ON THE PEANO DERIVATIVES

P. S. BULLEN AND S. N. MUKHOPADHYAY

1. Introduction. Let f be a real valued function defined in some neighbourhood of a point x. If there are numbers $\alpha_{1}, \alpha_{2}, \ldots \alpha_{r-1}$, independent of h such that

$$
f(x+h)=f(x)+h \alpha_{1}+\frac{h_{4}^{2}}{2} \alpha_{2}+\ldots \frac{h^{r-1}}{(r-1)!} \alpha_{r-1}+o\left(h^{r-1}\right)
$$

then the number α_{k} is called the k th Peano derivative (also called k th de la Vallée Poussin derivative [6]) of f at x and we write $\alpha_{k}=f_{k}(x)$. It is convenient to write $\alpha_{0}=f_{0}(x)=f(x)$. The definition is such that if the m th Peano derivative exists so does the nth for $0 \leqq n \leqq m$. Also if $f^{(n)}(x)$, the ordinary nth derivative of f at x, exists then necessarily $f_{n}(x)$ exists and equals $f^{(n)}(x)$ and hence also $f_{k}(x)$ exists and equals $f^{(k)}(x)$ for $0 \leqq k \leqq n$. The converse is true only for $n=1$.

Let us suppose that $f_{r-1}(x)$ exists. Then the upper and the lower r th Peano derivatives of f at x are defined as the upper and the lower limits of

$$
\frac{r!}{h^{r}}\left\{f(x+h)-\sum_{k=0}^{r-1} \frac{h^{k}}{k!} \alpha_{k}\right\}
$$

as h tends to 0 . They will be denoted by $-f_{r}(x)$ and $-f_{r}(x)$ respectively. When they are equal we shall say that the r th Peano derivative of f at x exists. (We are allowing $f_{r}(x)$ to be infinite, although for the existence of $f_{r}(x)$ all the previous derivatives $f_{0}(x), f_{1}(x), \ldots f_{r-1}(x)$ should be finite).

In a recent paper [12] Verblunsky proved that for $n \geqq 2$ (i) if f_{n-1} is defined in $[a, b]$ and $-f_{n}>0$ except on a denumerable subset in $[a, b]$ then f_{n-1} is continuous and nondecreasing in $[a, b]$, and, (ii) if f_{n} is defined and bounded on one side in $[a, b]$ then $f^{(n)}$ exists and $f^{(n)}=f_{n}$ in $[a, b]$. The last result of Verblunsky is due to Oliver [8]. It may be noted that a similar result in this direction has also been obtained by Bullen [2] which asserts that for $n \geqq 2$, if f_{n-1} exists in $[a, b]$, the right hand upper Peano derivative $f_{n}{ }^{+}$(i.e. restricting h to be positive while finding $-f_{n}$) is nonnegative almost everywhere in $[a, b]$ and $f_{n}{ }^{+}>-\infty$ except on a denumerable subset of $[a, b]$ then f is n-convex (or, equivalently f_{n-1} is nondecreasing) in $[a, b]$.
The purpose of the present note is to obtain sufficient conditions implying the monotonicity of the function f_{n-1} and to study some consequences.

[^0]2. Terminology and notations. For convenience we are stating here certain known definitions which will be useful in the proof of our results. For details of these definitions and notations we refer the reader to the book of Saks [9].
(i) A function f is said to satisfy Banach condition $\left(\mathrm{T}_{2}\right)$, if almost every value taken by f is taken at most a denumerable number of times;
(ii) A function f is said to satisfy Luzin condition (N) on a set S if for every measurable set $E \subset S$ of measure zero, the set $f(E)$ is also of measure zero;
(iii) A function f is said to be of generalized bounded variation (VBG) on a set E if E can be expressed as a denumerable union of sets E_{i} on each of which f is of bounded variation (VB).
(Here, and elsewhere, denumerable allows finite as a possibility.)
Throughout, f will denote a real function, $[a, b]$ and (a, b) will denote the closed and the open intervals $a \leqq x \leqq b$ and $a<x<b$ respectively, and $m(E)$ will denote the Lebesgue measure of the measurable set E and $m^{*}(E)$ will denote Lebesgue outer measure for any set E.
(iv) A function f is said to be n-convex on $[a, b]$ if for all choices of $(n+1)$ distinct points $x_{0}, x_{1}, \ldots x_{n}$ in $[a, b]$ the nth divided difference of f at these points is nonnegative. (For details of the definitions and references see [2]). So, for $n=0$, the class of n-convex functions is the class of nonnegative functions, for $n=1$, it is the class of nondecreasing functions and for $n=2$, it is the class of usual convex functions. It can be shown that f_{n-1} is nondecreasing, if and only if f is n-convex [2].
3. We begin with the following known results.

Theorem A. Let \mathscr{P} be any function - theoretic property. A necessary and sufficient condition that every Darboux function of Baire class 1 possessing property \mathscr{P} on an interval $[a, b]$ be nondecreasing in $[a, b]$ is that the property \mathscr{P} be sufficiently strong to satisfy the following conditions:
(i) Every continuous function of bounded variation possessing property \mathscr{P} on some interval is nondecreasing in that interval, and
(ii) Every Darboux function of Baire class 1 possessing property \mathscr{P} is VBG.

This theorem is due to Bruckner (for a proof see [1]).
Lemma B. If f_{k} is defined in $[a, b]$, then given any nonempty closed set $H \subset[a, b]$ there is a portion of H on which f_{k} is bounded.

This lemma is due to Verblunsky [12].
Theorem C. If f_{n} is defined in $[a, b]$ and is bounded on one side at least, then $f_{n}=f^{(n)}$.

This is proved in $[\mathbf{8} ; \mathbf{1 2}]$.
Lemma 1. If at every point x of a set E, except perhaps at the points of a denu-
merable subset, a function f satisfies any one of the following conditions:

$$
-f_{2}(x)<\infty,-f_{2}(x)>-\infty
$$

then f_{1} is VBG on E.
Proof. Let us suppose that $-f_{2}(x)<\infty$ holds for all points x in E, except possibly on a denumerable subset of E and let

$$
A=\left\{x: x \in E ;-f_{2}(x)<\infty\right\}
$$

For each positive integer n let A_{n} denote the set of all points x of A such that

$$
\begin{equation*}
|h| \leqq 1 / n \text { implies } f(x+h)-f(x)-h f_{1}(x) \leqq \frac{1}{2} n h^{2} . \tag{1}
\end{equation*}
$$

For each integer i let $A_{n i}=[i / n,(i+1) / n] \cap A_{n}$. Then

$$
\begin{equation*}
A=\bigcup_{n=1}^{\infty} \bigcup_{i=-\infty}^{\infty} A_{n i} . \tag{2}
\end{equation*}
$$

Let $g(x)=f_{1}(x)-n x$. Then for any two points $x_{1}, x_{2}, x_{1}<x_{2}$, of $A_{n i}$, we have $\left|x_{2}-x_{1}\right| \leqq 1 / n$ and hence by (1)

$$
f\left(x_{2}\right)-f\left(x_{1}\right)-\left(x_{2}-x_{1}\right) f_{1}\left(x_{1}\right) \leqq \frac{1}{2} n\left(x_{2}-x_{1}\right)^{2}
$$

and

$$
f\left(x_{1}\right)-f\left(x_{2}\right)-\left(x_{1}-x_{2}\right) f_{1}\left(x_{2}\right) \leqq \frac{1}{2} n\left(x_{2}-x_{1}\right)^{2}
$$

and hence

$$
f_{1}\left(x_{2}\right)-f_{1}\left(x_{1}\right) \leqq n\left(x_{2}-x_{1}\right)
$$

i.e.,

$$
g\left(x_{2}\right) \leqq g\left(x_{1}\right)
$$

So, the function g is nonincreasing on each $A_{n i}$ and hence $A_{n i}$ can be expressed as the union of a sequence of sets $A_{n i j}$ on each of which g is monotone and bounded. So, g is VB on each $A_{n i j}$ and hence f_{1} is VB on each $A_{n i j}$, from which we conclude that f_{1} is VBG on $A_{n i}$ for each n and i. From (2) it follows that f_{1} is VBG on A. Since $E-A$ is at most denumerable f_{1} is VBG on E.

It can similarly be shown that if $f_{2}(x)>-\infty$ holds for points x in E, except possibly on a denumerable set then f_{1} is VBG on E.

Corollary. If $f_{2}(x)$ exists, finitely or infinitely, on a set E, except perhaps on a denumerable subset, then f_{1} is VBG on E.

Lemma 2. Let f be a function in $[a, b]$ satisfying the conditions:
(i) f_{1} is continuous in $[a, b]$,
(ii) f_{2} exists, finitely or infinitely, except on a denumerable subset in $[a, b]$, and
(iii) $f_{2} \geqq 0$ almost everywhere in $[a, b]$.

Then f_{1} is nondecreasing in $[a, b]$.
Proof. Since f_{1} is continuous in $[a, b]$, we conclude that f is continuous in $[a, b]$. Let E be the set of all points x in $[a, b]$ such that f_{1} is not monotone in any neighbourhood of x. Then E is closed. So, $[a, b]-E$ is open in $[a, b]$.

Since f_{1} is continuous, f_{1} is nondecreasing in each component interval of $[a, b]-E$. Hence E has no isolated point. For, if E has an isolated point, say x_{0}, then f_{1} is nondecreasing in an interval having x_{0} as right hand end point and f_{1} is also nondecreasing in an interval having x_{0} as left hand end point. But since f_{1} is continuous, $x_{0} \notin E$ which is a contradiction. Thus E is a perfect set. We show that $E=0$.

If possible, suppose $E \neq 0$. For each n let P_{n} denote the set of all points x in $[a, b]$ such that

$$
\begin{equation*}
|t-x|<1 / n \text { implies } f(t)-f(x)-(t-x) f_{1}(x) \leqq-\frac{1}{2}(t-x)^{2} \tag{1}
\end{equation*}
$$

and let Q_{n} denote the set of all points x in $[a, b]$ such that

$$
\begin{equation*}
|t-x|<1 / n \text { implies } f(t)-f(x)-(t-x) f_{1}(x) \geqq-(t-x)^{2} \tag{2}
\end{equation*}
$$

Since f and f_{1} are continuous, the sets P_{n} and Q_{n} are closed for each n. Also if f_{2} exists, finitely or infinitely, at a point ξ then $\xi \in\left(\cup P_{n}\right) \cup\left(\cup Q_{n}\right)$. So, the set $[a, b]-\left(\cup P_{n}\right) \cup\left(\cup Q_{n}\right)$ is at most denumerable and hence the set $\left(\cup P_{n}\right) \cup\left(\cup Q_{n}\right)$ is residual in $[a, b]$ and, a fortiori, is residual in E. Since the set $E \cap\left[\left(\cup P_{n}\right) \cup\left(\cup Q_{n}\right)\right]$ is a residual subset of the complete metric space E there is a portion of E in which one of the sets $E \cap P_{n}$ or $E \cap Q_{n}$ is dense. Since P_{n} and Q_{n} are closed, we conclude further that there is a portion of E which is contained in one of the sets P_{n} or Q_{n}. Let I be an open interval such that $I \cap E \neq 0$ and $I \cap E$ is contained in one of the sets P_{n} or one of the sets Q_{n}. Let $I \cap E \subset P_{n_{0}}$ for some n_{0}. We may suppose $\delta(I)<1 / n_{0}$, where $\delta(I)$ denotes the diameter of I. Since $f_{2} \geqq 0$ almost everywhere in $[a, b]$ and since the set $P_{n 0}$ is closed, we conclude that $P_{n 0}$ is nondense and hence $I \cap E$ is nondense. Let (α, β) be any interval contiguous to $I \cap E$. Then f_{1} is nondecreasing in (α, β) and by continuity of f_{1} it is nondecreasing in $[\alpha, \beta]$. But $\alpha, \beta \in P_{n_{0}}$ and $\beta-\alpha<1 / n_{0}$, and hence from (1),

$$
f(\beta)-f(\alpha)-(\beta-\alpha) f_{1}(\alpha) \leqq-\frac{1}{2}(\beta-\alpha)^{2}
$$

and

$$
f(\alpha)-f(\beta)-(\alpha-\beta) f_{1}(\beta) \leqq-\frac{1}{2}(\beta-\alpha)^{2}
$$

which gives

$$
f_{1}(\beta)-f_{1}(\alpha) \leqq-(\beta-\alpha)<0
$$

which is a contradiction.
Let us now suppose that $I \cap E \subset Q_{n 0}$ for some n_{0}. Then $f_{2}(x) \geqq-2$ for all $x \in I \cap E$, but if $x \in I-E$ then f_{1} is monotone in some neighbourhood of x and since $f_{2} \geqq 0$ a.e., f_{1} is nondecreasing and hence $f_{2} \geqq 0$; so $f_{2}(x) \geqq-2$ for all $x \in I$; also $f_{2}(x) \geqq 0$ almost everywhere in I. So by applying the result of [2] mentioned earlier we conclude that f_{1} is nondecreasing I. But this also contradicts the fact that $I \cap E \neq 0$.

So, we conclude that $E=0$ and hence f_{1} is nondecreasing in $[a, b]$.
Theorem 1. Let f be a function satisfying the following conditions in the interval $[a, b]$:
(i) f is continuous in $[a, b]$,
(ii) f_{n-1} exists finitely everywhere in $[a, b]$,
(iii) f_{n} exists, finitely or infinitely, except on a denumerable subset in $[a, b]$, and
(iv) $f_{n} \geqq 0$ almost everywhere in $[a, b]$.

Then f_{n-1} is continuous and nondecreasing (or equivalently, f is n-convex) in $[a, b]$.

If $n=1$, then the theorem reduces to the theorem of Goldowski and Tonelli [9, p. 206] for the ordinary derivative f^{\prime}. So, we prove the theorem for $n \geqq 2$. We mention that for $n \geqq 2$ the condition (i) is a consequence of the existence of f_{1} and hence is superfluous.

Proof of the theorem for $n=2$. Let a finite function g be said to satisfy property \mathscr{P} in the interval $[a, b]$ if g is the first Peano derivative of a function G such that the second Peano derivative G_{2} of G exists, finitely or infinitely, everywhere in $[a, b]$ except on a denumerable subset, and is nonnegative almost everywhere in $[a, b]$. Let f satisfy the hypothesis of Theorem 1 . Then f_{1} satisfies property \mathscr{P} on $[a, b]$. Also the property \mathscr{P} is such that if it is possessed by a continuous function in an interval then that function becomes nondecreasing in that interval (by Lemma 2) and if a function satisfies the property \mathscr{P} then that function must be VBG (by the Corollary of Lemma 1). Since f_{1} is the ordinary derivative of the continuous function f, we conclude f_{1} is a Darboux function of Baire class 1, and hence from Theorem A it follows that f_{1} is nondecreasing in $[a, b]$. The Darboux property of f_{1} implies the continuity of f_{1} also. This completes the proof of Theorem 1 for $n=2$.

Proof of the theorem for $n>2$. Since f_{n-1} is defined and finite in $[a, b]$, it follows from Lemma B that any nonempty closed subset of $[a, b]$ contains a portion on which f_{n-1} is bounded. Let E be the set of all points x in $[a, b]$ such that in every neighbourhood of x the function f_{n-1} is unbounded. Then E is closed. So, $[a, b]-E$ is open in $[a, b]$. Let (c, d) be any component interval of $[a, b]-E$ and let $c<\alpha<\beta<d$. Then f_{n-1} is bounded in $[\alpha, \beta]$. Hence by Theorem C, $f_{n-1}=f^{(n-1)}$ in $[\alpha, \beta]$. So, we conclude

$$
f_{2}=f^{(2)}, f_{3}=f^{(3)}, \ldots \ldots f_{n-2}=f^{(n-2)}
$$

in $[\alpha, \beta]$. Also since $f^{(n-1)}$ exists finitely in $[\alpha, \beta]$, all the derivatives $f^{(1)}, f^{(2)}, \ldots f^{(n-2)}$ are continuous in $[\alpha, \beta]$ and hence

$$
f_{n}(x)=\lim _{h \rightarrow 0} \frac{f_{n-2}(x+h)-f_{n-2}(x)-h f_{n-1}(x)}{h^{2} / 2} .
$$

Set $g(x)=f_{n-2}(x)$. Then f_{n-1} is the derivative of g and g is continuous in $[\alpha, \beta]$. Also $g_{2}=f_{n}$ in $[\alpha, \beta]$. Hence the function g satisfies all the conditions of Theorem 1 for $n=2$. So, we conclude that g_{1} is continuous and nondecreasing in $[\alpha, \beta]$. Since $[\alpha, \beta]$ is any closed subinterval of (c, d), the function f_{n-1} is continuous and nondecreasing in (c, d). Since f_{n-1} possesses Darboux property $[8], f_{n-1}$ is continuous and nondecreasing in $[c, d]$.

Now if E is empty then $[a, b]-E$ is the same as $[a, b]$ and in this case c and d coincide with a and b respectively, and the theorem is proved. So, we suppose that E is not empty. Then E cannot have an isolated point. For, if x_{0} is an isolated point of E then f_{n-1} is continuous and nondecreasing in a closed interval having x_{0} as a right hand end point and f_{n-1} is continuous and nondecreasing in a closed interval having x_{0} as a left hand end point which contradicts the fact that $x_{0} \in E$. So, we conclude that E is perfect. Applying Lemma B there is a portion of E say $[\alpha, \beta] \cap E$ where $\alpha, \beta \in E$ such that f_{n-1} is bounded on $[\alpha, \beta] \cap E$. Now by our above argument f_{n-1} is continuous and nondecreasing on the closure of each contiguous interval of $[\alpha, \beta]-E$. So, f_{n-1} is bounded in $[\alpha, \beta]$. But this is a contradiction since $[\alpha, \beta]$ contains points of E. Thus we conclude that E is empty and the theorem is proved.
4. We shall require the following theorem.

Theorem D. Iff is a Darboux function of Baire class 1 satisfying the condition $\left(\mathrm{T}_{2}\right)$ in the interval $[a, b]$ and if

$$
\begin{aligned}
& P=\left\{x: x \in[a, b] ; 0 \leqq f^{\prime}(x) \leqq \infty\right\} \\
& Q=\left\{x: x \in[a, b] ;-\infty \leqq f^{\prime}(x) \leqq 0\right\}
\end{aligned}
$$

then the set $P \cup Q$ is nondenumerable and the sets $f(P)$ and $f(Q)$ are measurable. If $f(a)<f(b)$, then $m(f(P)) \geqq f(b)-f(a)$. If $f(a)>f(b)$ then

$$
m(f(Q)) \geqq f(a)-f(b)
$$

(This is proved in [1].)
Lemma 3. Let f_{1} exist finitely at each point in $[a, b]$. Then the set

$$
E=\left\{x: f_{2}(x)= \pm \infty\right\}
$$

is of measure zero.
Proof. Since f_{1} exists finitely in $[a, b]$ it is integrable in the Perron sense in $[a, b]$ and

$$
f(x)=\int_{a}^{x} f_{1}(x) d x+f(a)
$$

where the integral is in the Perron sense. So,

$$
\begin{aligned}
f_{2}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-h f_{1}(x)}{h^{2} / 2} \\
& =\lim _{h \rightarrow 0} \frac{2}{h^{2}} \int_{x}^{x+h}\left[f_{1}(t)-f_{1}(x)\right] d t \\
& =\operatorname{CD} f_{1}(x)
\end{aligned}
$$

where $\mathrm{CD} f_{1}$ denotes the Cesaro derivative of $f_{1},[\mathbf{1 0}]$. Hence for each $x \in E$, $\operatorname{CD} f_{1}(x)$ exists and equals $+\infty$ or $-\infty$. So, by a known result [10] the set E is of measure zero.

Lemma 4. If f_{1} is finite and if the inequalities

$$
-M \leqq-f_{2}<-f_{2} \leqq M
$$

where M is a finite nonnegative number, hold at each point of a set E, then $m^{*}\left(f_{1}(E)\right) \leqq M m^{*}(E)$.

Proof. Let $\epsilon>0$ be arbitrary. For each positive integer n let E_{n} denote the set of all points x of E such that

$$
\begin{equation*}
|t-x| \leqq 1 / n \Rightarrow\left|f(t)-f(x)-(t-x) f_{1}(x)\right| \leqq \frac{1}{2}(M+\epsilon)(t-x)^{2} \tag{1}
\end{equation*}
$$

The sets E_{n} are such that $E_{n} \subset E_{m}$ whenever $n \leqq m$ and

$$
\begin{equation*}
E=\bigcup_{n=1}^{\infty} E_{n} . \tag{2}
\end{equation*}
$$

To each E_{n} we associate a sequence of intervals $\left\{I_{n, k} ; k=1,2, \ldots\right\}$ which covers E_{n} and satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty} m\left(I_{n k}\right) \leqq m^{*}\left(E_{n}\right)+\epsilon . \tag{3}
\end{equation*}
$$

We may suppose that $m\left(I_{n k}\right) \leqq 1 / n$ for all k. Let x_{1} and x_{2} be any two points of $E_{n} \cap I_{n k}$. Then from (1)

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)-\left(x_{2}-x_{1}\right) f_{1}\left(x_{1}\right)\right| \leqq \frac{1}{2}(M+\epsilon) \cdot\left(x_{2}-x_{1}\right)^{2}
$$

and

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)-\left(x_{1}-x_{2}\right) f_{1}\left(x_{2}\right)\right| \leqq \frac{1}{2}(M+\epsilon) \cdot\left(x_{2}-x_{1}\right)^{2} .
$$

Hence $\left|x_{1}-x_{2}\right|\left|f_{1}\left(x_{1}\right)-f_{1}\left(x_{2}\right)\right| \leqq(M+\epsilon) \cdot\left(x_{1}-x_{2}\right)^{2}$, i.e.,

$$
\begin{aligned}
\left|f_{1}\left(x_{1}\right)-f_{1}\left(x_{2}\right)\right| & \leqq(M+\epsilon) \cdot\left|x_{1}-x_{2}\right| \\
& \leqq(M+\epsilon) \cdot m\left(I_{n k}\right) .
\end{aligned}
$$

From this we conclude that

$$
\begin{equation*}
m^{*}\left(f_{1}\left(E_{n} \cap I_{n k}\right)\right) \leqq(M+\epsilon) \cdot m\left(I_{n k}\right) \tag{4}
\end{equation*}
$$

for all k. Since the sequence of intervals $\left\{I_{n k}\right\}$ covers E_{n}, we have

$$
\begin{aligned}
m^{*}\left(f_{1}\left(E_{n}\right)\right) & \leqq \sum_{k=1}^{\infty} m^{*}\left(f_{1}\left(E_{n} \cap I_{n k}\right)\right) \\
& \leqq(M+\epsilon) \cdot \sum_{k=1}^{\infty} m\left(I_{n k}\right) \quad \text { by }(4) \\
& \leqq(M+\epsilon)\left(m^{*}\left(E_{n}\right)+\epsilon\right) \quad \text { by }(3) .
\end{aligned}
$$

Since $\left\{E_{n}\right\}$ is an ascending sequence, letting $n \rightarrow \infty$ we get from (2)

$$
m^{*}\left(f_{1}(E)\right) \leqq(M+\epsilon)\left(m^{*}(E)+\epsilon\right)
$$

Since ϵ is arbitrary,

$$
m^{*}\left(f_{1}(E)\right) \leqq M \cdot m^{*}(E)
$$

Corollary. If $-\infty<-f_{2} \leqq-f_{2}<\infty$ holds on a set E except perhaps on a denumerable subset then f_{1} satisfies the property (N) on E.

Proof. Let E_{0} be any subset of E such that $m\left(E_{0}\right)=0$. We may suppose that at each point of E_{0}, the following relations hold:

$$
-\infty<-f_{2} \leqq-f_{2}<\infty .
$$

For each positive integer n, let

$$
E_{n}=\left\{x: x \in E_{0} ;-n \leqq-f_{2} \leqq-f_{2} \leqq n\right\} .
$$

Then $E_{0}=\cup_{n=1}^{\infty} E_{n}$. So, by the above lemma $m^{*}\left(f_{1}\left(E_{n}\right)\right) \leqq n \cdot m\left(E_{n}\right)=0$. Since the sequence $\left\{E_{n}\right\}$ is ascending, taking the limit as $n \rightarrow \infty$,

$$
m^{*}\left(f_{1}\left(E_{0}\right)\right)=0
$$

This completes the proof.
Lemma 5. If f_{2} exists finitely at each point of a measurable set E then

$$
m\left(f_{1}(E)\right) \leqq \int_{E}\left|f_{2}\right| d x
$$

Proof. Let $\epsilon>0$ be arbitrary. For each positive integer n, let

$$
E_{n}=\left\{x: x \in E ;(n-1) \epsilon \leqq\left|f_{2}(x)\right|<n \epsilon\right\} .
$$

Then

$$
E=\cup E_{n}
$$

Now the function f_{1} is measurable and also by the corollary of Lemma 4, f_{1} satisfies the condition (N). So, by [4], f_{1} transforms every measurable set into a measurable set. Thus, since f_{2} is also measurable, by Lemma 4 we have

$$
\begin{aligned}
m\left(f_{1}(E)\right) & \leqq \sum_{n=1}^{\infty} m\left(f_{1}\left(E_{n}\right)\right) \leqq \sum_{n=1}^{\infty} n \epsilon m\left(E_{n}\right) \\
& =\sum_{n=1}^{\infty}(n-1) \epsilon m\left(E_{n}\right)+\sum_{n=1}^{\infty} \epsilon m\left(E_{n}\right) \\
& \leqq \sum_{n=1}^{\infty} \int_{E_{n}}\left|f_{2}\right| d x+\epsilon m(E) .
\end{aligned}
$$

Since ϵ is arbitrary,

$$
m\left(f_{1}(E)\right) \leqq \int_{E}\left|f_{2}\right| d x
$$

Corollary 1. If $E=\left\{x: f_{2}(x)=0\right\}$, then $m\left(f_{1}(E)\right)=0$.
Corollary 2. If $f_{2}=0$ almost everywhere in an interval $[a, b]$ and $-\infty<-f_{2} \leqq-f_{2}<\infty$ except perhaps on a denumerable subset of $[a, b]$, then f_{1} is constant in $[a, b]$.

Proof. Let $E=\left\{x: x \in[a, b] ; f_{2}(x)=0\right\}, \quad E_{1}=[a, b]-E$. Then $m\left(E_{1}\right)=0$. By the corollary of Lemma $4, f_{1}$ satisfies the property (N). Hence $m\left(f_{1}\left(E_{1}\right)\right)=0$. Also by Corollary $1, m\left(f_{1}(E)\right)=0$. Thus $m\left(f_{1}([a, b])\right)=0$.

This implies that f_{1} is constant; for, in the contrary case, f_{1} being a Darboux function, $f_{1}([a, b])$ would contain an interval.

Lemma 6. Let f_{1} exist and satisfy the condition (N) on $[a, b]$ and let g be a finite summable function in $[a, b]$ such that $\left|f_{2}(x)\right| \leqq|g(x)|$ for each $x \in[a, b]$ where $f_{2}(x)$ exists finitely, except perhaps at those points of a set E for which $m\left(f_{1}(E)\right)=0$. Then f_{1} is VB in $[a, b]$.

Proof. Let $\left[a_{1}, b_{1}\right]$ by any subinterval of $[a, b]$ and let

$$
\begin{aligned}
P & =\left\{x: x \in\left[a_{1}, b_{1}\right] ; 0 \leqq f_{2}(x) \leqq \infty\right\}, \\
Q & =\left\{x: x \in\left[a_{1}, b_{1}\right] ;-\infty \leqq f_{2}(x) \leqq 0\right\}, \\
G & =\left\{x: x \in\left[a_{1}, b_{1}\right] ; f_{2}(x)= \pm \infty\right\} .
\end{aligned}
$$

Then for $x \in P-(E \cup G)$ we have by Lemma 5

$$
m\left(f_{1}(P-E \cup G)\right) \leqq \int_{P-(E \cup G)}\left|f_{2}\right| d x \leqq \int_{a_{1}}^{b_{1}}|g| d x
$$

Since by Lemma $3 m(G)=0$, and since f_{1} satisfies the condition (N), we have $m\left(f_{1}(G)\right)=0$. Also by hypothesis $m\left(f_{1}(E)\right)=0$ and hence

$$
m\left(f_{1}(G \cup E)\right)=0
$$

So,

$$
\begin{aligned}
m\left(f_{1}(P)\right) & \leqq m\left(f_{1}(P-E \cup G)\right)+m\left(f_{1}(E \cup G)\right) \\
& =m\left(f_{1}(P-E \cup G)\right) \\
& \leqq \int_{a_{1}}^{b_{1}}|g| d x
\end{aligned}
$$

Similarly we have

$$
m\left(f_{1}(Q)\right) \leqq \int_{a_{1}}^{b_{1}}|g| d x
$$

Since f_{1} satisfies the condition (N), it also satisfies the condition (T_{2}) [4] and hence by Theorem D if $f_{1}\left(b_{1}\right) \geqq f_{1}\left(a_{1}\right)$ then

$$
f_{1}\left(b_{1}\right)-f_{1}\left(a_{1}\right) \leqq m\left(f_{1}(P)\right) \leqq \int_{a_{1}}^{b_{1}}|g| d x,
$$

and if $f_{1}\left(b_{1}\right) \leqq f_{1}\left(a_{1}\right)$ then

$$
f_{1}\left(a_{1}\right)-f_{1}\left(b_{1}\right) \leqq m\left(f_{1}(Q)\right) \leqq \int_{a_{1}}^{b_{1}}|g| d x .
$$

Thus in any case

$$
\left|f_{1}\left(b_{1}\right)-f_{1}\left(a_{1}\right)\right| \leqq \int_{a_{1}}^{b_{1}}|g| d x
$$

Since g is summable on $[a, b]$, we conclude that f_{1} is VB on $[a, b]$.

Lemma 7. Let f_{1} exist and satisfy the condition (N) in an interval $[a, b]$ and let $E=\left\{x: x \in[a, b] ;-\infty<f_{2}(x)<\infty\right\}$. If

$$
\int_{E}\left|f_{2}\right| d x<\infty
$$

then f_{1} is absolutely continuous in $[a, b]$.
Proof. Let

$$
\begin{aligned}
g(x) & =f_{2}(x), \text { for } x \in E \\
& =0, \quad \text { elsewhere }
\end{aligned}
$$

Then g is a finite summable function in $[a, b]$. Also $\left|f_{2}(x)\right|=|g(x)|$ for each $x \in E$ where $f_{2}(x)$ exists finitely. Hence by Lemma $6, f_{1}$ is VB in $[a, b]$. Since f_{1} is a Darboux function, f_{1} is also continuous in $[a, b]$. Finally, the condition (N) implies the absolute continuity of f_{1}.

Theorem 2. Let $n \geqq 2$ and let f_{n-1} be defined and satisfy the condition (N) in the interval $[a, b]$. Let $f_{n} \geqq 0$ at almost every point where f_{n} exists finitely and let

$$
\int_{P} f_{n} d x<\infty
$$

where P denotes the set of points where f_{n} exists finitely and is nonnegative.
Then f_{n-1} is nondecreasing and continuous in $[a, b]$.
Proof. Suppose $n=2$. Then by Lemma 7, f_{n-1} is absolutely continuous in $[a, b]$ and hence the ordinary derivative $\left(f_{n-1}\right)^{\prime}$ exists almost everywhere in $[a, b]$ and since $f_{n} \geqq 0$ at almost every point where f_{n} exists finitely we conclude $\left(f_{n-1}\right)^{\prime} \geqq 0$ almost everywhere in $[a, b]$ and hence f_{n-1} is nondecreasing in $[a, b]$. The continuity of f_{n-1} follows from the Darboux property of f_{n-1}.

The proof for $n>2$ can be made in the same manner as in Theorem 1 and so we omit it.
5. It is well known that the derivative, finite or infinite, of a continuous function belongs to the class \mathscr{M}_{2} and a finite derivative belongs to the class \mathscr{M}_{3} of Zahorski [14]. It is interesting to study the nature of the Peano derivative in the light of the above classification. We mention that Weil [13] proved that a finite f_{n} belongs to the class \mathscr{M}_{3}. Here we shall show that if f_{n} exists, finitely or infinitely, for a continuous function f then f_{n} belongs to the class \mathscr{M}_{2}. For completeness we state the definition of the class \mathscr{M}_{2}. A set $E \in M_{2}$ if and only if E is an F_{σ} and every one sided neighbourhood of each point of E intersects E in a set of positive measure; $f \in \mathscr{M}_{2}$ if and only if for every α and β, the sets $\{x: f(x)>\alpha\}$ and $\{x: f(x)<\beta\}$ belong to the class \mathscr{M}_{2}.

Theorem 3. If f is continuous and f_{n} exists finitely or infinitely, then $f_{n} \in \mathscr{M}_{2}$.
Proof. Since

$$
f_{n}(x)=\lim _{\nu \rightarrow \infty} \nu^{n} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} f(n+j / \nu),
$$

f_{n} is a function of Baire class 1 (see also [3]). Hence for each α the sets $E_{\alpha}=\left\{x: f_{n}(x)<\alpha\right\}$ and $E^{\alpha}=\left\{x: f_{n}(x)>\alpha\right\}$ are F_{σ}. Also if $\xi \in E_{\alpha}$ and if $\delta>0$ is arbitrary, then $m\left([\xi, \xi+\delta] \cap E_{\alpha}\right)>0$; for, if $m\left([\xi, \xi+\delta] \cap E_{\alpha}\right)=0$ then the function $f_{n-1}(x)-\alpha x$ is nondecreasing and continuous in $[\xi, \xi+\delta]$ by Theorem 1 and hence all the derivatives $f^{(1)}, f^{(2)}, \ldots f^{(n-1)}$ exist and are continuous in $[\xi, \xi+\delta]$ and hence

$$
f_{n}(\xi)=\lim _{h \rightarrow 0} \frac{f_{n-1}(\xi+h)-f_{n-1}(\xi)}{h} \geqq \alpha .
$$

But $\xi \in E_{\alpha}$ and so we arrive at a contradiction. Similarly

$$
m\left([\xi-\delta, \xi] \cap E_{\alpha}\right)>0
$$

Thus $E_{\alpha} \in M_{2}$. In a similar manner it can be proved that $E^{\alpha} \in M_{2}$. This completes the proof.

Corollary. The nth Peano derivative f_{n}, finite or infinite of a continuous f possesses the Denjoy property, viz., for any two reals α and $\beta, \alpha<\beta$, the set $\left\{x: \alpha<f_{n}(x)<\beta\right\}$ is either void or is of positive measure.

Proof. Let $[a, b]$ be any interval and let α and β be arbitrary. Then the sets $[a, b] \cap\left\{x: f_{n}(x)<\alpha\right\}$ and $[a, b] \cap\left\{x: f_{n}(x)>\beta\right\}$ are such that they are either void or are of positive measure and hence by a known result [7] the set $\left\{x: \alpha<f_{n}(x)<\beta\right\}$ is either void or is of positive measure.

The above result is proved in [8].
6. In this section we consider certain generalizations of the results of Verblunsky [12]. His results mostly depend on an interesting lemma, i.e., Lemma 1 of [12]. We consider the following generalization of the above lemma. In the following $G_{r}{ }^{+}(x), G_{r,-}(x)$ will denote respectively the upper r th Peano derivative on the right at x and the lower r th Peano derivative on the left at x, of the function G, which are obtained from the definitions of $-G_{r}(x)$ and ${ }_{-} G_{\tau}(x)$ by suitably restricting the sign of h while taking limits.

Lemma 8. Let ϕ be an upper semi-continuous Darboux function in (α, β) and let $D^{+} \phi \geqq D_{-} \phi$ hold everywhere in (α, β). Let $E=\left\{x: x \in(\alpha, \beta) ; D^{+} \phi(x)\right.$ finite and $D^{+} \phi(x)=D_{-} \phi(x)=m(x)$, say $\}$. Suppose that for all $\xi \in E$, except perhaps at the points of a subset $G \subset E$ such that $m(G)$ does not contain an interval, there are, in every neighbourhood of $(\xi, \phi(\xi))$, points of the graph of ϕ above the line $y-\phi(\xi)=m(\xi)(x-\xi)$. Then ϕ is convex in (α, β).

Proof. If possible, suppose that there are points $c, d, \alpha<c<d<\beta$, such that the arc $y=\phi(x)(c \leqq x \leqq d)$ has points above the chord joining $(c, \phi(c))$ and $(d, \phi(d))$. Let $k=(\phi(d)-\phi(c)) /(d-c)$. Now the function $\phi(x)-$ $\phi(c)-k(x-c)$ is upper semi-continuous and so it will attain its supremum at some point γ in $[c, d]$. By our assumption $c<\gamma<d$. Let $\mu=(\phi(\gamma)-$ $\phi(c)) /(\gamma-c)$. Then $\mu>k$. Since $(\phi(x)-\phi(c)) /(x-c)$ is an upper semi-
continuous and Darboux function (being the product of a continuous function and a Darboux Baire -1 function (see A. M. Bruckner, J. G. Ceder and M. Weiss, Colloq. Math. (1966), 65-77) it will assume all the values between k and μ as x assumes the values between γ and d. Let μ^{\prime} be such that $k<\mu^{\prime}<\mu$ and $\mu^{\prime} \notin m(G)$. This is possible, because $m(G)$ does not contain interval. By the above argument there exists $\xi^{\prime} \in(\gamma, d)$ such that

$$
\mu^{\prime}=\left(\phi\left(\xi^{\prime}\right)-\phi(c)\right) /\left(\xi^{\prime}-c\right) .
$$

Now the function $\phi(x)-\phi(c)-\mu^{\prime}(x-c)$ is upper semi-continuous and so it will attain a supremum at some point η in $\left[c, \xi^{\prime}\right]$. Since $\mu>\mu^{\prime}$, we conclude $c<\eta<\xi^{\prime}$. Hence $D^{+} \phi(\eta) \leqq \mu^{\prime} \leqq D_{-} \phi(\eta)$. So, by the given condition we conclude

$$
D^{+} \phi(\eta)=D_{-} \phi(\eta)=\mu^{\prime}
$$

which gives $\eta \in E$ and $m(\eta)=\mu^{\prime}$. Now the line $y-\phi(\eta)=m(\eta)(x-\eta)$ has the property that in some neighbourhood of the point $(\eta, \phi(\eta))$, no point of the graph of ϕ is above the line. Hence $\eta \in G$. So, $m(\eta)=\mu^{\prime} \in m(G)$. But this is a contradiction to the choice of μ^{\prime}. This completes the proof of the lemma.

Theorem 4. Let G be continuous in $[a, b]$ and suppose that, for a positive integer r and a finite function g, we have:
(i) $G_{r}{ }^{+}(x) \geqq g(x)$ for $a \leqq x<b$; $G_{r,-}(x) \leqq g(x)$ for $a<x \leqq b$;
(ii) $\varlimsup_{h \rightarrow 0}\left\{G(x+h)-\sum_{0}^{r-1} \frac{h^{k}}{k!} G_{k}(x)-\frac{h^{r}}{r!} g(x)\right\} / h^{r+1}>0$
on $[a, b]$, except perhaps on a subset E such that $g(E)$ does not contain an interval;
(iii) if $r>1$, then every nonempty closed set contains a portion on which g is bounded on one side.

Then g is nondecreasing in $[a, b]$.
We omit the proof of the theorem. The proof is similar to that of Theorem 2 of Verblunsky [12] except that we are to use our Lemma 8 instead of his Lemma 1. We note that if G has a finite r th Peano derivative G_{r} in $[a, b]$, then (i) holds with $g=G_{r}$. Also (iii) holds by Lemma B. Hence in this case Theorem 4 becomes:

Theorem 5. If $n \geqq 2$ and f_{n-1} is defined and finite in $[a, b]$ and $-f_{n}>0$, except perhaps on a set $E \subset[a, b]$ such that $f_{n-1}(E)$ does not contain an interval, then f_{n-1} is nondecreasing and continuous in $[a, b]$. (The continuity of f_{n-1} follows from the Darboux property [8] and monotonicity of f_{n-1}.)

Theorems 4 and 5 are generalizations of Theorems 2 and 1 respectively of Verblunsky [12]. Verblunsky also proved that the condition (iii) of Theorem 4 can be replaced by other similar conditions involving the $C_{\lambda} P$-integral of g introduced by Burkill [3], where λ is a positive integer. For completeness we give the definition of $C_{\lambda} P$-integral, where λ is a positive integer in the form given by Verblunsky [12]. (See also [5, Theorems 9.1 and 11.1].)

Let g be a function in $[a, b]$. If there are two functions M and m continuous in $[a, b]$ such that M_{λ} and m_{λ} exist and are finite in $[a, b]$ and
(i) $-M_{\lambda+1}(x) \geqq g(x) \geqq-m_{\lambda+1}(x)$ in $[a, b]$
(ii) $-M_{\lambda+1}(x) \neq-\infty,-m_{\lambda+1}(x) \neq \infty$ in $[a, b]$
(iii) $M_{\lambda}(a)=m_{\lambda}(a)=0$,
then the functions M_{λ} and m_{λ} are called $C_{\lambda} P$-major and $C_{\lambda} P$-minor functions respectively for the function g in $[a, b]$. By the condition (i) it follows that the function $M_{\lambda}(x)-m_{\lambda}(x)$ is nondecreasing and continuous and so by (iii) $M_{\lambda}(b)-m_{\lambda}(b) \geqq 0$. If $\inf \left\{M_{\lambda}(b) ; M_{\lambda} \in \mathscr{M}\right\}=\sup \left\{m_{\lambda}(b) ; m_{\lambda} \in \mathfrak{m}\right\}$ where \mathscr{M} and \mathfrak{m} are respectively the class of $C_{\lambda} P$-major functions and the class of $C_{\lambda} P$-minor functions of g then g is called $C_{\lambda} P$-integrable in $[a, b]$ and the common value, denoted by

$$
\left(C_{\lambda} P\right) \int_{a}^{b} g d x
$$

is called the $C_{\lambda} P$-integral of g in $[a, b]$. If $\lambda=0$, the above definition reduces to that of Perron integral. Clearly if a finite function f is a Peano derivative in $[a, b]$, i.e. if there is a continuous function F in $[a, b]$ and a positive integer r such that $F_{r}=f$ in $[a, b]$, then

$$
F_{r-1}=\left(C_{r-1} P\right) \int_{a}^{b} f d x
$$

Now returning to Theorem 4 we remark that the condition (iii) can be replaced by any one of the following two conditions:
(iii) ${ }^{\prime}$ If $r>1$ then g is $C_{r-1} P$ integrable in $[a, b]$.
(iii)" If $r>1$ then g has a (possibly discontinuous) Perron major or minor function.

We again omit the proof. The proofs are the same as those given by Verblunsky [12] to prove his Theorems 3 and 4 except that one is to apply Lemma 8 instead of his Lemma 1.
7. If a function g is $C_{r-1} P$ integrable in $[a, b]$, where $r>1$, then the r th Cesaro mean of g in $(x, x+h) \subset(a, b]$ is given by

$$
C_{r}(g, x, x+h)=\frac{r}{h^{r}} \int_{x}^{x+h}(x+h-t)^{r-1} g(t) d t
$$

where the integral is taken in the $C_{r-1} P$-sense. The $C_{r^{-}}$right hand upper limit and the C_{r} - right hand upper derivate of g at x are defined to be

$$
C_{r}-\lim _{h \rightarrow 0+} \sup g(x+h)=\lim _{h \rightarrow 0+} C_{r}(g, x, x+h)
$$

and

$$
C_{r} D^{+} g(x)=\lim _{h \rightarrow 0+} \frac{C_{r}(g, x, x+h)-g(x)}{h /(r+1)}
$$

respectively, with similar definitions for other $C_{r^{-}}$limits and $C_{r^{-}}$derivates. The C_{r} - upper derivate ${ }^{-} C_{r} D$ is the maximum of $C_{r} D^{+}$and $C_{r} D^{-}$. We prove the following result which is more general than those of Verblunsky [12] and
of Sargent [11] and is analogous to that of Zygmund for ordinary derivatives [9, p. 203].

Theorem 6. Let the finite function g be $C_{r-1} P$-integrable in $[a, b]$ and let

$$
C_{r^{-}}-\lim _{h \rightarrow 0+} \inf g(x-h) \leqq g(x) \leqq C_{r^{-}}-\limsup _{h \rightarrow 0+} g(x+h)
$$

If the set of values assumed by g at the points where $-C_{r} D g \leqq 0$ does not contain an interval, then g is nondecreasing in $[a, b]$.

Proof. Since g is $C_{r-1} P$-integrable in $[a, b]$, there is a function G continuous in $[a, b]$ such that

$$
G_{r-1}(x)=\left(C_{r-1} P\right) \int_{a}^{x} g d x .
$$

Also

$$
\begin{array}{ll}
G_{r}^{+}(x)=C_{r^{-}} \lim _{h \rightarrow 0+} \sup g(x+h), & a \leqq x<b \\
G_{r,-}(x)=C_{r^{-}} \lim _{h \rightarrow 0+} \inf g(x-h), & a<x \leqq b
\end{array}
$$

and

$$
{ }^{-} C_{r} D g(x)=\underset{h \rightarrow 0}{\lim \sup } \frac{r+1}{h^{r+1}}\left\{G(x+h)-\sum_{0}^{r-1} \frac{h^{k}}{k!} G_{k}(x)-\frac{h^{r}}{r!} g(x)\right\},
$$

so by applying the result of Theorem 4 we get that g is nondecreasing in $[a, b]$. This completes the proof.

References

1. A. M. Bruckner, An affirmative answer to a problem of Zahorski and some consequences, Michigan Math. J. 13 (1966), 15-26.
2. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
3. J. C. Burkill, The Cesáro-Perron scale of integration, Proc. London Math. Soc. 39 (1935), 543-552.
4. H. W. Ellis, Darboux properties and applications to nonabsolutely convergent integrals, Can. J. Math. 3 (1951), 471-484.
5. R. D. James, Generalised nth primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
6. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
7. S. N. Mukhopadhyay, On a certain property of the derivative, Fund. Math. 67 (1970), 279-284.
8. H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
9. S. Saks, Theory of the integral (Hafner, Warsaw, 1937).
10. W. L. C. Sargent, On the Cesáro derivates of a function, Proc. London Math. Soc. 40 (1936), 235-254.
11. -_On sufficient conditions for a function integrable in the Cesáro-Perron sense to be monotonic, Quart. J. Math. Oxford Ser. 12 (1941), 148-153.
12. S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. 22 (1971), 313-324.
13. C. E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
14. Z. Zahorski, Sur la première derivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

University of British Columbia,
Vancouver, British Columbia

[^0]: Received November 26, 1971 and in revised form, January 26, 1972. The research of the second named author was supported by the National Research Council of Canada, grant no. 67-2986.

