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Abstract

Let H(D) denote the space of holomorphic functions on the unit disc D. Given p > 0 and a weight
ω, the Hardy growth space H(p, ω) consists of those f ∈ H(D) for which the integral means Mp( f , r)
are estimated by Cω(r), 0 < r < 1. Assuming that p > 1 and ω satisfies a doubling condition, we
characterise H(p, ω) in terms of associated Fourier blocks. As an application, extending a result by
Bennett et al. [‘Coefficients of Bloch and Lipschitz functions’, Illinois J. Math. 25 (1981), 520–531], we
compute the solid hull of H(p, ω) for p ≥ 2.
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1. Introduction

Let H(D) denote the space of holomorphic functions on the unit disc D. For p > 0 and
f ∈ H(D), put

Mp( f , r) =

( ∫
T

| f (rζ)|p dm(ζ)
)1/p

, 0 ≤ r < 1,

where m denotes the normalised Lebesgue measure on the unit circle T = ∂D.

1.1. Hardy growth spaces. A function ω : [0,1)→ (0,+∞) is called a weight if ω is
increasing, unbounded and continuous. Given p > 0 and a weight ω, the Hardy growth
space H(p, ω) consists of those f ∈ H(D) for which

‖ f ‖H(p,ω) = sup
0≤r<1

Mp( f , r)
ω(r)

<∞. (1.1)

The spaces H(p, ω) were introduced in [10]. For ω ≡ 1, (1.1) defines the classical
Hardy space Hp = Hp(D). However, every weight ω is assumed to be unbounded;
hence, Hp is formally excluded from the scale of Hardy growth spaces.
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1.2. Blocking technique. Let 1 < p <∞ and let Ωα(t) = (1 − t)−α, α > 0. Then it is
known that equivalent definitions of H(p,Ωα) are related to the so-called blocking
technique (see [7]). Namely, given a function f (z) =

∑∞
k=0 akzk ∈ H(p,Ωα), the

following Fourier blocks are useful:

∆0 f (z) = a0 + a1z,

∆ j f (z) =

2 j+1−1∑
k=2 j

akzk, j ≥ 1.

Theorem 1.1 [8, Theorem 2.1]. Let α > 0, 1 < p <∞ and f ∈ H(D). Then f ∈ H(p,Ωα)
if and only if

‖∆ j f ‖Hp ≤ CΩα(1 − 2− j) = C2α j, j = 0, 1, . . . ,

for a constant C > 0.

In fact, the above theorem extends to the weights ω that are normal in the sense of
[9]; see [8] for details. However, if ωβ(t) = (log(2/(1 − t)))β, β > 0, then it is natural to
consider different Fourier blocks. For f (z) =

∑∞
k=0 akzk, put

δ0 f (z) = a0 + a1z + a2z2,

δ j f (z) =

22 j+1
−1∑

k=22 j

akzk, j ≥ 1.

The following characterisation of the property f ∈ H(p, ωβ) is known.

Theorem 1.2 [6, Theorem 5.1]. Let β > 0, 1 < p <∞ and f ∈ H(D). Then f ∈ H(p, ωβ)
if and only if

‖δ j f ‖Hp ≤ C2β j, j = 0, 1, . . . ,

for a constant C > 0.

1.3. Doubling weights. In the present paper, we obtain analogues of Theorems 1.1
and 1.2 for all doubling weights. By definition, a weight ω : [0, 1)→ (0,+∞) is called
doubling if there exists a constant A > 1 such that

ω
(
1 −

s
2

)
≤ Aω(1 − s), 0 < s ≤ 1. (1.2)

The doubling property (1.2) is a natural technical assumption (see, for example,
[1, 3–5]). In particular, Ωα with α > 0, the normal weights and ωβ with β > 0 are
doubling weights. On the one hand, (1.2) is a restriction on the growth of ω; on
the other hand, the class of doubling weights contains functions that grow arbitrarily
slowly. Also, it is worth mentioning that the standard doubling property of the measure
ω(r) dr is not related to (1.2).
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In what follows, ω denotes a doubling weight. In Section 2, we construct an
increasing sequence {n j} that is adapted to ω via the doubling constant A > 1 from
estimate (1.2). In Section 3, we use the associated Fourier blocks

∆A
j f (z) =

n j+1−1∑
k=n j

akzk

to characterise the property f ∈ H(p, ω). As an application, we characterise the
Hadamard lacunary series in H(p, ω) and the solid hull of H(p, ω), 2 ≤ p < ∞; see
Section 4.

2. Doubling weights as lacunary series with positive coefficients

Given two functions u, v : [0, 1)→ (0,+∞), we say that u and v are equivalent and
we write u � v if

C1u(t) ≤ v(t) ≤ C2u(t), 0 ≤ t < 1,

for some constants C1,C2 > 0.
Let ω be a doubling weight. In this section, we construct an increasing sequence

{n j} of positive integers such that

ω(t) �
∞∑
j=0

b jtn j , 0 ≤ t < 1,

for appropriate coefficients b j, b j > 0.
Without loss of generality, assume that ω(0) = 1. We use the auxiliary function

Φ(x) = ω
(
1 −

1
x

)
, x ≥ 1.

Thus, Φ(1) = 1 and ω(t) = Φ(1/(1 − t)), 0 ≤ t < 1. The doubling condition (1.2)
becomes

Φ(2x) ≤ AΦ(x), x ≥ 1. (2.1)

For j = 1, 2, . . . , put
n j = max{k ∈ N : Φ(k) ≤ A j}. (2.2)

Below we often use the definition of n j without explicit reference.
The sequence {n j}

∞
j=1 and its analogues are known to be useful in constructions of

holomorphic or harmonic lacunary series in the growth spaces defined by the weight ω
(see [1, 5]). In particular, certain arguments in the present section are similar to those
in [1, Lemma 1].

By the definition of n j, we have Φ(n j + 1) > A j. Hence, by (2.1),

Φ(n j) > A j−1. (2.3)
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Also, observe that Φ(2n j) ≤ AΦ(n j) ≤ A j+1 < Φ(n j+1 + 1). Since Φ is an increasing
function, n j+1 + 1 > 2n j. Therefore,

n j+1

n j
≥ 2, (2.4)

for j = 1, 2, . . . .

Lemma 2.1. Let ω be a doubling weight with a doubling constant A > 1. Put

Ω(t) =

∞∑
j=0

A jtn j , 0 ≤ t < 1,

where n0 = 0 and the sequence {n j}
∞
j=1 is defined by (2.2). Then Ω � ω.

Proof. Put
t j = 1 −

1
n j
, j = 1, 2, . . . .

Fix an integer m, m ≥ 1. Let tm ≤ t < tm+1. First, applying (2.3),
m∑

j=0

A jtn j ≤

m∑
j=0

A j =
Am+1

A − 1
<

A2

A − 1
Φ(nm) ≤ CΦ

( 1
1 − t

)
,

because Φ is increasing. Second, applying (2.3) and (2.4),
∞∑

j=m+1

A jtn j ≤

∞∑
j=m+1

A j
(
1 −

1
nm+1

)n j

≤ A2Φ(nm)
∞∑

k=0

Ak
(
1 −

1
nm+1

)nm+1·nm+1+k/nm+1

≤ A2Φ

( 1
1 − t

) ∞∑
k=0

Ak

exp(2k)

≤ CΦ

( 1
1 − t

)
.

In sum, we obtain

Ω(t) =

∞∑
j=0

A jtn j ≤ CΦ

( 1
1 − t

)
= Cω(t), t1 ≤ t < 1.

Since ω(t) ≥ 1 for 0 ≤ t ≤ t1, we conclude that

Ω(t) ≤ Cω(t), 0 ≤ t < 1.

To prove the reverse estimate, fix an integer m, m ≥ 1. If tm ≤ t < tm+1, then

Ω(t) ≥ Amtnm ≥
Φ(nm+1)

4A
≥

1
4A

Φ

( 1
1 − t

)
=
ω(t)
4A

.

Also, Ω(t) ≥ 1 for 0 ≤ t ≤ t1. Hence, ω(t) ≤ CΩ(t), 0 ≤ t < 1. Therefore, ω � Ω, as
required. �
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3. Decomposition theorems

Let ω be a doubling weight with a doubling constant A > 1 and let {n j}
∞
j=1 be the

associated sequence of integers defined by (2.2). For f (z) =
∑∞

k=0 akzk ∈ H(D), put

∆A
j f (z) =

n j+1−1∑
k=n j

akzk, z ∈ D, j = 0, 1, . . . , (3.1)

where n0 = 0. To work with the blocks ∆A
j f , we need the following lemma.

Lemma 3.1 [8, Lemma 3.1]. Let p > 0 and let g(z) =
∑m

k=n akzk, n < m, z ∈ D. Then

rm‖g‖Hp ≤ Mp(g, r) ≤ rn‖g‖Hp , 0 < r < 1.

The following result generalises Theorems 1.1 and 1.2.

Theorem 3.2. Let ω be a doubling weight with a doubling constant A > 1. Assume that
1 < p <∞ and f ∈ H(D). Let the blocks ∆A

j f be defined by (3.1). Then f ∈ H(p, ω) if
and only if

‖∆A
j f ‖Hp ≤ CA j, j = 0, 1, . . . , (3.2)

for a constant C > 0.

Proof. Let f ∈ H(p, ω). The Riesz projection theorem and Lemma 3.1 guarantee that

Mp( f , r) ≥ CMp(∆A
j f , r) ≥ Crn j+1‖∆A

j f ‖Hp , 0 < r < 1, j = 0, 1, . . . ,

where C > 0 is a constant that depends only on p, 1 < p < ∞. Applying the above
estimate,

sup
0<r<1

Mp( f , r)
ω(r)

≥ C sup
0<r<1

rn j+1‖∆A
j f ‖Hp

ω(r)

≥ C

(
1 − 1

n j+1

)n j+1

‖∆A
j f ‖Hp

Φ(n j+1)

≥
C
A

‖∆A
j f ‖Hp

A j .

So, the property f ∈ H(p, ω) implies (3.2).
To prove the reverse implication, assume that (3.2) holds. Applying the triangle

inequality, Lemma 3.1, property (3.2) and Lemma 2.1, we obtain the following chain
of inequalities:

Mp( f , r) ≤
∞∑
j=0

Mp(∆A
j f , r) ≤

∞∑
j=0

rn j‖∆A
j f ‖Hp

≤ C
∞∑
j=0

A jrn j ≤ Cω(r), 0 < r < 1.

The proof of the theorem is finished. �
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For n ∈ N and f (z) =
∑∞

k=0 akzk, consider the standard partial sums

S n f (z) =

n−1∑
k=0

akzk, z ∈ D.

Replacing the blocks ∆A
j f by the partial sums S n f , we obtain a more explicit

description of the space H(p, ω).

Corollary 3.3. Let 1 < p < ∞, f ∈ H(D) and let ω be a doubling weight. Then
f ∈ H(p, ω) if and only if

‖S n f ‖Hp ≤ Cω
(
1 −

1
n

)
, n = 1, 2, . . . , (3.3)

for a constant C > 0.

Proof. Assume that (3.3) holds. Since 1 < p < ∞, the Riesz projection theorem and
(3.3) guarantee that

‖∆A
j f ‖Hp ≤ C‖S n j f ‖Hp ≤ CΦ(n j+1) ≤ CA j+1.

Hence, f ∈ H(p, ω) by Theorem 3.2.
To prove the reverse implication, assume that f ∈ H(p, ω). Applying Theorem 3.2,

‖S n j+1 f ‖Hp ≤

j+1∑
k=0

‖∆A
k f ‖Hp ≤ C

j+1∑
k=0

Ak ≤ CA2 · A j−1 ≤ CΦ(n j)

by (2.3). Thus, for n j < k ≤ n j+1,

‖S k f ‖Hp ≤ C‖S n j+1 f ‖Hp ≤ CΦ(n j) ≤ CΦ(k)

by the Riesz projection theorem. So, (3.3) holds. The proof of the corollary is
finished. �

4. Applications

4.1. Hadamard lacunary series. By definition, the growth space H(∞, ω) consists
of those f ∈ H(D) for which | f (z)| ≤ Cω(|z|), z ∈ D.

Assume that f ∈ H(D) is represented by a Hadamard lacunary series, that is,

f (z) =

∞∑
j=1

am j z
m j , z ∈ D,

where m j+1 ≥ λm j, j = 1, 2, . . . , for some λ > 1. Then, by [4, Theorem 2.2], f ∈
H(∞, ω) if and only if ∑

m j≤M

|am j | ≤ Cω
(
1 −

1
M

)
, M = 1, 2, . . . .

Replacing the norm in `1 by that in `2, we obtain an analogous result for H(p, ω)
with 0 < p <∞.
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Corollary 4.1. Assume that 0 < p <∞, f ∈ H(D) and f is represented by a Hadamard
lacunary series. Then f ∈ H(p, ω) if and only if( ∑

m j≤M

|am j |
2
)1/2
≤ Cω

(
1 −

1
M

)
, M = 1, 2, . . . .

Proof. Given p > 0, we have Mp( f , r) � M2( f , r), 0 ≤ r < 1, because f is represented
by a Hadamard lacunary series. It remains to apply Corollary 3.3 with p = 2. �

4.2. The solid hull of H(p, ω), 2 ≤ p ≤ ∞. To define the solid hull S (H(p, ω)),
we identify a function f (z) =

∑∞
j=0 a jz j ∈ H(p, ω) and its sequence {a j}

∞
j=0 of Taylor

coefficients.
Recall that a sequence space X is called solid if {b j} ∈ X whenever {a j} ∈ X and

|b j| ≤ |a j| (see [2]). The solid hull S (X) is the smallest solid space containing X.
Formally,

S (X) = {{λ j} : there exists {a j} ∈ X such that |λ j| ≤ |a j| for all j}.

Let S ω denote the space of sequences {b j}
∞
j=0 such that

( n−1∑
j=0

|b j|
2
)1/2
≤ Cω

(
1 −

1
n

)
, n = 1, 2, . . . .

Corollary 4.2. If 2 ≤ p ≤ ∞, then S (H(p, ω)) = S ω.

Proof. Since ∞ ≥ p ≥ 2, we have H(p, ω) ⊂ H(2, ω) and S (H(p, ω)) ⊂ S (H(2, ω)) =

S ω by Corollary 3.3. It remains to observe that S ω ⊂ S (H(∞, ω)) by [3, Theorem
1.8(b)]. �

We remark that Corollary 4.2 was proved in [3] for p =∞. In particular, a different
approach was used in [3] to prove the property S (H(∞, ω)) ⊂ S ω. Also, it would be
interesting to compute the solid hull S (H(p, ω)) for 1 < p < 2.

Acknowledgement

The author is grateful to the anonymous referee for helpful comments.

References
[1] E. Abakumov and E. Doubtsov, ‘Reverse estimates in growth spaces’, Math. Z. 271 (2012),

399–413.
[2] J. M. Anderson and A. L. Shields, ‘Coefficient multipliers of Bloch functions’, Trans. Amer. Math.

Soc. 224 (1976), 255–265.
[3] G. Bennett, D. A. Stegenga and R. M. Timoney, ‘Coefficients of Bloch and Lipschitz functions’,

Illinois J. Math. 25 (1981), 520–531.
[4] K. S. Eikrem, ‘Hadamard gap series in growth spaces’, Collect. Math. 64 (2013), 1–15.
[5] K. S. Eikrem and E. Malinnikova, ‘Radial growth of harmonic functions in the unit ball’,

Math. Scand. 110 (2012), 273–296.

https://doi.org/10.1017/S0004972714000161 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000161


282 E. Doubtsov [8]
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