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The well-known Taylor expansion of a function around a point a can
be formally written as

o0 n

(1.1) flatz) = 9’_' (_‘_i%)"f(a) = ¢ dlda . 4(g),

n=0 .

The last expression is just a symbolic form and is valid, as we know, under
certain restrictive conditons. We shall study the situation when the dif-
ferential operator d/da is replaced by the finite difference operator 4,/,
where the operator 4, is defined by

Axf(a) = Ha+h)—[(a).

In general,

(4)"f(a) = A3 /(a) = A,[437" }(a))
= fla+nh)—(}) F(a+ (r—1)h) + .. .+ (—1)"}(a).

Then we have the following theorem.

THEOREM 1. If the function [ is continuous and bounded for 0 <z <0,
0<a< oo, then & WPf(a) tends uniformly to f(atzx) throughout any
finite intervals of values of a and x, as h tends to zero. That is to say,

(1.2) lim %" 9V® f(a) = f(a+tx).

A=0
The above theorem has been proved by Hille [3] as a special case of a
theorem on semigroups. We give an independent proof following Bernstein’s
method [1] of proving Weierstrass’ theorem on the approximation of con-
tinuous functions of polynomials. We also point out an interpretation
of the theorem in terms of the Poisson distribution.
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Let us introduce the translation operator T, defined by
Tof(t) = f(t+0); (T = Thf(6) = f(t-+nh).
We observe that
(2.1) 4, = T,—1.

From (1.2) and (2.1) we get

o0

0 (@) = T ) = o T ) = o 3 (5) T o

k=0
-]

> ,:'( ) fatkh).

k=0

Thus the contention of Theorem 1 becomes equivalent to the following
theorem:

THEOREM 2. The infinite series
o 1 Z k
—x/b N . f h
e 3 = (5) flatrn

k=0

tends uniformly to f(a—+x) throughout any finite intervals of values of a and x,
as h tends to zero.

ProoF. We have the identiy

[ | k
(2.2) 3 (;) — eeiheh = 1.
k=0

Taking two successive derivatives we get

(2.3) e"“/"kg kl (“’) (z—kh) = 0,
(2.4) e-=/»:0 kl' (’”) (z—Fkh)? = zh.

From (2.2) we also get the identity

flatz) = e/ z 7:—' ( ) f(a+z).
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We have

fare)—en 3 2 (5) ot i)

_.e—ch

5 () vetar—atmn)

k=0
-]

sen 3 2 () vata—armm

K=o k!

Let us divide the sum into two parts, namely ). corresponding to the &’s
satisfying |x—kh| <6 and Y. to the %’s satisfying |x—£kh| > 8, where 6
is determined by the condition that |f(a+4x)—f(a+Ekhk)| < e for |x—kh| < 4.
Then we have

er s ) Hata)—fla+Bh) < 5 P 3 o (%i)

M

& [ z k
< —e2Mhy ) =¢g/2.
=2 & (h) el

From (2.4) we get
s L o<
w RI\A
and
1 /x\* =xh
2. —x/h -
(25) ‘ zk!(h)<62
Also as fis bounded, |f| < M, we get by (2.5)
1 1 k h
e 3 ( ) |H(a+z)—f(a+kh)| < 2Me—=/* Z (z) <2 < i
¥ RI\A Ri\A 82

if A < ed?/4M=z. Thus it follows that as 4 tends to zero

Hata)—een 3 ~ ( )kf(a—{—kh)

¥=o k!

tends uniformly to zero in the intervals considered. This completes the proof
of Theorem 2 and hence of Theorem 1.

3
We discuss the probabilistic interpretation of the theorems which
we write as
(z/ ) h)* e—%/h =
(3.1) lim z A f(a+kh) = f(a+tz).

A0 ke=0
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Define

(3.2) pp =L

as the probability for the variable ¢ to assume the special value ¢, = kh.
Then we can write (3.1) as

(3.3) lim 3 pf(a+4) = fla+a)

k-0 k=0

and we can write (2.3) and (2.4) as

(3.4) z el =2
E=0
and
(3.5) kz Pi(te—2)2 = zh
=0
respectively.

Now (3.2) defines a Poisson distribution, for by putting z/# = 2 we get

k
b= i—' e
Now (3.4) shows that the mathematical expectation of the discrete values
t, is z. Thus « is the mean value of the variable ¢.

As for (3.3) this equation tells us that as 4 tends to zero, that is to say,
as the “points of interpolation’ #, = kh are chosen increasingly close to
each other, the mathematical expectation of the discrete function values
f(a-+t,) tends to the definite value f(a-}x). The equation (3.5) gives the
variance of the variable ¢{. Thus ¢2 = xk, and this shows how the standard
deviation decreases as we choose closer points of interpolation on the #-axis.

Now Tchebycheff’s inequality [2] states that

P(t—=z| > Ao) < 1/43

where P(|t—xz| > Ao) denotes the probability that the variable ¢ should
differ from its mean z by a quantity of modulus > 4o. For our special dis-
tribution we find

. (z/h)* o _ a? . zh

for ¢ = zh, in accordance with (3.5). Thus (2.5) can be regarded as a
special case of Tchebycheff’s general inequality.
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