Canad. Math. Bull. Vol. 20 (4), 1977

IMAGES IN TOPOI

BY K. A. ROWE

0. Introduction. The construction of images of morphisms in an elementary topos E has hithero required the use of colimits. For example, in [1], Freyd constructs the image of a morphism by taking the equalizer of the cokernel pair of the morphism. In particular, the construction of the direct image functor, or, as it is sometimes referred to, existential quantification along a morphism, has required the use of images, and hence colimits. However, Mikkelsen has defined existential quantification using only limits. This paper verifies that Mikkelsen's definition can be used to construct images without the use of colimits and agrees with that usually given.

We work throughout in an elementary topos E, by which we understand a finitely complete category with power-object functor $P: E^{op} \to E$. The latter means that for each $X \in E_0$ (= objects of E), we have, in addition to P(X), a "membership relation" $\varepsilon_X \xrightarrow{\tilde{\varepsilon}_X} P(X) \times X$ such that if $R \xrightarrow{\langle y, x \rangle} Y \times X$ is any relation there exist unique morphisms $f: Y \to P(X)$, $f^*: R \to \varepsilon_X$ such that the induced square is a pullback.

We write $\Omega = P(1)$ (1 = terminal object of E), and verify immediately that there is a unique morphism $t: \to \Omega$ which makes (Ω, t) into a subobject classifier, and hence that there is a unique natural morphism $e_X: P(X) \times X \to \Omega$ classifying \bar{e}_X .

Our method of proof will utilize the set-theoretical principles as outlined, for example, in [2]. Most of the material contained herein is derived from the author's notes [3]. I am indebted to G. Wraith and C. Mikkelsen for many stimulating conversations.

1. Set theory in E. Our basic building blocks are: (1) the functor P as described above; (2) the singleton maps $\{ \}_A = \{ \}: A \to P(A); (3)$ the "total subset" maps $\Sigma_A: 1 \to P(A);$ (4) the "intersection operators" $\bigwedge_A = \bigwedge: P(A) \times P(A) \to P(A);$ and (5) the "inclusion relations" $\bigotimes_A \xrightarrow{\subseteq_A} P(A) \times P(A)$ and $\bigotimes_A \xrightarrow{\cong_A} P(A) \times P(A)$. These are all definable using only the power-object condition and/or the subobject classifier, and hence involve only finite limits. We assume their constructions known (see, for example, [3]—this approach does not use any cartesian-closed structure, which we have not assumed).

471

Further, we assume known:

- 1.1. PROPOSITION. (i) $\{\}_A$ is a nonomorphism.
- (ii) P is a faithful functor.
- (iii) E is balanced. \Box

Our method of proof will utilize the set-theoretic principles of [2]. This eliminates a large number of pullback arguments. Specifically, we use the following terms, notations and results:

1.2. DEFINITION. A morphism $X \rightarrow Y$ is an X-element of Y.

1.3. NOTATION. If A_0 is an X-element of P(A) and a is an X-element of A, we write $a \in {}_XA_0$, or just $a \in A_0$ to mean that $e_A \langle A_0, a \rangle = t!_X$, where $!_X : X \to 1$ is the terminal map.

1.4. NOTATION. If A_1 and A_2 are X-elements of P(A) we write $A_1 \subseteq_A A_2$, or just $A_1 \subseteq A_2$ to mean that $\langle A_1, A_2 \rangle$ factors through \subseteq_A . The notation $A_1 \supseteq A_2$ is defined similarly.

1.5. PROPOSITION. Let A_1 , A_2 and A_3 be X-elements of P(A). Then:

- (i) $A_1 \subseteq A_2$ iff $A_2 \supseteq A_1$.
- (ii) $A_1 \subseteq A_2$ and $A_2 \subseteq A_3$ implies $A_1 \subseteq A_3$.
- (iii) $A_1 \subseteq A_2$ and $A_2 \subseteq A_1$ iff $A_1 = A_2$. \Box

1.6. SINGLETON PRINCIPLE. If A_0 is an X-element of P(A) and a is an X-element of A, then:

$$a \in A_0$$
 iff $\{ \}a \subseteq A_0$. \Box

1.7. INVERSE-IMAGE PRINCIPLE. If $f:A \rightarrow B$, B_0 an X-element of P(B), and a an X-element of A, then:

$$a \in P(f)B_0$$
 iff $fa \in B_0$.

1.8. EXTENSIONALITY PRINCIPLE. If A_1 and A_2 are X-elements of P(A) then the following are equivalent:

(i) $A_1 \subseteq A_2$.

(ii) Given Y-element α of X and a Y-element a of A such that $a \in A_1 \alpha$, then $a \in A_2 \alpha$. \Box

The proofs of all of these may be found in [2] or [3].

We also need the idea of a monotone map. For present purposes, we shall only consider maps $\phi: P(A) \to P(B)$, and call such a map monotone if, given any X and X-elements A_1 and A_2 of P(A) such that $A_1 \subseteq A_2$ it follows that $\phi A_1 \subseteq \phi A_2$. We have:

472

1.9. PROPOSITION. If $f: A \to B$ then $P(f): P(B) \to P(A)$ is monotone. \Box

Following Mikkelson, we introduce the upper and lower segments $S_A^{\uparrow} = S^{\uparrow}: P(A) \rightarrow P(P(A))$ and $S_A^{\downarrow} = S^{\downarrow}: P(A) \rightarrow P(P(A))$ as the power-object maps of the inclusion relations \subseteq_A and \supseteq_A respectively. Using these maps Mikkelsen defines the *intersection operators* by the composition

 $\bigcap: P(P(A)) \xrightarrow{S^{\uparrow}} P(P(P(A))) \xrightarrow{P(S^{\uparrow})} P(P(A)) \xrightarrow{P(\{\})} P(A).$

We will need the following properties:

1.10. PROPOSITION. If A_1 and A_2 are X-elements of P(P(A)) such that $A_1 \subseteq A_2$ then $\bigcap A_2 \subseteq \bigcap A_1$.

1.11. PROPOSITION. $\bigcap S^{\uparrow} = 1 = P(\{ \})S^{\downarrow}$.

1.12. PROPOSITION. $S^{\uparrow}\Sigma_A = \{\}\Sigma_A$.

These all follow easily. Let us prove 10. to illustrate the method in this context. Let ξ be a Y-element of X and A_0 a Y-element of P(A) such that $A_0 \in \bigcap A_2 \xi$. By the Inverse-image Principle, this is equivalent to $S^{\uparrow} \{A_0 \in S^{\uparrow} A_2 \xi$, or, $e(S^{\uparrow} \times 1) \langle A_2 \xi, S^{\uparrow} \} A_0 \geq t!$. By definition of S^{\uparrow} , we conclude $A_2 \xi \subseteq S^{\uparrow} \{A_0$. Hence, $A_1 \xi \subseteq S^{\uparrow} \{A_0$. Reversing the above argument, we see that $S^{\uparrow} \{A_0 \in S^{\uparrow} A_1 \xi$, or $A_0 \in \bigcap A_1 \xi$. The result follows from the Extensionality Principle.

(Note that one must pass to a pullback argument briefly. As more results become available, the number of such arguments—hopefully—decreases.)

1.13. PROPOSITION. Let A_1 and A_2 be X-elements of P(A). Then the following are equivalent:

- (i) $A_1 \subseteq A_2$.
- (ii) $A_2 \in S^{\uparrow} A_1$.
- (iii) $A_1 \in S^{\uparrow} A_2$.
- (iv) $S^{\downarrow}A_2 \subseteq S^{\uparrow}A_1$.
- (v) $S^{\downarrow}A_1 \subseteq S^{\downarrow}A_2$.

(The proof is quite straightforward.)

Finally, we define, following Mikkelsen, existential and universal quantification, as follows: Let $f: A \rightarrow B$. Then existential quantification along f is defined by the composition:

$$\exists_f : P(A) \xrightarrow{S^{\dagger}} P(P(A)) \xrightarrow{P(P(f))} P(P(B)) \xrightarrow{\cap} P(B)$$

and universal quantification by the composition:

$$\forall_f : P(A) \xrightarrow{S^{\downarrow}} P(P(A)) \xrightarrow{P(P(f))} P(P(B)) \xrightarrow{P(\{ \})} P(B).$$

K. A. ROWE

[December

We have only incidental use for universal quantification here. It is intrinsically simpler than existential and for that reason certain results about existential quantification turn out to be more easily proved by using universal quantification to prove auxiliary results first (see Section 3). We verify in Section 4 that Mikkelsen's definition of existential quantification agrees with that usually given (see, for example, [2]).

2. Images in E. Let $f: A \rightarrow B$ be any map in E. Consider the pullback

$$I(f) \longrightarrow 1$$

$$f_{m} \downarrow \qquad \qquad \downarrow^{t}$$

$$B \xrightarrow{\langle \Sigma_{A}^{1}, 1 \rangle} P(A) \times B \xrightarrow{\exists_{f} \times 1} P(B) \times B \xrightarrow{e} \Omega$$

We claim:

2.1. THEOREM. There is a unique epimorphism $f_e: A \to I(f)$ such that $A \xrightarrow{f_e} I(f) \xrightarrow{f_m} B$ is the image factorization of f.

The proof will be preceded by three lemmas.

2.2. LEMMA. There is a unique map $f_e: A \to I(f)$ such that $f_m f_e = f$.

Proof. We must show that $f \in \exists_f \Sigma_A !$, which is equivalent to $P(P(f))S^{\uparrow}\Sigma_A ! \subseteq S^{\uparrow} \{\}f$ (by definition of \exists , the Principles, and 13). Let a be an X-element of A, B_0 an X-element of P(B), and suppose $B_0 \in P(P(f))S^{\uparrow}\Sigma_A ! a$, or, equivalently, $\Sigma_A ! a \subseteq P(f)B_0$. Since $a \in \Sigma_A ! a$, we have $a \in P(f)B_0$, or $\{\}fa \subseteq B_0$, or $B_0 \in S^{\uparrow} \{\}fa$. \Box

2.3. LEMMA. Let $\psi: \mathbb{1} \to P(B)$ and suppose $P(f)\psi = \Sigma_A$. Then $\exists_f \Sigma_A \subseteq \psi$.

Proof. Let $b \in \exists_f \Sigma_A!$, or, $P(P(f))S^{\uparrow}\Sigma_A! \subseteq S^{\uparrow}\{\}b$. Now, $P(f)\psi! \in \{\}\Sigma_A!$ by assumption, so, by 12 and extensionality, $\psi! \in S^{\uparrow}\{\}b$, or, $b \in \psi!$. \Box

2.4. LEMMA. Let $A \xrightarrow{k} K \xrightarrow{n} B$ be a factorization of f with n monic. Let $\chi_n : \mathbb{1} \to P(B)$ be the power-object map for the relation $K \xrightarrow{\langle 1,n \rangle} \mathbb{1} \times B$. Then $P(f)\chi_n = \Sigma_A$

Proof. We need only show $\Sigma_A \subseteq P(f)f_n$. Let *a* be an *X*-element of *A*. Clearly $a \in \Sigma_A$!. Then

$$e\langle P(f)x_n!, a \rangle = e\langle \chi_n!, fa \rangle$$
 (since *e* is natural)
= $e(\chi_n \times 1)\langle !, n \rangle ka$
= $t!$. \Box

Proof of 2.1. Let n, k be as in 2.4. We thus have $\exists_f \Sigma_A \subseteq x_n$. Then, since the

IMAGES IN TOPOI

characteristic map of *n* is $e(\chi_n!, 1)$, there is a unique map from the subobject of *B* whose characteristic map is $e(\exists_f \Sigma_A!, 1)$, namely $f_m: I(f) \to B$ to the subobject $n: K \to B$, say $\theta: I(f) \to K$. Then $nk = f_m f_e = h\theta f_e$ so $k = \theta f_e$. It remains to see that f_e is epic. Let $u_1 f_e = u_2 f_e$, and let $K \to I(f)$ be the equalizer of u_1 and u_2 . Then there is a unique $k: A \to K$ such that $nk = f_e$ and so $A \xrightarrow{k} K \xrightarrow{f_m n} B$ is a factorization of f with $f_m n$ mono. By the above argument, we see n is iso; hence $u_1 = u_2$. \Box

3. Adjointness and the Beck condition. We wish to prove that the existential quantifier defined by Mikkelsen agrees with that usually given. To do this, we will need to know that pullbacks of epis in E are epi. Our proof of this depends on the "adjointness" of \exists and P and the Beck condition. We cannot, of course, assume these results since they are usually proved using the "usual" definition of \exists in terms of images.

We will need the following:

3.1. PROPOSITION. Let $f: A \to B$ be any map, A_0 an X-element of P(A) and a an X-element of A. Then if $a \in A_0$ we have $fa \in \exists_f A_0$.

Proof. We must show $P(P(f))S^{\uparrow}A_0 \subseteq s^{\uparrow}\{\}fa$. Let $B_0 \in P(P(f))S^{\uparrow}A_0\alpha$. Then $A_0\alpha \subseteq P(f)B_0$. Hence $a\alpha \in P(f)B_0$ which implies the result. \Box

The adjointness referred to above is the content of the following:

3.2. THEOREM. Let $f: A \rightarrow B$ be any morphism and let A_0, B_0 be X-element of P(A), P(B) respectively. Then:

(i) $\exists_f A_0 \subseteq B_0$ iff $A_0 \subseteq P(f)B_0$.

(ii) $P(f)B_0 \subseteq A_0$ iff $B_0 \subseteq \forall_f A_0$.

Proof. (i) Suppose the first inclusion true and let $a \in A_0 \alpha$. By 3.1 $fa \in \exists_f A_0 \alpha$, so $fa \in B_0 \alpha$.

Now, suppose $A_0 \subseteq P(f)B_0$. Since we obviously have $P(f)B_0 \in S^{\uparrow}P(f)B_0$, we also have $B_0 \in P(P(f))S^{\uparrow}P(f)B_0$. Now, if $b \in \exists_f A_0 \alpha$, we have $P(P(f))S^{\uparrow}A_0 \alpha \subseteq S^{\uparrow}\{ \}b$. By 1.12 and monotonicity of power-maps, we have $P(P(f))S^{\uparrow}P(f)B_0 \alpha \subseteq P(P(f))S^{\uparrow}A_0 \alpha$, and hence $B_0 \alpha \in S^{\uparrow}\{ \}b$ or, $b \in B_0$.

The proof of (ii) is similar. \Box

3.3. THEOREM. (Beck Condition). Let

(1)
$$\begin{array}{c} A \xrightarrow{-} B \\ {}_{g} \downarrow \qquad \downarrow^{h} \\ A' \xrightarrow{f'} B' \end{array}$$

be a diagram in E.

476

(i) If (1) commutes, then $P(h) \forall_{f'} \subseteq \forall_f P(g)$ and $P(f') \forall_h \subseteq \forall_g P(f)$.

K. A. ROWE

(ii) If also (1) is a pullback then

$$P(h) \forall_{f'} = \forall_f P(g), \qquad P(f') \forall_h = \forall_g P(f), \qquad P(h) \exists_{f'} = \exists_f P(g),$$

and

 $P(f') \exists_h = \exists_g P(f).$

(iii) Conversely, if $P(h) \exists_{f'} = \exists_f P(g)$ and $\exists_g P(f) = P(f') \exists_h$ then (1) commutes.

Proof. (i) By 3.2(ii) we have $P(h)\forall_{f'} \subseteq \forall_f P(g)$ iff $P(f)P(h)\forall_{f'} \subseteq P(g)$, or, since (1) commutes, iff $P(g)P(f')\forall_{f'} \subseteq P(g)$. But, again by 3.2, $P(f')\forall_{f'} \subseteq 1$ iff $\forall_{f'} \subseteq \forall_{f'}$ which is true. Since P(g) is monotone, the result follows. (The other inclusion is simply a relabelling.)

(ii) We show first $\forall_f P(g) \subseteq P(h) \forall_{f'}$, and hence the first equality. Let $b \in \forall_f P(g)A'_0$. Then $P(f)\{\}b \subseteq P(g)A'_0$. We wish to show $P(f')\{\}hb \subseteq A'_0$. Let $a' \in P(f')\{\}hb\beta$. Then $f'a' = hb\beta$, so there is a unique *a* such that ga = a', $fa = b\beta$. We thus have $P(f)\{\}fa \subseteq P(g)A'_0\beta$. Now clearly $a \in P(f)\{\}fa$, hence $ga = a' \in A'_0\beta$. The second equality is again a relabelling. To prove the third equality we proceed as follows:

$P(h) \exists_{f'} \subseteq \exists_f P(g)$	and	$\exists_f P(g) \subseteq P(h) \exists_f g'$
$\exists_{f'} \subseteq \forall_h \exists_f P(g)$	and	$P(g) \subseteq P(f)P(h) \exists_{f'}$
$1 \subseteq P(f') \forall_h \exists_f P(g)$	and	$1 \subseteq \forall_{g} P(f) P(h) \exists_{f'}$
$1 \subseteq \forall_{\mathbf{g}} P(f) \exists_f P(g)$	and	$1 \subseteq P(f') \forall_h P(h) \exists_{f'}$
$P(g) \subseteq P(f) \exists_f P(g)$	and	$\exists_{f'} \subseteq \forall_h P(h) \exists_{f'}$
$\exists_f P(g) \subseteq \exists_f P(g)$	and	$P(h) \exists_{f'} \subseteq P(h) \exists_{f'}$
	$ \exists_{f'} \subseteq \forall_h \exists_f P(g) 1 \subseteq P(f') \forall_h \exists_f P(g) 1 \subseteq \forall_g P(f) \exists_f P(g) P(g) \subseteq P(f) \exists_f P(g) $	$ \begin{aligned} & \exists_{f'} \subseteq \forall_h \exists_f P(g) & \text{and} \\ & 1 \subseteq P(f') \forall_h \exists_f P(g) & \text{and} \\ & 1 \subseteq \forall_g P(f) \exists_f P(g) & \text{and} \\ & P(g) \subseteq P(f) \exists_f P(g) & \text{and} \end{aligned} $

both of which are true. The final equality is again a relabelling.

(iii) To prove this we note first that if $\theta: X \to Y$ then $\exists_{\theta} \{ \}_{X} = \{ \}_{Y}\theta$. For, on the one hand $\exists_{\theta} \{ \}_{X} \subseteq \{ \}_{Y}\theta$ iff $\{ \}_{X} \subseteq P(\theta) \{ \}_{Y}\theta$, which is immediate, while on the other hand, if $y \in \{ \}_{Y}\theta x$, we have, by 3.1, $y \in \exists_{\theta} \{ \}_{X}x$ since $x \in \{ \}_{X}x$. Now, composing the first equality with $\{ \}f$, we obtain $P(f') \{ \}hf = \exists_{g}P(f) \{ \}f$. Noting that $\{ \} \subseteq P(f) \{ \}f$ and \exists_{g} is monotone (because it is a composition of *two* uppersegments and power maps) we have $\{ \}g \subseteq P(f') \{ \}hf$, so $\{ \}f'g = \exists_{f'} \{ \}g \subseteq$ $\{ \}hf$. Using the other equality proves the opposite inclusion, so $\{ \}f'g = \{ \}hf$. Since singleton is monic, the result follows. \Box

(It is not in general true that that the Beck condition implies that (1) is a pullback. Using the Existence Principle of [2], one can prove the following universal property:

If hb = f'a', then there is an epimorphism α and a such that $g(a) = a'\alpha$, $fa = b\alpha$. We have no idea what use this is.)

[December

Two more auxiliary results:

3.4. PROPOSITION. For any map $f: A \to B$ we have $\Sigma_A = P(f)\Sigma_B$. \Box

3.5. PROPOSITION. Let $f: A \to B$ be a map. Then f is an epimorphism iff $\exists_f \Sigma_A = \Sigma_B$.

Proof. Suppose f is an epimorphism. Then, in the image factorization of f, $f = f_m f_e$, we have f_m iso, for $f_m f_e$ is epi so f_m is also, so f_m iso since E is balanced. Now let $b \in \Sigma_B$!. Then $e\langle \exists_f \Sigma_A !, b \rangle = e\langle \exists_f \Sigma_A !, 1 \rangle f_m f_m^{-1} b = t!$. Hence $\Sigma_B \subseteq \exists_f \Sigma_A$. The opposite inclusion is obvious. On the other hand, if $\exists_f \Sigma_A = \Sigma_B$, then in the image factorization of f, we have $f = f_m f_e = 1 \cdot f$. Hence $f = f_e$, or f is epi. \Box

Finally;

3.6. PROPOSITION. Pullbacks of epis are epi.

Proof. Let (1) be a pullback with h epi. Then:

$$\exists_{g} \Sigma_{A} = \exists_{g} P(f) \Sigma_{B} \quad (by \ 3.4)$$
$$= P(f') \exists_{h} \Sigma_{B} \quad (by \ Beck \ Condition)$$
$$= P(f') \Sigma_{B'} \quad (by \ 3.5)$$
$$= \Sigma_{A'} \quad (by \ 3.4)$$

Hence, g is epi by 3.5.

4. Comparison of existential quantifications. The "usual" definition of existential quantification, as given in, for example, [1], or [2], is as follows: Given $f: A \rightarrow B$, one considers the map

$$\hat{f}: \varepsilon_A \longrightarrow P(A) \times A \xrightarrow{1 \times f} P(A) \times B$$

and takes its image factorization

$$\hat{f}: \varepsilon_A \xrightarrow{f_e} I(\hat{f}) \xrightarrow{f_m} P(A) \times B$$

thus obtaining a relation on $P(A) \times B$ whose power-object map is $\exists_f : P(A) \rightarrow P(B)$. We show here that $\overline{\exists}_f = \exists_f$. The proof rests on the following lemma:

4.1. LEMMA. Let $R \xrightarrow{\langle x, y \rangle} A \times B$ be any relation and let $f: A \to P(B)$ be its power-object map. Then f is given by the composition

$$f: A \xrightarrow{\{\}} P(A) \xrightarrow{P(x)} P(R) \xrightarrow{\exists_y} P(B).$$

K. A. ROWE

Proof. To see that $f \subseteq \exists_y P(x) \{ \}$, let *a* be an *X*-element of *A*, *b* an *X*-element of *B* such that $b \in fa$. By definition of *f*, there is a unique $r: X \to R$ such that $\langle x, y \rangle r = \langle a, b \rangle$. Clearly $r \in P(x) \{ \}a$. By 3.1 $b = yr \in \exists_y P(x) \{ \}a$.

Suppose $b \in \exists_y P(x) \{ \}a$. Then $P(P(y))S^{\uparrow}P(x) \{ \}a \subseteq S^{\uparrow} \{ \}b$. We claim $fa \in P(P(y))S^{\uparrow}P(x) \{ \}a$, or, $P(x) \{ \}a \subseteq P(y)fa$. For, suppose $r \in P(x) \{ \}a^a$; then $xr = a\alpha$. Since $y \in fx$ by definition, we have $yr \in fxr = fa\alpha$, and so $r \in P(y)fa\alpha$, which proves the inclusion. Hence, $fa \in S^{\uparrow} \{ \}b$, or, $b \in fa$. \Box

We may now prove that the two existential quantifiers agree. Write $\hat{f}_m = \{f', f'' \rangle : I(\hat{f}) \to P(A) \times B$. By 4.1

$$\bar{\exists}_f = \exists_{f''} P(f') \{ \}.$$

Thus, we will be done if we show the right-hand side is \exists_{f} .

Let A_0 be an X-element of P(A). We claim:

- (1) $A_0 \subseteq P(f) \exists_{f''} P(f') \{ \} A_0$
- (2) $P(f')\{ \}A_0 \subseteq P(f'') \exists_f A_0,$

since, by 3.2, this is equivalent to the required result.

Verification of (1): Let $a \in A_0 \alpha$, $\alpha : Y \to X$, $a : Y \to A$. By definition, there is a unique $\eta : Y \to \varepsilon_A$ such that $\bar{e}_A \eta = \langle A_0 \alpha, a \rangle$. Thus, $A_0 \alpha = p_1 \bar{e}_A \eta = p_1(1 \times f) \bar{e}_A \eta = p_1(f', f'') \hat{f}_e \eta = f' \hat{f}_e$. Thus, $\hat{f}_e \eta \in P(f') \{ \} A_0 \alpha$, so by 4.1, $f'' \hat{f}_2 \eta \in \exists_{f''} P(f') \{ \} A_0 \alpha$. But $f'' \hat{f}_e \eta = p_2 \langle f', f'' \rangle \hat{f}_e \eta = p_2(1 \times f) \bar{e}_A \eta = f p_2 \langle A_0 \alpha, a \rangle = f a$. Hence, (1) holds.

Verification of (2): Let $\eta \in P(f')$ { $A_0\alpha$, where $\eta: Y \to I(\hat{f}), \alpha: Y \to X$, and consider the pullback

and note β is epi since \hat{f}_e is. A lengthy computation verifies that $p_2 \bar{e}_A \eta' \in A_0 \alpha \beta$, from which we obtain $fp_2 \bar{e}_A \eta' \in \exists_f A_0 \alpha \beta$, by 3.1. But $fp_2 \bar{e}_A \eta' = p_2 \langle f', f'' \rangle f_e \eta' = f'' \eta \beta$. Hence, (2) holds, which verifies the result.

BIBLIOGRAPHY

1. P. Freyd, Aspects of Topoi. Bull. Australian Math. Soc., Vol. 7 (1972).

2. A. Kock, P. Lecouturier, and C. Mikkelsen, Some Topos-theoretic Concepts of Finiteness. Aarhus University Preprint Series No. 29 (1974).

3. K. A. Rowe, Topoidal Set Theory. University of Waterloo, Dec. (1974).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WATERLOO WATERLOO, ONTARIO

478