
yp−i−k
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(we apply (2.1) with m = p − i − 1)

=

p−1∑
i=1

(−1)i+1xi
y∑

k=1

kp−i−1

(for k ∈ {1, . . . , p − 1} we have kp−1 ≡p 1)

≡p

y∑
k=1

p−1∑
i=1

(−1)i+1xik−i ≡p −

y∑
k=1

p−1∑
i=1

(
−

x
k

)i

.

By (2.3),
p−1∑
i=1

(
−

x
k

)i

≡p

−1 if k ≡p −x,

0 if k .p −x.

Now, there exists at most one k ∈ {1, . . . , y} such that k ≡p −x, and such a k exists if
and only if y ≥ p − x, that is, if x + y ≥ p. Thus,

−

y∑
k=1

p−1∑
i=1

(
−

x
k

)i

≡p


−

y∑
k=1

0 = 0 if x + y < p,

1 if x + y ≥ p.

Therefore, A(x, y) = a(x, y) for arbitrary x, y ∈ P. �

2.5. Carry-on for multiplication modulo p.

L 2.3. Let p be an odd prime, and let P = {0, 1, . . . , p − 1}. Let m : P × P→ P
be the carry-on for the modulo p multiplication, that is,

m(x, y) =

⌊ xy
p

⌋
.

Let M(x, y) be defined by

M(x, y) =

p−2∑
k=1

Bk

k
(x − xp−k)(y − yp−k),

where every sum and multiplication is considered modulo p. Then m(x, y) = M(x, y)
for arbitrary x, y ∈ P.

P. First, we prove that M is well defined. Now, Bk appears in the formula only
for k < p − 1, and thus can be calculated modulo p. The fraction 1/k can be calculated
modulo p as well. Hence, M is a well-defined polynomial over Zp.

For x = 0 or y ∈ {0, 1}, the equation M(x, y) = m(x, y) is clear. Otherwise, xp−1 =

1, yp−1 = 1, and the term for the index k = 1 in M(x, y) is B1/1 · (x − xp−1) · (y −
yp−1) = −(x − 1)(y − 1)/2. For y = p − 1 ≡p −1 and for even k we have y − yp−k ≡p 0.
Since Bk = 0 for odd k ≥ 3, we have then M(x, p − 1) ≡p −(x − 1) · (−2)/2 = x − 1 =
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bx(p − 1)/pc = m(x, p − 1). This finishes the proof in the case y ∈ {0, 1, p − 1}, and
hence the case p = 3. Assume that x , 0, y < {0, 1, p − 1}, p > 3. Now,

p−2∑
k=1

Bk

k
(x − xp−k)(y − yp−k)

(we cut the sum for k = 1 and use the fact that if 2 - k ≥ 3, then Bk = 0)

≡p −
(x − 1)(y − 1)

2
+

p−3∑
k=2
2|k

Bk

k
(x − xp−k)(y − yp−k)

(we have x ≡p xp)

≡p −
(x − 1)(y − 1)

2
+

p−3∑
k=2
2|k

Bk

k
(xp − xp−k)(y − yp−k)

≡p −
(x − 1)(y − 1)

2
+

p−3∑
k=2
2|k

xp−k(y − yp−k) ·
Bk

k
(xk − 1)

(we apply (2.2) for 2 | k)

≡p −
(x − 1)(y − 1)

2
+

p−3∑
k=2
2|k

xp−k(y − yp−k) · xk−1
p−1∑
j=1

jk−1
⌊ jx

p

⌋

(we have xp−k · xk−1 = xp−1 ≡p 1, yp−k = yp−1 · y1−k ≡p y1−k)

≡p −
(x − 1)(y − 1)

2
+

p−3∑
k=2
2|k

(y − y1−k)
p−1∑
j=1

jk−1
⌊ jx

p

⌋

= −
(x − 1)(y − 1)

2
+

p−1∑
j=1

⌊ jx
p

⌋ p−3∑
k=2
2|k

(y − y1−k) jk−1. (2.5)

By (2.4),

p−3∑
k=2
2|k

y jk−1 = y
p−3∑
k=2
2|k

jk−1 ≡p

−y/ j if j .p ±1,

−3y/(2 j) if j ≡p ±1,

−

p−3∑
k=2
2|k

y1−k jk−1 = −

p−3∑
k=2
2|k

( j
y

)k−1

≡p

y/ j if j .p ±y,

3y/(2 j) if j ≡p ±y,
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and since y ∈ {2, . . . , p − 2},

p−3∑
k=2
2|k

(y − y1−k) jk−1 ≡p


−y/(2 j) if ± 1 ≡p j .p ±y,

+y/(2 j) if ± 1 .p j ≡p ±y,

0, if ± 1 .p j .p ±y.

Now, we cut the sum in (2.5) into five parts: two parts for ±1 ≡p j .p ±y, two parts for
±1 .p j ≡p ±y, and one part for j < {±1, ±y}:

−
(x − 1)(y − 1)

2
+

p−1∑
j=1

⌊ jx
p

⌋ p−3∑
k=2
2|k

(y − y1−k) jk−1

≡p −
(x − 1)(y − 1)

2
+

⌊ x
p

⌋
·
−y
2︸    ︷︷    ︸

j=1

+

⌊ (p − 1)x
p

⌋
·

y
2︸           ︷︷           ︸

j=p−1

+

⌊yx
p

⌋
·

1
2︸   ︷︷   ︸

j=y

+

⌊ (p − y)x
p

⌋
·
−1
2︸             ︷︷             ︸

j=p−y

+

p−3∑
j=2

j,±y

⌊ jx
p

⌋
· 0

(we have bx/pc = 0, b(p − 1)x/pc = bx − x/pc = x − 1, and similarly −b(p − y)x/pc =

−bx − yx/pc = −(x − 1) + byx/pc)

≡p −
(x − 1)(y − 1)

2
+ 0 +

(x − 1)y
2

+

⌊yx
p

⌋
·

1
2
−

x − 1
2

+

⌊yx
p

⌋
·

1
2

+ 0 =

⌊yx
p

⌋
.

Therefore, M(x, y) = m(x, y) for arbitrary x, y ∈ P. �

3. Proof of item (1) of Theorem 1.2

For n = 1, the two rings are isomorphic, hence polynomially equivalent. For pn = 4,
by computing the operation tables, it is easy to check that the following polynomials
satisfy the requirements:

f1(x, y) = x + y + 2xy,

g1(x, y) = xy,

f2(x, y) = x + y + txy,

g2(x, y) = xy.

Here, we denoted the additions and the multiplications for both rings in the usual
way, because we believe that it does not cause confusion and the formulas are
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more understandable this way. Furthermore, the following polynomials satisfy the
requirements for pn = 8:

f1(x, y) = x + y + 2xy + xy(1 + x)(1 + y) + 2xy(1 + x2)(1 + y2),

g1(x, y) = xy + x2y2(3 + x)(3 + y),

f2(x, y) = x + y + txy + xy(1 + x)(1 + y) + txy(x + y)2,

g2(x, y) = xy + x2y2(1 + x)(1 + y).

The fact that these polynomials indeed satisfy the requirements can be checked
by hand or by a computer program rather easily. In the following, we provide some
guidelines on how it could be performed manually. Let R1 = Z8, R2 = Z2[t]/t3. Let
P = {0, 1}. We identify the elements of R1 and R2 with the elements of P × P × P
via the bijections x0 + 2x1 + 4x2 7→ (x0, x1, x2) and x0 + tx1 + t2x2 7→ (x0, x1, x2) for
x0, x1, x2 ∈ P. Thus, we consider both R1 and R2 on the domain P × P × P, that is,
R1 = (P × P × P, +1, ×1), R2 = (P × P × P, +2, ×2). Note that for this proof + and ·
denote the modulo 2 operations.

We detail the proof for f2 being the same function as +1. The other three cases can
be handled in a similar fashion. Now,

(x0, x1, x2) +1 (y0, y1, y2) = (x0 + y0, x1 + y1 + a(x0, y0), x2 + y2 + b(x1, y1, a(x0, y0)),

where xi, yi ∈ P, a and b denote the binary and ternary carry-on functions:

a(x, y) =

0 if x + y < 2,

1 if x + y ≥ 2,

b(x, y, z) =

0 if x + y + z < 2,

1 if x + y + z ≥ 2.

It is not hard to see that a(x, y) = xy and b(x, y, z) = xy + (x + y)z, yielding

(x0, x1, x2) +1 (y0, y1, y2) = (x0 + y0, x1 + y1 + x0y0, x2 + y2 + x1y1 + (x1 + y1)x0y0).

An easy computation shows that for x = (x0, x1, x2), y = (y0, y1, y2),

f2(x, y) = x0 + y0 + t(x1 + y1 + x0y0) + t2(x2 + y2 + x1y1 + (x1 + y1)x0y0),

which corresponds to the same tuple from P × P × P as (x0, x1, x2) +1 (y0, y1, y2).
In the remainder of Section 3, p denotes an odd prime. Let R1 = Zp2 , R2 =

Zp[t]/(t2). Let P = {0, 1, . . . , p − 1}. We identify the elements of R1 and R2 with
the elements of P × P via the bijections x0 + px1 7→ (x0, x1) and x0 + tx1 7→ (x0, x1)
(x0, x1 ∈ P). Thus, we consider both R1 and R2 on the domain P × P, that is,
R1 = (P × P, +1, ×1), R2 = (P × P, +2, ×2).
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3.1. Addition. We have (x0, x1) +1 (y0, y1) = (x0 +p y0, x1 +p y1 +p a(x0, y0)), where

a(x0, y0) =

0 if x0 + y0 < p,

1 if x0 + y0 ≥ p,

is the carry-on part of the addition in base p. Addition in R2 is the modulo p addition
in both coordinates: (x0, x1) +2 (y0, y1) = (x0 +p y0, x1 +p y1). Thus, to express the
operation +1 in R2, one needs to find a polynomial over R2 (expressed by +2 and ×2)
representing a(x0, y0). Let f2(x, y) = x +2 y +2 t ×2 A(x, y) over R2, where

A(x, y) =

p−1∑
i=1

p−i−1∑
k=0

1
p − i

(−1)k+i+1Bk

(
p − i

k

)
xiyp−i−k,

and every sum uses +2, and every multiplication uses ×2. Now, Bk appears in the
formula only for k < p − 1, and thus can be calculated modulo p. The fraction 1/(p − i)
can be calculated modulo p, as well. Hence, f2 is a polynomial over R2. Moreover,
t ×2 t = 0 yields

t ×2 A(x0 +2 t ×2 x1, y0 +2 t ×2 y1) = t ×2 A(x0, y0),

and thus

f2(x0 +2 t ×2 x1, y0 +2 t ×2 y1) = x0 +2 y0 +2 t ×2 (x1 +2 y1 +2 A(x0, y0))

over R2, that is,

f2((x0, x1), (y0, y1)) = (x0 +p y0, x1 +p y1 +p A(x0, y0)).

By Lemma 2.2, we have A(x0, y0) = a(x0, y0), which proves that +1 is a polynomial
over R2. Hence, the polynomial f2 corresponds to the addition of R1. Similarly, the
polynomial f1(x, y) = x +1 y −1 p ×1 A(x, y) over R1 expresses the addition of R2.

3.2. Multiplication. We continue with multiplication in a similar fashion. Now,
(x0, x1) ×1 (y0, y1) = (x0 ×p y0, x0 ×p y1 +p x1 ×p y0 +p m(x0, y0)), where

m(x0, y0) =

⌊ x0y0

p

⌋
is the carry-on part of the multiplication in base p. Multiplication in R2 is similar,
except there is no carry-on part: (x0, x1) ×2 (y0, y1) = (x0 ×p y0, x0 ×p y1 +p x1 ×p y0).
Thus, to express the operation ×1 in R2, one needs to find a polynomial over R2

(expressed by +2 and ×2) representing m(x0, y0). Let g2(x, y) = x ×2 y +2 t ×2 M(x, y)
over R2, where

M(x, y) =

p−2∑
k=1

Bk

k
(x − xp−k)(y − yp−k),

and every sum uses +2, and every multiplication uses ×2. Now, Bk appears in the
formula only for k < p − 1, and thus can be calculated modulo p. The fraction 1/k
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can be calculated modulo p, as well. Hence, g2 is a polynomial over R2. Moreover,
t ×2 t = 0 yields

t ×2 M(x0 +2 t ×2 x1, y0 +2 t ×2 y1) = t ×2 M(x0, y0),

and thus

g2(x0 +2 t ×2 x1, y0 +2 t ×2 y1) = x0 ×2 y0 +2 t ×2 (x0 ×2 y1 +2 x1 ×2 y0 +2 M(x0, y0))

over R2, that is,

g2((x0, x1), (y0, y1)) = (x0 ×p y0, x0 ×p y1 +p x1 ×p y0 +p M(x0, y0)).

By Lemma 2.3, we have M(x0, y0) = m(x0, y0), which proves that ×1 is a polynomial
over R2. Hence, the polynomial g2 corresponds to the multiplication of R1. Similarly,
the polynomial g1(x, y) = x +1 y −1 p ×1 M(x, y) over R1 expresses the multiplication
of R2.

4. Proof of item (2) of Theorem 1.2

Let R1 = Zpn , R2 = Zp[t]/(tn), and assume that they are polynomially equivalent
via ϕ : R1→R2. By Lemma 2.1 we may assume that ϕ(01) = 02. Let f2 over R2

correspond to the addition in R1. Let I1 be the unique ideal in R1 containing p2

elements, that is, I1 = (pn−2), and let I2 be the unique ideal in R2 containing p2

elements, that is, I2 = (tn−2). Then by Lemma 2.1 we have ϕ(I1) = I2. In this section
0 denotes the zero element of R2, + and · denote the addition and multiplication of R2.
Assume that n ≥ 3; then I3

2 = (0).
Consider f2(x, y) over R2, restricted to I2. This function corresponds to the

addition over R1 restricted to I1. Since I3
2 = (0), for every x, y ∈ I2 the function f2

attains the same value at (x, y) ∈ I2 × I2 as a + bx + cy + dxy + ex2 + f y2 for some
a, b, c, d, e, f ∈ R2. Now, f2(0, 0) = 0 implies a = 0, f2(x, 0) = x implies bx + ex2 = x,
f2(0, y) = y implies cy + f y2 = y, hence f ′2(x, y) = x + y + dxy attains the same values
on I2 as f2. By induction on m, it is easy to prove that for every positive integer m we
have f ′2( f ′2(. . . f ′2( f ′2(x, x), x), . . . , x), x) = mx + d

(
m
2

)
x2, if we compose the polynomial

f ′2 with itself m − 1 times. Consider the case m = p. For p > 2, by p |
(

p
2

)
we

obtain that f ′2( f ′2(. . . f ′2( f ′2(x, x), x), . . . , x), x) is the constant 0 function over I2,
while x +1 x +1 · · · +1 x = p ×1 x is not a constant function over I1. This contradiction
proves that if p > 2, n ≥ 3, then R1 and R2 are not polynomially equivalent.

If n ≥ 4, then already I2
2 = (0). Thus, f ′2(x, y) = x + y, and therefore ϕ : R1→R2

is an isomorphism between the additive groups of Zp2 and (Zp)2. This contradiction
proves that if n ≥ 4, then R1 and R2 are not polynomially equivalent.

5. Proof of Corollary 1.3

Let us use the notation of [3], that is, A = Zp2 , B = pZp3 , C = p2Zp4 , D = Zp ⊕ Zp, E
and F are the two noncommutative p2-element rings, G = Zp[t]/(t2), H = Zp ⊕ pZp2 ,
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I = tZp[t]/(t3), J = pZp2 ⊕ pZp2 , and K is the p2-element field, where ⊕ denotes the
direct sum of rings. Note that pZp2 and p2Zp4 are zero-rings.

Now, A and G are polynomially equivalent by Theorem 1.2. The proof detailed in
Section 4 shows that B and I are not polynomially equivalent for p , 2. For p = 2, Z8

and Z2[t]/(t3) are polynomially equivalent by Theorem 1.2. Moreover, as described at
the beginning of Section 3, the polynomials f1, g1 over Z8 exist over the unique four-
element ideal B, and the polynomials f2, g2 over Z2[t]/(t3) exist over the unique four-
element ideal I. Thus B and I are polynomially equivalent for p = 2. The rings E and F
are opposite rings of each other, thus they are polynomially equivalent (x +1 y = x +2 y,
x ×1 y = y ×2 x). Finally, we show that G and F are polynomially equivalent.

Let P = {0, 1, . . . , p − 1}. The ring F can be represented by{(
a b
0 0

)
: a, b ∈ P

}
,

with the usual matrix addition and multiplication. Let ϕ : G→ F be defined by

a + bt 7→

(
a b
0 0

)
.

Here, we denote the additions and the multiplications for both rings in the usual
way, because we believe that it does not cause confusion and the formulas are more
understandable this way. Now, ϕ is an isomorphism between the additive groups of G
and F, hence it is enough to provide polynomials for the multiplications. Let e be the
nonzero diagonal idempotent matrix in F. We claim that the polynomials

g1(x, y) = xpy,

g2(x, y) = (p − 1)xye + xy + yx

give the multiplication for F and G, respectively. Indeed, if x = a + bt and y = c + dt
(for arbitrary a, b, c, d ∈ P), then

ϕ(g1(x, y)) = ϕ((a + bt)p(c + dt)) = ϕ(ap(c + dt)) = ϕ(ac + adt)

=

(
ac ad
0 0

)
=

(
a b
0 0

) (
c d
0 0

)
= ϕ(x)ϕ(y),

g2(ϕ(x), ϕ(y)) = (p − 1)
(
a b
0 0

) (
c d
0 0

) (
1 0
0 0

)
+

(
a b
0 0

) (
c d
0 0

)
+

(
c d
0 0

) (
a b
0 0

)
= (p − 1)

(
ac 0
0 0

)
+

(
ac ad
0 0

)
+

(
ac bc
0 0

)
=

(
ac ad + bc
0 0

)
= ϕ(ac + (ad + bc)t)

= ϕ(xy).

Polynomially equivalent rings must have the same ideal structure by Lemma 2.1,
and the factors by the corresponding ideals must be polynomially equivalent. Thus,
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K is not polynomially equivalent to the others, as that is the only simple ring of p2

elements. The only ring having p + 1 nontrivial ideals is J, hence it is not polynomially
equivalent to any of the other rings. There are two rings having two nontrivial
ideals (D and H), and in D both ideals are isomorphic to the p-element field, while
in H one of the ideals is isomorphic to the p-element zero-ring. Since the factors
by the corresponding ideals isomorphic to the p-element field are not polynomially
equivalent, neither are D and H.

A ring R which is not a zero-ring cannot be polynomially equivalent to C, because
the multiplication of R cannot be expressed as a polynomial over C. Namely, every
polynomial over C is of the form g(x, y) = ax + by + c. Now, if g corresponds to the
multiplication, assuming 0 in R corresponds to 0 in C, then g(0, 0) = 0 yields c = 0,
g(x, 0) = 0 yields ax = 0, g(0, y) = 0 yields by = 0, hence g is the zero function.

Finally, the ring A is not polynomially equivalent to either B or I, because the factors
by the unique nontrivial ideal are not polynomially equivalent.

5.1. Polynomially rich algebras. We finish this section by showing how some of our
results follow from the known theory of polynomially rich algebras (see, for example,
[6]). Polynomially rich algebras are defined for arbitrary algebras, not only for rings.
Nevertheless, their theory goes beyond the scope of this paper, therefore we translate
the known results for rings.

A ring R is called polynomially rich if every map f : Rn→R preserving ideals and
the type of every single factor I/J for I,J C R is a polynomial over R. In particular,
if two polynomially rich rings have the same ideal structure and have the same single
factors I/J for ideals I,J , then they are polynomially equivalent. Theorem 24 of [6]
shows that a ring R having a unique minimal ideal I is polynomially rich if and only
if conditions (SC1) and (GRp) hold for this ring. Now, (SC1) holds for R if and only
if for every ideal J 	 I the ideal IJ is nonzero (that is, it contains I).

It is much harder to translate the condition (GFp) for rings, but from [1, Lemma 4] it
follows that if for such a ring I2 = 0 and there exists a nonconstant, nonidentity unary,
idempotent polynomial (that is, a polynomial p for which p ◦ p = p), then the ring is
polynomially rich.

Now, the ideal structure of the rings A, E, F and G is the same: there exists a unique
ideal squaring to 0, and the factor by this ideal is isomorphic to the p-element field. It
is clear that (SC1) holds for all four rings, and an easy calculation shows that x 7→ xp2

is a nonconstant, nonidentity idempotent polynomial for all four rings, hence (GFp)
holds as well. Thus the polynomial functions of all four rings are the ones preserving
their (same) ideal structures, and hence they are all polynomially equivalent.
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