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The well-known Taylor expansion of a function around a point a can
be formally written as

(11» /(•+•)-I S ( s )" ' w - '"" - / w -
The last expression is just a symbolic form and is valid, as we know, under
certain restrictive conditons. We shall study the situation when the dif-
ferential operator djda is replaced by the finite difference operator AJh,
where the operator Ah is defined by

In general,

(Ah)»f(a) = AIM = Ah[A^f(a)]

Then we have the following theorem.

THEOREM 1. If the function f is continuous and bounded for 0 sS x < oo,
0 ^ a < oo, then ex'dhlhf(a) tends uniformly to f{a-\-x) throughout any
finite intervals of values of a and x, as h tends to zero. That is to say,

(1.2) lim e"A*!* / ( « ) = / ( « + * ) .
»-»o

The above theorem has been proved by Hille [3] as a special case of a
theorem on semigroups. We give an independent proof following Bernstein's
method [1] of proving Weierstrass' theorem on the approximation of con-
tinuous functions of polynomials. We also point out an interpretation
of the theorem in terms of the Poisson distribution.

26

https://doi.org/10.1017/S1446788700003967 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003967


26 Q. A. M. M. Yahya [2]

2

Let us introduce the translation operator Th defined by

Thf{t) = f(t+h); (7\)- = Tlf{t) = f(t+nh).

We observe that

(2.1) Ah=Th-l.

From (1.2) and (2.1) we get

exA"lhf(a) = ^A<r»-i»/(a) = e-xlhexlhT*f(a) = «-•/» 5 i (7) J*f{a)
«! \«/

Thus the contention of Theorem 1 becomes equivalent to the following
theorem:

THEOREM 2. The infinite series

uniformly to f(a-\-x) throughout any finite intervals of values of a and x,
as h tends to zero.

PROOF. We have the identiy

00 1 /x\k

(2.2) e~*lh V - (-) = e-*lhe*/h = 1.
j;=o k\ \h)

Taking two successive derivatives we get

(23) ^ 1

From (2.2) we also get the identity
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We have
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I (0 \Ha+x)-f(a+kh)\.

Let us divide the sum into two parts, namely 2*' corresponding to the k's
satisfying \x—kh\ ^ d and 2*« to the k's satisfying \x—kh\ > 8, where <$
is determined by the condition that \f(a+x)—f(a+kh)\ < \e for \x—kh\ ^ 5.
Then we have

| i

From (2.4) we get

Ja®'*< xh

and

Also as / is bounded, |/| < M, we get by (2.5)

f
if h < e&l&Mx. Thus it follows that as A tends to zero

* _ 0

tends uniformly to zero in the intervals considered. This completes the proof
of Theorem 2 and hence of Theorem 1.

We discuss the probabilistic interpretation of the theorems which
we write as

(3.1) lim 1 &!Q1 er'l*f{a+kh) = f(a+x).
A-.0 *-0 »!
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Define

(3.2) f - - ^ ' - "

as the probability for the variable t to assume the special value tk = kh.
Then we can write (3.1) as

(3.3) lim | fikf(a+tk) = f(a+x)

and we can write (2.3) and (2.4) as

(3-4) !

and
oo

(3.5)

respectively.
Now (3.2) defines a Poisson distribution, for by putting xjh = A we get

Now (3.4) shows that the mathematical expectation of the discrete values
tk is x. Thus x is the mean value of the variable t.

As for (3.3) this equation tells us that as h tends to zero, that is to say,
as the "points of interpolation" tk = kh are chosen increasingly close to
each other, the mathematical expectation of the discrete function values
f(a-\-tk) tends to the definite value f(a-\-x). The equation (3.5) gives the
variance of the variable t. Thus a2 = xh, and this shows how the standard
deviation decreases as we choose closer points of interpolation on the tf-axis.

Now Tchebycheff's inequality [2] states that

P[\t-x\ > Aa) < I/A3

where P(\t—x\ > Aa) denotes the probability that the variable t should
differ from its mean a; by a quantity of modulus > Aa. For our special dis-
tribution we find

for a2 = xh, in accordance with (3.5). Thus (2.5) can be regarded as a
special case of Tchebycheff's general inequality.
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