A THEOREM ON A FINITE DIFFERENCE OPERATOR AND ITS CONNEGTION WITH THE POISSON DISTRIBUTION

Q. A. M. M. YAHYA

(Received 22 August 1963, revised 20 June 1965)

1

The well-known Taylor expansion of a function around a point a can be formally written as

$$
\begin{equation*}
f(a+x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left(\frac{d}{d a}\right)^{n} f(a)=e^{x \cdot d / d a} \cdot f(a) \tag{1.1}
\end{equation*}
$$

The last expression is just a symbolic form and is valid, as we know, under certain restrictive conditons. We shall study the situation when the differential operator $d / d a$ is replaced by the finite difference operator Δ_{h} / h, where the operator Δ_{h} is defined by

$$
\Delta_{h} f(a)=f(a+h)-f(a)
$$

In general,

$$
\begin{aligned}
\left(\Delta_{h}\right)^{n} f(a)=\Delta_{n}^{n} f(a) & =\Delta_{h}\left[\Delta_{n}^{n-1} f(a)\right] \\
& =f(a+n h)-\binom{n}{1} f(a+(n-1) h)+\ldots+(-1)^{n} f(a)
\end{aligned}
$$

Then we have the following theorem.
Theorem 1. If the function f is continuous and bounded for $0 \leqq x<\infty$, $0 \leqq a<\infty$, then $e^{x \cdot \Delta_{N} / h} f(a)$ tends uniformly to $f(a+x)$ throughout any finite intervals of values of a and x, as h tends to zero. That is to say,

$$
\begin{equation*}
\lim _{k \rightarrow 0} e^{x \cdot \Delta_{k} / k} f(a)=f(a+x) \tag{1.2}
\end{equation*}
$$

The above theorem has been proved by Hille [3] as a special case of a theorem on semigroups. We give an independent proof following Bernstein's method [1] of proving Weierstrass' theorem on the approximation of continuous functions of polynomials. We also point out an interpretation of the theorem in terms of the Poisson distribution.

2

Let us introduce the translation operator T_{h} defined by

$$
T_{n} f(t)=f(t+h) ; \quad\left(T_{n}\right)^{n}=T_{n}^{n} f(t)=f(t+n h)
$$

We observe that

$$
\begin{equation*}
\Delta_{h}=T_{n}-1 \tag{2.1}
\end{equation*}
$$

From (1.2) and (2.1) we get

$$
\begin{aligned}
e^{x \cdot \Delta_{h} / h} f(a)=e^{x / h\left(T_{n}-1\right)} f(a)=e^{-x / h} e^{x / h \cdot T_{n}} f(a) & =e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} T_{h}^{k} f(a) \\
& =e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} f(a+k h)
\end{aligned}
$$

Thus the contention of Theorem 1 becomes equivalent to the following theorem:

Theorem 2. The infinite series

$$
e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} f(a+k h)
$$

tends uniformly to $f(a+x)$ throughout any finite intervals of values of a and x, as h tends to zero.

Proof. We have the identiy

$$
\begin{equation*}
e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}=e^{-x / h} e^{x / h}=1 \tag{2.2}
\end{equation*}
$$

Taking two successive derivatives we get

$$
\begin{align*}
& e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}(x-k h)=0 \tag{2.3}\\
& e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}(x-k h)^{2}=x h \tag{2.4}
\end{align*}
$$

From (2.2) we also get the identity

$$
f(a+x)=e^{-x / n} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} f(a+x)
$$

We have

$$
\begin{aligned}
\mid f(a+x)-e^{-x / n} & \left.\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} f(a+k h) \right\rvert\, \\
& =e^{-x / n}\left|\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}[f(a+x)-f(a+k h)]\right| \\
& \leqq e^{-x / n} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}|f(a+x)-f(a+k h)|
\end{aligned}
$$

Let us divide the sum into two parts, namely $\Sigma_{k^{\prime}}$ corresponding to the k 's satisfying $|x-k h| \leqq \delta$ and $\sum_{k^{\prime \prime}}$ to the k 's satisfying $|x-k h|>\delta$, where δ is determined by the condition that $|f(a+x)-f(a+k h)|<\frac{1}{2} \varepsilon$ for $|x-k h| \leqq \delta$. Then we have

$$
\begin{aligned}
e^{-x / n} \sum_{k^{\prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}|f(a+x)-f(a+k h)| & <\frac{\varepsilon}{2} e^{-x / h} \sum_{k^{\prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} \\
& \leqq \frac{\varepsilon}{2} e^{-x / n} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}=\varepsilon / 2
\end{aligned}
$$

From (2.4) we get

$$
e^{-x / k} \sum_{k^{\prime \prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} \delta^{2}<x h
$$

and

$$
\begin{equation*}
e^{-x / h} \sum_{k^{\prime \prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}<\frac{x h}{\delta^{2}} \tag{2.5}
\end{equation*}
$$

Also as f is bounded, $|f|<M$, we get by (2.5)

$$
e^{-x / h} \sum_{k^{\prime \prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}|f(a+x)-f(a+k h)|<2 M e^{-x / n} \sum_{k^{\prime \prime}} \frac{1}{k!}\left(\frac{x}{h}\right)^{k}<2 M \frac{x h}{\delta^{2}}<\frac{\varepsilon}{2}
$$

if $h<\varepsilon \delta^{2} / 4 M x$. Thus it follows that as h tends to zero

$$
\left|f(a+x)-e^{-x / h} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{h}\right)^{k} f(a+k h)\right|
$$

tends uniformly to zero in the intervals considered. This completes the proof of Theorem 2 and hence of Theorem 1.

3

We discuss the probabilistic interpretation of the theorems which we write as

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sum_{k=0}^{\infty} \frac{(x / h)^{k}}{k!} e^{-x / k} f(a+k h)=f(a+x) \tag{3.1}
\end{equation*}
$$

Define

$$
\begin{equation*}
p_{k}=\frac{(x / h)^{k}}{k!} e^{-x / h} \tag{3.2}
\end{equation*}
$$

as the probability for the variable t to assume the special value $t_{k}=k h$. Then we can write (3.1) as

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sum_{k=0}^{\infty} p_{k} f\left(a+t_{k}\right)=f(a+x) \tag{3.3}
\end{equation*}
$$

and we can write (2.3) and (2.4) as

$$
\begin{equation*}
\sum_{k=0}^{\infty} p_{k} t_{k}=x \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty} p_{k}\left(t_{k}-x\right)^{2}=x h \tag{3.5}
\end{equation*}
$$

respectively.
Now (3.2) defines a Poisson distribution, for by putting $x / h=\lambda$ we get

$$
p_{k}=\frac{\lambda^{k}}{k!} e^{-\lambda} .
$$

Now (3.4) shows that the mathematical expectation of the discrete values t_{k} is x. Thus x is the mean value of the variable t.

As for (3.3) this equation tells us that as h tends to zero, that is to say, as the "points of interpolation" $t_{k}=k h$ are chosen increasingly close to each other, the mathematical expectation of the discrete function values $f\left(a+t_{k}\right)$ tends to the definite value $f(a+x)$. The equation (3.5) gives the variance of the variable t. Thus $\sigma^{2}=x h$, and this shows how the standard deviation decreases as we choose closer points of interpolation on the t-axis.

Now Tchebycheff's inequality [2] states that

$$
P(|t-x|>A \sigma)<1 / A^{2}
$$

where $P(|t-x|>A \sigma)$ denotes the probability that the variable t should differ from its mean x by a quantity of modulus $>A \sigma$. For our special distribution we find

$$
\sum_{k^{\prime \prime}} \frac{(x / h)^{k}}{k!} e^{-x / k}=\sum_{k^{\prime \prime}} p_{k}=P(|t-x|>\delta)<\frac{\sigma^{2}}{\delta^{2}}=\frac{x h}{\delta^{2}}
$$

for $\sigma^{2}=x h$, in accordance with (3.5). Thus (2.5) can be regarded as a special case of Tchebycheff's general inequality.

References

[l] Bernstein, S., "Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités", Communic. Soc. Math. Cracow, vol. 13, p. 1.
[2] Cramér, H., Mathematical methods of statistics, Princeton University Press, Princeton.
[3] Hille, E. and Phillips, R. S., Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. XXXI, 1957.

University of Dacca
East Pakistan

