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Abstract
For some time now, Solvency II requires that insurance companies calculate minimum capital require-
ments to face the risk of insolvency, either in accordance with the Standard Formula or using a full or
partial Internal Model. An Internal Model must be based on a market-consistent valuation of assets and
liabilities at a 1-year time span, where a real-world probabilistic structure is used for the first year of
projection. In this paper, we describe the major risks of a non-life insurance company, i.e. the non-life
underwriting risk and market risk, and their interactions, focusing on the non-life premium risk, equity
risk, and interest rate risk. This analysis is made using some well-known stochastic models in the financial-
actuarial literature and practical insurance business, i.e. the Collective Risk Model for non-life premium
risk, the Geometric Brownian Motion for equity risk, and a real-world version of the G2++ Model for
interest rate risk, where parameters are calibrated on current and real market data. Finally, we illustrate a
case study on a single-line and a multi-line insurance company in order to see how the risk drivers behave
in both a stand-alone and an aggregate framework.

Keywords: Capital requirements; time horizon; risk management; real-world valuation; market risk; non-life premium risk;
Geometric Brownian Motion; G2++ Model; Collective Risk Model; Solvency II; ORSA

1. Introduction
The inversion of the production cycle regarding revenues and costs is a peculiar and important
feature of insurance companies, and it means that policyholders pay premiums in advance, and
contractual benefits or indemnities are paid later only if unfavorable events occur. This charac-
teristic implies that insurance companies have significant financial resources to be invested in
order to properly face future liabilities. This is certainly true in the majority of life insurers, for
which asset management is often the main business providing profitable margins, but it is also
true in non-life insurance (which is the focus of this paper), where financial profits can be quite
sizeable when the insurance is issued with a relatively long duration in the technical liabilities.
The resources are larger if we consider that insurance companies have also their own equity and
cumulative profit margins produced year by year. As a result, while insurance companies must
focus on underwriting risk, which is the most representative risk of the insurance business, they
also must focus on market risk, which in the Solvency II framework is often one of the most mate-
rial risks in terms of capital requirements. Indeed, the resources of the non-life insurance business
(i.e. the claims reserve and the premiums net of the claim amounts and expenses), that is risky by
its nature, are invested in financial markets and create an additional risk, which must be estimated
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and monitored. Hence, it is important to put in place a risk management system covering both
financial and underwriting items.

In recent years, the literature has been mainly focused on stand-alone analyses of these two
sources of risk. The aim of this paper is thus the examination of market risk, non-life premium
risk (from now on, denoted as premium risk), and their interactions under Solvency II (Directive
2009/138/EC, 2009), in order to quantify a reasonable risk profile with some coherent real-world
stochastic models and case studies based on actual data.

Since the introduction of Solvency II, the management of risks has become more important,
compared to the pre-existing system of Solvency 0 and Solvency I. Insurance companies are now
requested to calculate capital requirements to face all the quantifiable risks for existing business
and new business expected to be written over the following 12months. Moreover, they are allowed
to calculate the so-called Solvency Capital Requirement (SCR) under the Standard Formula (SF)
or a full or partial Internal Model (IM), and they are required to derive it as the Value-at-Risk of
the basic Own Funds, subject to a confidence level of 99.5% over a 1-year period. In this regard,
there is an important debate about the fairness of the Value-at-Risk. Indeed, many authors argue
that other risk measures, such as the Tail Value-at-Risk, are preferable, notwithstanding the more
difficult calibration of the distribution tails of the various risks. Nowadays, another important
part of the risk management system is the so-called Own Risk and Solvency Assessment (ORSA)
(see Directive 2009/138/EC, 2009). It means that insurance companies must evaluate their over-
all solvency needs on a continuous basis, with the compliance of both capital requirements and
requirements on technical provisions and furthermore the compliance of their risk profile with
the assumptions underlying the SCR. In addition, the insurance companies must have a forward-
looking perspective with a 3–5 year projection view (see EIOPA, 2013a, 2013b, for further details).
As a result, not only are insurance companies encouraged to have a short-term view but also a
medium and long-term perspective. Indeed, a short-term view only is not desirable, because in
this case the risk is not properly managed, since problems might arise in the future.

In order to manage uncertainty, insurance companies use a wide range of stochastic models.
The premium risk is usually described by a Collective Risk Model (well-known in the risk the-
ory literature), i.e. a frequency severity approach in which the number of claims and the single
claim amount are separately described by some suitable distributions, under some independence
assumptions between the claim count and claim size. A popular choice is the Negative Binomial
for the number of claims and the Lognormal for the single claim amount, as proposed in practical
analyses for instance by Beard et al. (1984) and Daykin et al. (1994). On the other hand, the market
risk is usually described by financial models based on stochastic differential equations, i.e. mathe-
matical equations describing stochastic processes in the continuous time. A popular choice is the
Geometric Brownian Motion for stocks and a short-rate model for the term structure of interest
rates, as proposed for instance by Ballotta and Savelli (2006). A short-rate model is an interest rate
model, based on stochastic differential equations, that describes the behavior of the instantaneous
short rate, and it is able to describe the entire term structure. In general, interest rate models are
distinguished in two main categories, i.e. the equilibrium models and the arbitrage-free models.
Equilibrium models produce a term structure as output, and hence they do not match the current
term structure observed in the market. Arbitrage-free models take the observed term structure as
an input, and hence, they match the current term structure observed in the market. Some well-
known equilibrium models have been introduced by Vasicek (1977), Cox et al. (1985) and Duffie
and Kan (1996), and some well-known arbitrage-free models have been introduced by Hull and
White (1990) and Heath et al. (1992).

During recent decades, the literature on financial models has been primarily devoted to the
pricing of interest rate derivatives; therefore, risk-neutral probabilities have been typically pre-
ferred (see Brigo and Mercurio, 2006, among others). As explained by Giordano and Siciliano
(2015), risk-neutral probabilities are acceptable for pricing, but not to forecast the future value
of an asset. Real-world probabilities should instead be used for risk management purposes.
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Unfortunately, over the past few years, only moderate attention has been directed to models under
real-world probabilities, hence this paper’s objective of supporting the literature in this area.

Solvency II requires a market-consistent valuation for technical provisions to be made using
risk-neutral probabilities. In the same way, the new international accounting principles for insur-
ance contract valuation, i.e. IFRS 17 (see IASB, 2017), effective from 2023 in EU regulation, require
a market-consistent valuation for technical provisions that will probably be carried out by insur-
ance companies using risk-neutral probabilities as well. On the other hand, Solvency II requires
that capital requirements according to an IM are calculated using real-world probabilities to pre-
dict the risk drivers’ behavior for the first year, even though risk-neutral probabilities must be
used again to determine the market-consistent value of the basic Own Funds of the insurer after
the first year. We point out that, by specifying the models under real-world probabilities and
risk-neutral probabilities, it is possible to carry out either risk management analysis, or market-
consistent valuations, as proposed by Gambaro et al. (2018) or Berninger and Pfeiffer (2021). Such
model specification can also be used for planning and management purposes.

The paper is organized as follows. In Section 2, we describe the theoretical framework underly-
ing the analysis. More precisely, in Section 2.1 we present the risk reserve equation and the related
quantities, such as the annual net cash flows originated by the insurance business and the invest-
ments portfolio. In Section 2.2, we present the model used to describe the annual rate of return,
while in Section 2.3 we present the model used to describe the total claim amount. In Section 3,
we propose a numerical analysis in which we determine the capital requirements for market and
premium risk, according to a partial IM and the SF. This case study has been performed on a
single-line and a multi-line insurance company, using current and available market data. Finally,
in Section 4 we report the main conclusions of our research and further steps to be investigated.

2. Analysis framework
2.1 Risk reserve
As explained by Daykin et al. (1994), the risk reserve1 U t represents the funds accumulated by
the insurance company over time. For simplicity, in this paper we leave aside the reserve risk,
dropping the possibility to have unfavorable claims reserving developments. Moreover, we also
ignore reinsurance mitigation, taxes, and dividends. As a result, we only consider the market and
premium risk, assuming that the stochastic risk reserve at the end of time t is given by:2

U t = (1+ jt)U t−1 +
(
Bt − Xt − Et

)
+ jt Lt−1

where jt is the stochastic annual rate of return (annually compounded) of the investments of the
insurance company, Bt is the gross premium amount, Xt is the stochastic total claim amount, Et
is the expense amount, including acquisition and general expenses, and Lt−1 is the claims reserve
(also called loss reserve) at the end of the previous year. The premium reserve is not accounted
for, because the premium amount is assumed to refer to a single calendar year only and conse-
quently, in this simplified framework, earned premiums and written premiums are identical3 (for
this reason, from now on, we simply denote the gross premium amount as GPW). The GPW,

1The term Risk Reserve has historically been used in risk theory literature and continues to this day. Under the Solvency
II framework, it represents the Own Funds to face the business uncertainty and avoid the risk of insolvency of an insurance
company. By contrast, it is worth reminding that the term Reserve Risk refers instead to the risk of unfavorable developments
of the claims reserve.

2Note that the random variables are indicated by bold letters.
3In the more general case, where the coverage does not simply refer to a single calendar year, it is enough to introduce

into the model the rule to calculate the premium reserve on a risk-based approach, as in the Solvency II framework, consider-
ing the dynamic growth of the earned premiums and taking into account, not only the nominal commercial growth but also
the initial premium reserve portion released in the referred year. The main results reported in this paper are certainly not
diminished for this simple assumption.
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stochastic total claim amount, and expense amount are all assumed to occur at the end of the year,
and consequently, it is not necessary to consider the accumulation of interest.

The (deterministic) GPW is given by the following equation:

Bt = πt + λ πt + c Bt (1)

where πt is the risk premium amount, λ is the safety loading coefficient, and c is the expense
loading coefficient.

The expense amount is assumed to be deterministic and equal to the expense loadings included
in the GPW. Notwithstanding that the amount of expenses is linked to the GPW (and hence it is
not fixed over time), empirically it has a small volatility in the non-life insurance business, in
particular where acquisition costs are high. This is supported by the Solvency II calibration, where
expense risk in non-life insurance is roughly incorporated in the volatility of the loss ratio.4 We
have:

Et = c Bt (2)

In addition, we can observe that the ratio of claims reserve to GPW is empirically highly influ-
enced by the Line of Business (LoB). Hence, we assume that the claims reserve is equal to a
constant percentage δ of the GPW, different according to the LoB examined:

Lt = δ Bt (3)

In this regard, as we will explain later on, it is worth pointing out that the stochastic amount paid
for the claims settled in the current year, i.e. the stochastic liability cash outflows, is implicitly
provided by this constant percentage, in connection with the dynamic of the GPW and stochastic
total claim amount (i.e. sum paid and reserved for the claims occurred in the current year). As a
result, the risk reserve is found to be:

U t = (1+ jt)U t−1 +
[
(1+ λ) πt − Xt

]
+ jt δ Bt−1 (4)

Finally, the insurance portfolio is dynamic; therefore, we assume that the risk premium amount
increases every year according to the following rule:

πt = πt−1 (1+ i) (1+ g)= π0 (1+ i)t(1+ g)t

and the GPW as well:

Bt = Bt−1 (1+ i) (1+ g)= B0 (1+ i)t(1+ g)t (5)

where i is the claims inflation rate and g is the real growth rate. It is useful to observe that empiri-
cally these rates usually differ by LoB, according to the practical dependence on economic inflation
and commercial strength in that particular segment.

We are aware that the reserve risk is an important source of randomness in non-life insurance
(see Daykin et al., 1987), but we postpone its analysis to future researches, since in this paper we
are interested in isolating the interactions between the risk arising from premiums and invest-
ments. For the same reason, we consider a deterministic evolution of the claims reserve, and we
do not include the randomness arising from the discounting. Note that the reserve risk regards
only the possibility that the claims reserve at the valuation date will have unfavorable develop-
ments in the forthcoming annual time horizon, and the total claim amount volatility regarding the
premium risk must not incorporate the just mentioned unfavorable developments of the claims
reserve. Clearly, in this way we do not obtain any possible risk due to the claims reserving run-off
process, but we also do not have any possible risk compensation in case of an increase of risk-free
interest rates (i.e. a decrease of the market value of zero-coupon bonds).

4On the contrary, expense risk in life insurance has a specific sub-module, because of the well-known long-term
maturity of the policies.
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2.1.1 Risk reserve ratio
As previously mentioned, the risk reserve is an absolute amount, that depends more on the capital
position of the insurance company than on economic results. Actually, wemight have a significant
risk reserve, which is low compared with the premium volume of the insurance company and
vice versa. Hence, it is preferable, also for comparative analyses, to consider relative amounts (see
Savelli, 2003).

The stochastic risk reserve ratio at the end of time t is given by:

ut = U t
Bt

Using equations (4) and (5), the risk reserve ratio is then found to be:

ut = (1+ jt)
(1+ i) (1+ g)

ut−1 + πt
Bt

[
(1+ λ)− Xt

πt

]
+ jt δ

(1+ i) (1+ g)

Using equation (1), we have:
πt
Bt

= 1− c
1+ λ

which then gives:

ut = (1+ jt)
(1+ i) (1+ g)

ut−1 + 1− c
1+ λ

[
(1+ λ)− Xt

πt

]
+ jt δ

(1+ i) (1+ g)
(6)

2.1.2 Annual net cash flows
The stochastic annual net cash flows originated by the insurance business at the end of time t are
given by:

Ft = Bt − Et −
(
CCY
t +CPY

t

)
where CCY

t is the stochastic amount paid for claims occurring in the current year and settled in
the same year, and CPY

t is the stochastic amount paid for claims occurring in the previous years
and settled in the current year. The annual net cash flows are invested in the financial market and
increase the asset value, which we will describe in the following subsection. For this reason, they
are invested based on the same asset allocation of the asset value.

Absent consideration of the claims reserving run-off, the claims reserve is found to be:

Lt = LCYt + LPYt = Xt −CCY
t + Lt−1 −CPY

t

where LCYt is the claims reserve for claims occurring in the current year, and LPYt is the claims
reserve for claims occurring in the previous years.

Using equations (3) and (5), we have the stochastic amount paid for claims settled in the current
year:

CCY
t +CPY

t = Xt − Lt + Lt−1 = Xt − δ Bt
(
1− 1

(1+ i) (1+ g)

)

then, using equation (2), the stochastic annual net cash flows originated by the insurance business
are found to be:

Ft = Bt
[
(1− c)+ δ

(
1− 1

(1+ i) (1+ g)

)]
− Xt (7)
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Finally, the claims reserve evolution is determined by the following deterministic relationship,
depending on the real growth rate g, claims inflation rate i, and ratio of claims reserve to GPW δ:

Lt = Lt−1 + δ Bt
(
1− 1

(1+ i) (1+ g)

)

2.1.3 Asset portfolio
In this paper, we consider three investments in stocks and five investments in zero-coupon bonds
with time to maturity w= 1, 2, 3, 5, 10, even though there are a lot of other investments in the
market. Furthermore, we assume that the asset allocation is kept constant year by year.

First of all, the initial asset value of the portfolio is given by:
A0 =U0 + L0

The stochastic asset value of the portfolio at the end of time t is obtained from the combination of
the stochastic values of the stock and bond portfolios:

At =AS
t +AP

t

The stochastic value of the stock portfolio is given by:

AS
t = α

(
At−1

3∑
v=1

βv
Sv(t)

Sv(t − 1)
+ Ft

)

so that the stochastic value of a single stock investment is found to be:

ASv
t = α βv

(
At−1

Sv(t)
Sv(t − 1)

+ Ft

)
with v= 1, 2, 3 (8)

and the stochastic value of the bond portfolio is given by:

AP
t = (1− α)

(
At−1

∑
w∈{1,2,3,5,10}

γw
P(t, t − 1+w)

P(t − 1, t − 1+w)
+ Ft

)

so that the stochastic value of a single bond investment is found to be:

APw
t = (1− α) γw

(
At−1

P(t, t − 1+w)
P(t − 1, t − 1+w)

+ Ft

)
with w= 1, 2, 3, 5, 10 (9)

where α and 1− α are the percentages invested in the stock and bond portfolios, respectively, βv
is the percentage invested in the vth stock, and γw is the percentage invested in the bond with time
to maturity w. Moreover, Sv(t) is the stochastic vth stock price, and P(t, t +w) is the stochastic
zero-coupon bond price with time to maturity w. It is noted that the asset value increases each
time by the annual net cash flows previously described.

Moreover, the stochastic annual rate of return of the investments of the insurance company,
used in equation (4), is given by:

jt =
(
At − Ft

)−At−1

At−1

and it is finally found to be:

jt = α

3∑
v=1

βv
Sv(t)

Sv(t − 1)
+ (1− α)

∑
w∈{1,2,3,5,10}

γw
P(t, t − 1+w)

P(t − 1, t − 1+w)
− 1 (10)
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2.2 Market model
The inversion of the production cycle implies that insurance companies have a lot of resources to
invest in order to make profit.

In this subsection, we discuss models based on differential equations. Once we have described
over time the distributions of the average stock and bond prices, we are able to obtain the distribu-
tion of the annual rate of return time by time by using equation (10). We assume that the market
is frictionless, meaning that all securities are perfectly divisible and that no short-sale restrictions,
transaction costs, or taxes are present. The security trading is continuous, and there are no riskless
arbitrage opportunities.

2.2.1 Short-rate model
We now describe a short-rate model (see among others Brigo and Mercurio, 2006, for further
details) in order to describe over time the distribution of the short-term interest rate at time t
(also called instantaneous short rate, since it applies to an infinitesimally short period of time at
time t). Once it is specified, we are able to compute the zero-coupon bond price and determine the
initial zero curve and its future evolution. As a matter of fact, the price at time t of a zero-coupon
bond that provides a terminal payoff equal to 1 at maturity date T > t is given by:

P(t, T)= e−R(t,T)(T−t)

As a result, the continuously compounded zero-coupon interest rate5 at time t for a term of T − t
is given by:

R(t, T)= − ln P(t, T)
T − t

(11)

Once we have the zero-coupon bond price, we can use the equation above to get the continuously
compounded zero-coupon interest rate. This equation will be useful to calibrate the risk premium
parameters of the real-world short-rate model.

In this paper, the short rate follows the Two-Additive-Factor Gaussian Model (i.e. G2++
Model) that is given by:

r(t)= x(t)+ y(t)+ ϕ(t)

where x(t) and y(t) are the stochastic state variables, and ϕ(t) is a deterministic function of time
that allows the model to fit perfectly the term structure observed in the market.

According to Berninger and Pfeiffer (2021), the real-world processes for the state variables
satisfy the following stochastic differential equations:

dx(t)= a (dx(t)− x(t)) dt + σ dWP
x (t) with x(0)= 0

dy(t)= b (dy(t)− y(t)) dt + η dWP
y (t) with y(0)= 0

where a> 0 and b> 0 are the constant speeds of mean reversion, σ > 0 and η > 0 are the con-
stant diffusion coefficients, whileWP

x (t) andWP
y (t) are the Standard BrownianMotions under the

real measure P with instantaneous correlation −1≤ ρ ≤ 1. Furthermore, dx(t) and dy(t) are the
deterministic mean reversion levels, and we here assume that they are given by step functions:

dx(t)= 1t≤τ dx + 1t>τ lx

dy(t)= 1t≤τ dy + 1t>τ ly

5Be aware that the continuously compounded zero-coupon interest rate is different to the short-term interest rate.
Contrary to the former, the latter applies to an infinitesimally short period of time.

https://doi.org/10.1017/S1748499523000234 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000234


212 Stefano Cotticelli and Nino Savelli

where dx, lx, dy, and ly are real-valued constants, τ is a constant time parameter, and 1 is the
indicator function.

The deterministic function of time that allows the model to fit perfectly the term structure
observed in the market is given by:

ϕ(t)= f M(0, t)+ σ 2

2a2
(
1− e−at

)2 + η2

2b2
(
1− e−bt

)2 + ρ
ση

ab

(
1− e−at

)(
1− e−bt

)
where f M(0, t) is the instantaneous forward rate at initial time for a maturity t implied by the term
structure observed in the market.

The stochastic differential equations above have explicit solutions that are given by:

x(t)=
∫ t

0
e−a(t−u) a dx(u) du+ σ

∫ t

0
e−a(t−u) dWP

x (u)

y(t)=
∫ t

0
e−b(t−u) b dy(u) du+ η

∫ t

0
e−b(t−u) dWP

y (u)

As a result, the short rate is found to have a Normal distribution with mean and variance at time
zero given by:

EP
0
{
r(t)

}=
∫ t

0
e−a(t−u) a dx(u) du+

∫ t

0
e−b(t−u) b dy(u) du+ ϕ(t)

VarP0
{
r(t)

}= σ 2

2a

(
1− e−2at

)
+ η2

2b

(
1− e−2bt

)
+ 2ρ

ση

a+ b

(
1− e−(a+b)t

)
The price at time t of a zero-coupon bond with maturity in T > t is thus found to be:

P(t, T)= exp
{
−
∫ T

t
ϕ(u) du− 1− e−a(T−t)

a
x(t)− 1− e−b(T−t)

b
y(t)+ 1

2
V(t, T)

}
(12)

The integral has an explicit solution that is given by:

exp
{
−
∫ T

t
ϕ(u) du

}
= PM(0, T)

PM(0, t)
exp

{
− 1

2
V(0, T)+ 1

2
V(0, t)

}

where PM(0, t) is the price at initial time of a zero-coupon bond with maturity in t implied by the
term structure observed in the market. Moreover, we have:

V(t, T)= σ 2

a2

[
T − t + 2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+ η2

b2

[
T − t + 2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+ 2ρ
ση

ab

[
T − t + e−a(T−t) − 1

a
+ e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]

2.2.2 Stock price model
We now describe a stock price model (see among others Hull, 2018, for further details) in order
to describe over time the distribution of the stock price.

In this paper, the real-world process for the vth non-dividend-paying stock price follows a
Geometric Brownian Motion that satisfies the following stochastic differential equation:

dSv(t)= (r(t)+ μv) Sv(t) dt + σv Sv(t) dWP
v (t)
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where μv is the constant risk premium coefficient, i.e. the (annualized) expected excess of return
in an infinitesimally short period of time, σv > 0 is the diffusion coefficient, and WP

v (t) is the
Standard Brownian Motion under the real measure P. We assume that the Standard Brownian
Motions of the stock prices have equal instantaneous correlation among themselves, but they are
independent of those of the short rate. However, in our numerical analysis we will use copula
functions to inject some dependence structure between the stock and bond factors.

The stochastic differential equation above has an explicit solution that is given by:

Sv(t)= Sv(0) exp
{ ∫ t

0
r(u) du+

(
μv − 1

2
σ 2
v

)
t + σv

∫ t

0
dWP

v (u)
}

As a result, and in line with the assumption of independence between the short rate and vth stock
price, the latter is found to have a Lognormal distribution with mean and variance at time zero
given by:

EP
0
{
Sv(t)

}= Sv(0)
PM(0, t)

exp
{ ∫ t

0

(
1− e−a(t−u)

)
dx(u) du

+
∫ t

0

(
1− e−b(t−u)

)
dy(u) du+ μv t +V(0, t)

}

VarP0
{
Sv(t)

}=EP
0
{
Sv(t)

}2 exp {V(0, t)+ σ 2
v t
}−EP

0
{
Sv(t)

}2

2.2.3 Risk-neutral models
The risk-neutral processes for the state variables and vth non-dividend-paying stock price satisfy
the following stochastic differential equations:

dx(t)= −a x(t) dt + σ dWQ
x (t) with x(0)= 0

dy(t)= −b y(t) dt + η dWQ
y (t) with y(0)= 0

dSv(t)= r(t) Sv(t) dt + σv Sv(t) dWQ
v (t)

where the Standard Brownian Motions, as well as the short rate, are now under the risk-neutral
measureQ, and the correlation structure is the same as in the real-world case.

The explicit solutions of the differential equations and the mean of the state variables (or short
rate) and of the vth stock price are the same as in the real-world case, but the deterministic mean
reversion levels and constant risk premium coefficients are now null. The sum of dx(t) and dy(t)
can be interpreted as the local risk premium of the short rate, i.e. the amount which is added in
the real-world to the risk-neutral short rate and which allows the change of measure according
to the Girsanov theorem. The zero-coupon bond price formula is also found to be exactly the
same as in the real-world case, even though the state variables correspond now to the values of the
processes under the risk-neutral measure. As described by Berninger and Pfeiffer (2021), using the
explicit solutions of the differential equations both in the real and risk-neutral world, and using
equation (11) and (12), the relation between the expected zero-coupon interest rate (continuously
compounded) at time t for a term of T − t under the real measure P and the risk-neutral measure
Q is given by:

EP
0
{
R(t, T)

}=E
Q
0
{
R(t, T)

}+ 1
T − t

[
1− e−a(T−t)

a
RPx(t)+ 1− e−b(T−t)

b
RPy(t)

]
(13)
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where RPx(t) and RPy(t) are the actual risk premiums of the short rate between time zero and t
for the state variables:

RPx(t)=
∫ t

0
e−a(t−u) a dx(u) du

RPy(t)=
∫ t

0
e−b(t−u) b dy(u) du

As already described, the parameters of the risk-neutral model (a, b, σ , η, and ρ) are in common
with the real-world model. We can calibrate these parameters based on derivative instruments
(this is the reason why we need risk-neutral models). Once we estimate the risk-neutral param-
eters, we can calibrate the additional real-world parameters (dx, lx, dy, and ly, given the value
of τ ) using the equations above. To do this, we need some expectations for real-world zero-
coupon interest rates (continuously compounded). In our numerical analysis, for example, we
will use some interest rate forecasts published by the Organisation for Economic Co-operation
and Development.

The relation between the vth stock price under the real measure P and the risk-neutral measure
Q could be derived; however, we do not need it in our numerical analysis.

2.3 Non-life model
The inversion of the production cycle also implies that insurance companies have to measure
and manage the future total claim amount, in order to control losses and determine insurance
premiums.

In this subsection, we describe the well-known Collective Risk Model based on a compound
process, in order to describe over time the distribution of the total claim amount (see among
others Daykin et al., 1994, for further details). It is very popular in non-life insurance modeling,
because each risk can produce claims of different severity.6 We consider the entire LoB portfolio,
composed of homogeneous risks, and we separately analyze the number of claims and the single
claim amount, that is assumed to be independent of the contract that generated it.

Finally, the stochastic total claim amount at the end of time t is given by:

Xt =
Kt∑
k=1

Zk,t (14)

where K t is the stochastic number of claims, and Zk,t is the stochastic amount for the kth claim,
for which we assume that:

1. the random variables Zk,t are independent;
2. the random variables Zk,t are identically distributed;
3. the random variables Zk,t and K t are independent.

The first and second assumption are satisfied, in particular, in limited homogenous portfolios
and also only in some certain time period. In order to solve this kind of problem, the portfolio
can be split into different more homogenous sub-portfolios, where the mentioned conditions are
more properly satisfied.7 The third assumption is usually satisfied, but it might be refuted in some
situations. In case of windstorm or hurricane, for example, the number of claims and single claim
amount variables increase both significantly at the same time.

6This is opposite to life insurance, where the sum insured is mainly defined at policy issue.
7In this case, the sub-portfolios must be aggregated to come back to the full portfolio, assuming linear or non-linear

dependence as appropriate.
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2.3.1 Number of claims
There are several distributions associated with the number of claims, such as the Poisson and
Negative Binomial.We point out that the total claim amount is found to be zero, when the number
of claims is zero.

Since the insurance portfolio is dynamic, we assume that the expected number of claims
increases or decreases every year, according to the real growth rate g, which is the reference
indicator for the new number of policyholders:

nt = nt−1 (1+ g)= n0 (1+ g)t with n0 > 0
The expected number of claims increases every year in the same way as the insurance portfolio.
As a result, the claims frequency of the portfolio is assumed to remain the same over time. This
assumption could be refuted in some situations, such as in case of considerable modification of
the portfolio, where new policyholders have significantly different claim frequency (e.g. young
drivers or policyholders with high-power vehicles). Moreover, we point out that not only does the
initial expected number of claims depend on the insurance portfolio size but also on the individ-
ual claims frequency of the people insured. Later on, the parameter of the expected number of
claims will influence the so-called size factor, which must be taken into account in an IM, rather
surprisingly, differently from what is done in the SF of Solvency II.

In this paper, the number of claims is distributed as a Mixed Poisson, i.e. a Poisson with
stochastic (and not deterministic) parameter nt > 0, such that:

nt = nt q
where q is the stochastic structure variable, which denotes the multiplicative noise term, repre-
senting the parameter uncertainty embedded in the distribution. As well-known in the literature,
the cumulant generating function of the Mixed Poisson distribution is given by:

Kt (υ)= q
[
nt (eυ − 1)

]
(15)

In order to describe the number of claims, considering the short-term fluctuations only, we must
assume the structure variable to have an expected value equal to one. In the literature, this distri-
bution is frequently assumed to be a Gamma with equal parameters (h, h), that is defined by the
following probability density function:

fq(q)= hhqh−1

�(h)
e−hq with q> 0 and h> 0

with mean, variance, and skewness that are given by:

E{q} = 1 and Var{q} = 1
h

and Sk{q} = 2√
h

= 2 Std
{
q
}

As a result, the Mixed Poisson distribution is found to be a Negative Binomial with parameters
(h, pt) and to be defined by the following probability mass function:

Pr
(
K t = k

)=
(
k+ h− 1
h− 1

)
pht (1− pt)k

with k= 0, 1, . . . and h> 0 and 0< pt = h
h+ nt

< 1

2.3.2 Single claim amount
Since the insurance portfolio is dynamic, we assume that the single claim amount distribution
(dropping the index k because of the assumption of identical distribution) is only rescaled for the
claims inflation every year:

Zt ∼ Zt−1 (1+ i)∼ Z0 (1+ i)t
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Hence, the ωth raw moment is simply found to be rescaled as well:

E
{
Zω
t
}=E

{
Zω
0
}
(1+ i)ωt

As a result, we start by describing the initial single claim distribution, and, by changing one param-
eter, we scale it to obtain the subsequent ones. It follows that all the relative indicators, e.g. the
skewness and coefficient of variation, remain the same over time, notwithstanding the absolute
indicators, e.g. the expected value and standard deviation, evolve in line with the claims inflation
rate assumed. This is because we assume that the new policyholders and new empirical data do
not have an effect on the shape of distribution, but only a rescaling effect.

In this paper, we assume that the single claim amount is distributed as a Lognormal with
parameters (mt , s), that is defined by the following probability density function:

fZt (z)=
1

z
√

2π s
exp

{
− 1

2

(
ln (z)−mt

s

)2
}

with z > 0 and −∞ <mt < +∞ and s> 0

where s is assumed to be constant, because empirically it does not change much over time. It is
worth pointing out that the skewness of a Lognormal distribution is provided uniquely by the
coefficient of variation, according to the following well-known relation:8

Sk
{
Zt
}= 3CV

{
Z0
}+CV

{
Z0
}3

There are also other distributions associated with the single claim amount, such as the Gamma,
Weibull, Inverse Normal, and Pareto, and many other potential distributions. The first three dis-
tributions, together with the Lognormal, usually fit attritional claims well, i.e. the most frequent
and least expensive claims (large frequency and low severity). The last distribution fits large claims
well, i.e. the least frequent and most expensive claims. The Lognormal is a distribution that often
serves as a reference for the single claim amount. A popular alternative is to use distributions
where attritional and large claims are described by different random variables.9

2.3.3 Total claim amount
Using the definitions and assumptions above, we are able to determine the total claim amount
distribution. Indeed, the cumulant generating function of the total claim amount distribution is
found to be:

Xt (υ)= Kt

[
Zt (υ)

]
8This relation is quite interesting, because it clearly provides an insight into the obvious relation between the coefficient

of variation and skewness of a Lognormal distribution. The higher the relative volatility, the higher the skewness. For this
reason, the difference between a quantile and the mean cannot be expressed in terms of the same multiplier of the standard
deviation, since the multiplier changes every time the relative volatility changes. This comment will be seen later, when we will
present the SF for the calculation of the capital requirement for non-life premium and reserve risk, in which the underlying
distribution is assumed to be a Lognormal, and the multiplier is kept constant and equal to 3.

9The Lognormal distribution is a basic assumption in the literature of the single claim amount behavior. The latter can
be represented by many other distributions, as explained above, and clearly, the most appropriate one should be revealed
using fitting procedures on appropriate empirical data. In addition, mixture, composite, or spliced distribution approaches
can be used to have a proper distinction between the behavior of small-size amounts and medium-large amounts (see for
instance Clemente et al., 2014). It is worth pointing out that we follow a total approach, without any distinction between
small or medium-large claims. In some standard procedures, the simple attritional-large approach is followed (e.g. SF of the
Swiss Solvency Test), but for an IM the total approach is highly recommended, in order to have more powerful information,
in particular when we want to analyze the benefits coming from non-proportional reinsurance strategies (e.g. Excess of Loss).
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Using equation (15), the cumulant generating function of the total claim amount distribution
according to the mixed compound Poisson process is found to be:

Xt (υ)= q
[
nt (MZt (υ)− 1)

]
As a result, the mean, variance, skewness, and coefficient of variation of the total claim amount
distribution are found to be:

E
{
Xt
}= nt E

{
Zt
}=E

{
X0
}
(1+ g)t(1+ i)t

Var
{
Xt
}= nt E

{
Z2
t
}+ n2t E

{
Zt
}2

Var
{
q
}

Sk
{
Xt
}= nt E

{
Z3
t
}+ 3n2t E

{
Zt
}
E
{
Z2
t
}
Var

{
q
}+ n3t E

{
Zt
}3

Sk{q} Std{q}3
Std

{
Xt
}3

CV
{
Xt
}=

√
1+CV

{
Z0
}2

nt
+Var

{
q
}

Consequently, the skewness of the total claim amount approaches the skewness of the structure
variable as n0 or g increase, i.e. when the size of the insurance company increases, and the coef-
ficient of variation approaches the standard deviation of the structure variable. Nevertheless, a
variation of claim inflation rate i does not affect the skewness nor the coefficient of variation,
because of the single claim amount distribution rescaling property previously mentioned.

2.4 Copula functions
We finally describe copula functions, in order to describe the dependence structure between
random variables, such as the total claim amounts of different LoBs. Copula functions are very
popular in insurance, because they are able to describe a wide range of dependence structures,
including but not limited to linear dependence (see among others Embrechts et al., 2003; Nelsen,
2006, for further details).

A n-dimensional copula C:[0, 1]n→ [0, 1] is a multivariate cumulative distribution function of
uniformly distributed marginals, and it satisfies the following properties:

1. C(u1, . . . , un) is non-decreasing in each component ui;
2. C(u1, . . . , un) is null if at least one component ui is null;
3. C(u1, . . . , un) is equal to ui if all the components are equal to one, except ui.

The most popular copulas in the insurance business are the Gaussian, Student’s t, Clayton,
and Gumbel copulas. The first and second one are Elliptical copulas (i.e. copula functions based
on multivariate elliptical distributions), while the third and fourth one are Archimedean copulas.
The Gaussian copula does not include any tail dependence, while the other mentioned copu-
las include some dependence structure on the tails of the marginal distributions. In this paper,
the dependence structure is described by using the Gaussian copula, Student’s t copula (which
includes both upper and lower tail dependence), or Gumbel copula (with upper tail dependence
only), which are the benchmark in the practical financial-actuarial modeling. European insurance
supervisory authorities are aware that some tail dependence is very often present, and it cannot be
disregarded, but they prefer that the IM is based on Elliptical copulas, such as the Gaussian one,
because it is quite manageable. However, they require more conservative linear correlation coeffi-
cients. This point has been introduced also in the SF, where the correlation matrix includes some
prudence to implicitly incorporate the tail dependence. Consequently, in this paper we consider
both the Gaussian and Gumbel copulas for the aggregation in the premium risk framework, in
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Table 1. Average of all Euro Area government rates
on September 30, 2020 (continuously compounded and
expressed in %)

Maturity in years Average government rate

1 −0.540
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −0.514
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −0.481
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 −0.389
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 −0.079

order to assess the effect of having an upper tail dependence in the total claim amount distribu-
tions and the consequent change in capital requirements. We also consider a Student’s t copula
for the aggregation in the market risk framework.

3. Numerical results
As proposed by Ballotta and Savelli (2006), in this section we calculate the capital requirements for
market and premium risk of an insurance company, according to a partial IM and the SF (in this
second case the capital requirement is denoted by SCR). We utilize the following assumptions:

• the capital requirements according to our IM are calculated over a period of 1, 2 and 3 years,
using a Monte Carlo simulation approach based on 100,000 simulation paths;

• the insurance contracts are not multi-annual, their exposure is referred to the full calendar
year, and there is no geographical diversification for SF purposes;

• the interest rate risk and equity risk are the only sources of market risk, and the premium risk
is the only source of non-life underwriting risk;

• the market risk only affects the investments, in particular the interest rate risk only affects the
bond investments, and the equity risk only affects the stock investments;

• the security trading is continuous, all securities are perfectly divisible, and there are no
transaction costs, taxes, short-sale restrictions, or riskless arbitrage opportunities;

• the bond investments are zero-coupon bonds that remunerate the average of all Euro Area
government rates on September 30, 2020, presented in Table 1;

• the bond investments are risk-free (i.e. no spread risk, liquidity risk, or default risk), and they
thus evolve according to the dynamic of the European interest rate swaps;

• the stock investments are listed in regulated markets of the Euro Area, hence they can be
considered as type 1 equities under the SF;

• the stock investments are non-dividend-paying stocks without strategic nature, because of the
absence of a clear decisive strategy to continue holding them for long period;

• the symmetric adjustment required by the SF is not present;
• the asset allocation is recalibrated at year end only.

As already mentioned, the loss absorbing capacity and reserve risk arising from the claims
reserve are not considered here, because at this stage of our research we want to isolate the inter-
actions between the market and premium risk only. Moreover, spread risk, liquidity risk, and
default risk are also not considered, and this is consistent with the SF, according to which, govern-
ment bonds are assumed not to be affected by these sources of risk. Finally, we point out that taxes
and dividends usually have a rescaling impact on the stochastic result of the insurance company,
but we do not consider them for comparability with the SF.

According to our IM, the capital requirements are here calculated according to the minimum
Risk-Based Capital (RBC), which is a risk measure that takes into account the expected return
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Table 2. General parameters of our numerical analysis

B0 u0 F0 i g λ c δ

100,000,000 25% 0 1.5% 2% 0.87% 21.24% 156.10%

produced by the investment of the resources. The RBC over the time horizon (0, t) within the
confidence level 1− ε is given by:

RBC(0, t)=U0 − Uε(t)∏t
k=1
(
1+E{jk}

) (16)

where Uε(t) is the εth order quantile of the risk reserve. As a result, the ratio of RBC and initial
GPW is found to be:

uRBC(0, t)= RBC(0, t)
B0

= u0 − uε(t)
(1+ i)t(1+ g)t∏t
k=1
(
1+E{jk}

)
where uε(t) is the εth order quantile of the risk reserve ratio, that is given by:

uε(t)= Uε(t)
Bt

Clearly, the RBC above decreases (or increases) for expected profits (or losses) above the initial
risk reserve. In this paper, we use this approach, even though the European insurance supervisory
authorities are reluctant to include expected profits or losses in the capital requirement calculation
according to an IM, because they want to target consistency with the SF framework, which does
not consider this possibility.

3.1 Single-line insurance company
At the beginning of our analysis, we consider a single-line insurance company, with underwriting
business in Motor Third-Party Liability (MTPL) only. We point out that we use the same notation
as in the previous sections.

The general parameters of our numerical analysis are presented in Table 2. The initial risk
reserve ratio (25%) is roughly one and a half times the Required Solvency Margin for non-life
insurance, required by Solvency 0 and Solvency I. The initial GPW of our company is 100 mil-
lion, and other general parameters are estimated based on the Italian market data until the end of
2018, provided by the National Association of Insurance Companies (ANIA, 2020) and Italian
Insurance Supervisory Authority (IVASS, 2019). In particular, the safety loading coefficient is
estimated by the complement of 100% of the average of the last five annual observations of the
combined ratio (claims reserving run-off excluded), and then, it is transformed into a coefficient
of the risk premium amount, as shown in equation (1). The complement of 100% of the combined
ratio indeed represents the expected profit of the insurance company included in the pricing pro-
cess. On the one hand, the expense loading coefficient is estimated by the average of the last five
annual observations of the expense ratio, on the other hand, the ratio of claims reserve to GPW
is estimated by the average of the last five annual observations. The role of the expense loading is
to cover future expenses, including both acquisition and general expenses. As a result, the initial
claims reserve is found to be equal to 156.1 million, and together with 25 million of initial risk
reserve we obtain an initial asset value of the portfolio equal to 181.1 million. We remind that
there is no premium reserve, since we assume exposure referred to the full calendar year only.
Moreover, we assume some a priori estimate for the claims inflation rate and real growth rate,
and we point out that there is no interaction between these variables and the economic scenario.
We point out that for the annual non-life insurance business, the claims inflation uncertainty
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Table 3. Asset allocation of our numerical analysis

α β1 β2 β3 γ1 γ2 γ3 γ5 γ10

15% 60% 30% 10% 40% 25% 15% 10% 10%

Table 4. Real-world parameters of the Geometric Brownian Motions

μ1 μ2 μ3 σ1 σ2 σ3 Corr vth andwth stocks

0.0269 0.0359 0.0448 0.1547 0.2063 0.2579 +0.7500

Table 5. Real-world parameters of the G2++Model

a b σ η ρ dx dy lx ly

0.2810 0.0554 0.0154 0.0121 −0.9877 −0.0008 0.0178 −0.0296 0.0182

has a minor impact if we do not consider reserve risk. This is instead relevant for multi-annual
insurance business.

The asset allocation of our numerical analysis, i.e. the proportion and composition of the bond
and stock portfolio, is presented in Table 3. We remind that our numerical analysis assumes five
zero-coupon bonds and three stocks. Both the stock portfolio (15% of the total) and the bond
portfolio (85% of the total) are more invested in low-risk assets rather than in high-risk ones (e.g.
60% of the stock portfolio is invested in a low-risk stock, and 40% of the bond portfolio is invested
in a 1-year zero-coupon bond). It is thus possible to obtain the initial values of the bond and stock
portfolios and investments.

The real-world parameters of the Geometric Brownian Motions of our numerical analysis are
presented in Table 4. As proposed by Hull (2018), the risk premium and diffusion coefficients of
the stock 2 are respectively equal to 3.6% and 20.6%, and they are estimated by using the method
of moments on the continuously compounded daily interest rates of the Euro Stoxx 50 between
September 30, 2010, and September 30, 2020, assuming that the short rate is absent (since it is
empirically very small). The risk premium and diffusion coefficients of the stock 1 (or the stock 3)
are assumed to be 25% lower (or higher) than the corresponding parameters of the stock 2. The
instantaneous correlation between different stocks is assumed to be equal to the linear correlation
coefficient between type 1 and type 2 equities under the SF, which is defined in the Commission
Delegated Regulation (EU) 2015/35 (2015).

The real-world parameters of the G2++ Model of our numerical analysis are presented in
Table 5. As proposed by Brigo and Mercurio (2006), the risk-neutral parameters are estimated
by minimizing the sum of the squares of the percentage differences between model and market
swaption volatilities. In doing so, a genetic algorithm is used to solve the optimization problem.
The model swaption volatilities are Normal volatilities implied by the approximation proposed by
Schrager and Pelsser (2006) for swaption prices under the G2++ Model. The market swaption
volatilities are the most liquid at-the-money European swaption volatility quotes on September
30, 2020 (i.e. those with maturity and tenor combination from 1 to 10 years). As proposed
by Berninger and Pfeiffer (2021), the local risk premium functions (i.e. the components of the
amount which is added in the real-world to the risk-neutral short rate) are estimated by using
equation (13) and the interest rate forecasts published by the Organisation for Economic Co-
operation and Development (OECD, 2020), which can be seen as real-world expectations. In
particular, the local risk premiums in the short horizon are estimated by the latest available fore-
casts of the 3-month and 10-year Euro Area interest rates on September 30, 2020, for the longest
available projection horizon (i.e. the fourth quarter of 2021). The local risk premiums in the long
horizon are estimated by the monthly average of 3-month and 10-year Euro Area interest rates
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Table 6. Main indicators of the distributions of the single
claim amount and number of claims

E{Z0} CV{Z0} n0 Std{q}
4,000 7 19,520 0.0821

Table 7. Parameters of the Lognormal andNegative Binomial
distributions

m0 s h p0

6.3380 1.9779 148.47 0.0075

Figure 1. Quantiles of the simulated stock 2 price and 3-year zero-coupon bond price over the years.

over the last 15 years from September 30, 2020. Moreover, the parameter τ is assumed to be 15
months, which is the time horizon from September 30, 2020, to the fourth quarter of 2021.

The main indicators of the distributions of the single claim amount and number of claims are
presented in Table 6. The initial mean and coefficient of variation of the single claim amount dis-
tribution are determined through empirical evidence, and the initial expected number of claims is
obtained in function of the size of the insurance company. The standard deviation of the structure
variable (i.e. the parameter uncertainty of the number of claims distribution) is estimated based on
the Italian market data until the end of 2018, provided by ANIA (2020) and IVASS (2019) In par-
ticular, it is given by the product of the standard deviation of the loss ratio on accrual basis and the
ratio of gross and risk premium amount. This result holds because we can see the Italian market
data as the portfolio history of a huge-sized insurance company, and thus the standard deviation
of the pure loss ratio (i.e. the coefficient of variation of the total claim amount) approaches the
standard deviation of the structure variable. Currently, there is no method in the literature to
estimate this relevant parameter excluding the variability coming from the underwriting cycle.

The parameters of the Lognormal andNegative Binomial distributions are presented in Table 7.
The parameters of the Lognormal distribution are estimated by using the method of moments
on the main indicators of the single claim amount distribution above, i.e. the initial mean and
coefficient of variation. The parameters of the Negative Binomial distribution are estimated by
using the relations in Section 2.3.1 and the main indicators of the distribution of the number of
claims above, i.e. the initial expected number of claims and standard deviation of the structure
variable.

Figure 1 shows the quantiles of the simulated stock 2 price and 3-year zero-coupon bond price
over time, as representative of their respective asset classes. We can clearly see that the volatility
of the stock increases as the time horizon raises. On the other hand, the increasing risk of the
zero-coupon bond is offset by the convergence to its nominal value.
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Table 8. Single-line descriptive statistics of the simulated annual rates of return (with amounts in %) and of the simulated
total claim amounts (with amounts in millions)

Year Mean St. dev. Skew. Min. 1st qu. Median 3rd qu. Max.

Annual rate of return


1 −0.17 2.63 0.4961 −9.40 −2.01 −0.38 1.45 18.25


2 0.41 2.64 0.4973 −8.68 −1.42 0.19 2.02 15.46


3 0.20 2.64 0.5084 −9.06 −1.65 −0.01 1.82 20.44


Total claim amount


1 80.80 7.78 0.4962 53.62 75.48 80.47 85.76 241.99


2 83.70 8.09 0.9834 55.17 78.20 83.34 88.80 376.52


3 86.67 8.24 0.3362 53.89 81.01 86.35 91.93 173.76

Using equations (10) and (14), we are able to simulate the annual rate of return and the total
claim amount over time. Table 8 shows some descriptive statistics of the annual rate of return
and total claim amount after 1, 2, and 3 years. We point out that the mean of the annual rate of
return should increase over time, because the instantaneous forward rate is an increasing func-
tion of time. However, for the second year the mean (0.41%) is higher than for the third year
(0.20%). We indeed remind that the local risk premium functions are step functions with jumps
after 15 months. As explained above, in our real-world model, the expected value of the short
rate increases because of the instantaneous forward rate and actual risk premiums. On the other
hand, the standard deviation of the annual rate of return remains quite stable over time and is
not affected by the real-world assumptions. Moreover, because of the dynamic portfolio assump-
tion, the mean and standard deviation of the total claim amount increase over time, because of
increasing size for real growth and claims inflation rates, and the skewness decreases over time,
approaching the skewness of the structure variable. In particular, in the first year we obtain an
expected value of 80.80 million, corresponding to a combined ratio of roughly 99.3% and in line
with the parameters.

Building on the above and in order to inject some dependence structure between the stock and
bond factors, we use Student’s t copulas with 2 degrees of freedom. The correlation coefficient
is assumed to be null, i.e. the linear correlation coefficient between interest rate risk and equity
risk under the SF, which is defined in the Commission Delegated Regulation (EU) 2015/35 (2015).
Moreover, in order to inject some dependence structure between the annual rate of return and
total claim amount, we use rotated Gumbel copulas with parameter 1.1904. It corresponds to a
probability of 50% that the annual rate of return experiences an event with a probability lower
than 15%, while the total claim amount experiences an event with 99% probability. This approach
allows the modeling of a reasonable tail dependence between market and premium risk and is in
line with what is actually sometimes used in the insurance industry.

3.1.1 Market risk
We now isolate the effect of the market risk, and so we leave aside the premium risk. In this regard,
we drop the underwriting result by the risk reserve, but still consider the interest on its investment.

Moreover, we assume that the total claim amount is deterministic and equal to its mean, hence
the underwriting result is equal to the safety loadings. We believe that this is not a simplification
and is a reasonable solution to make a stand-alone analysis of the market risk with respect to
premium risk. As a result, starting from equation (4), the risk reserve is found to be:

U t = (1+ jt)U t−1 + jt δ Bt−1 + jt
t−1∑
k=1

λ πk
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Table 9. Single-line capital requirements over the initial GPW (expressed in%) and diversification benefits under the SF and
our IM over a period of 1, 2, and 3 years

Year 1 (SF) Year 1 (IM) Year 2 (IM) Year 3 (IM)

Stock 1 6.36 5.19 6.79 7.92


Stock 2 3.18 3.24 4.12 4.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stock 3 1.06 1.27 1.58 1.76


Total stocks 10.59 9.70 12.49 14.35


Bond with maturity in 1 0.61 0.29 0.82 1.64


Bond with maturity in 2 0.76 0.39 0.40 0.61


Bond with maturity in 3 0.68 0.36 0.36 0.32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bond with maturity in 5 0.75 0.57 0.66 0.66


Bond with maturity in 10 1.46 1.70 2.23 2.52


Total bonds 4.27 3.30 4.46 5.76


Market risk 11.42 10.63 14.98 18.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Market diversification benefit 23.15% 18.20% 11.63% 6.88%

and, starting from equation (6), the risk reserve ratio is found to be:

ut = (1+ jt)
(1+ i) (1+ g)

ut−1 + jt δ
(1+ i) (1+ g)

+
t−1∑
k=1

1− c
1+ λ

jt λ
(1+ i)k (1+ g)k

Furthermore, the annual net cash flows are now deterministic, because their behavior only
depends on a deterministic total claim amount. Starting from equation (7), they are found to
be:

Ft = Bt
[
(1− c)+ δ

(
1− 1

(1+ i) (1+ g)

)]
− πt

Using the annual rate of return given by the financial market model, we are able to calculate the
capital requirements over a period of 1, 2, and 3 years. In doing so, we compute the result for each
sub-module (i.e. investment category), and we determine the overall diversification benefit with
the usual function used in the insurance industry (see Bürgi et al., 2008):

DB= 100%− RBC∑
iYi∑

i RBCYi

The results are presented in Table 9, together with the comparison to the SF (obviously over a
1-year period only).

In order to be consistent with equation (16), the RBC of a stock investment is found to be:

RBCSv(0, t)= α βv U0 − α βv U Sv
ε (t)∏t

k=1

(
1+E

{
j Svk
}) with v= 1, 2, 3

where U Sv
ε (t) is the εth order quantile of a new variable, used to isolate the risk of the vth stock

investment, and j Svk is the corresponding stochastic annual rate of return. We have:

U Sv
t = (

1+ j Svt
)
U Sv

t−1 + j Svt δ Bt−1 + j Svt
t−1∑
k=1

λ πk

https://doi.org/10.1017/S1748499523000234 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000234


224 Stefano Cotticelli and Nino Savelli

On the other hand, the RBC of a bond investment is found to be:

RBCPw(0, t)= (1− α) γw U0 − (1− α) γw U Pw
ε (t)∏t

k=1

(
1+E

{
j Pwk
}) with w= 1, 2, 3, 5, 10

where the variables involved are analogous to the stock case, and they can be found by replacing
the character Sv with Pw. We point out that the stochastic annual rates of return of the stock and
bond investments can be obtained by using equations (8) and (9).

We rely on some key assumptions to interpret the pattern of the capital requirements in our
IM. On one side, we have the riskiness of the investment. On the other side, we have several
forms of expected profit, i.e. the real-world return on the investments, the profit produced by
the investment of the claims reserve and safety loadings and finally the real-world discounting
effect. The higher the risk, the bigger the RBC. The higher the expected profit, the smaller the
RBC. Furthermore, the dynamic portfolio assumption (i.e. the presence of a claims inflation rate
and a real growth rate) has a scaling effect on the RBC, because it raises the size of the insurance
company. We point out that not only do the capital requirements depend on the riskiness of the
investment, but also on the amount invested, hence the RBC of the stock investments is bigger in
the case of the low-risk stocks. The RBC of the bond investments increases as the time to maturity
increases. Furthermore, for the first year, the 1-year zero-coupon bond factor is not stochastic,
because the initial zero-coupon bond price is given, and after 1 year it must equal one (we remind
that there is no default risk). Despite this, there is an expected loss, due to the investment of the
claims reserve and safety loadings at a negative interest rate (−0.540%). Consequently, we can
observe a strong increase in the RBC between the first and second year. Moreover, the RBC of the
stock investments have a slow growth over time. This is because the expected profit of the stock
investments is quite high in a real-world framework (e.g. the risk premium coefficient ranges
from 2.7% to 4.5%). In conclusion, the RBC of each investment category, as well as the overall
one, increases over time, because the risk increases more than the expected profits.

We remind that stock investments are considered as type 1 equities without a strategic nature
and a long-term holding strategy and that the symmetric adjustment is null. Hence, in the SF
framework, the SCR for equity risk, calculated on a single stock investment, is found to be:

SCRSv = 39%ASv
0 with v= 1, 2, 3

and the SCR for interest rate risk, calculated on a single bond investment, is found to be:

SCRPw=APw
0 −APw

0
[
1+ Reuro

a (0,w)
]w [1+ Reiopa up

a (0,w)+ Reuro
a (0,w)− Reiopa

a (0,w)
]−w

with w= 1, 2, 3, 5, 10

where Reuro
a (0,w), Reiopa

a (0,w), and Reiopa up
a (0,w) are respectively the average of all spot Euro

Area government rates (annually compounded) with maturityw and the spot Eiopa risk-free rates
(annually compounded) without Volatility Adjustment (VA) and with maturity w, either without
any shock or with positive interest rate shock.

The average of all Euro Area government rates and the Eiopa risk-free rates without VA on
September 30, 2020, are presented in Table 10. We point out that in the SF calculation, we assume
that the spread remains equal to its value before the interest rate shock.

Furthermore, we remind that the scenario of the interest rate risk sub-module only affects
the bond investments, and the scenario of the equity risk sub-module only affects the stock
investments. Hence, the SCR for equity risk is found to be:

SCRequity =
3∑

v=1
SCRSv = 39%AS

0
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Table 10. Average of all Euro Area government rates and Eiopa risk-free rates without VA on
September 30, 2020 (annually compounded and expressed in %)

Maturity in years Average government rate Eiopa rate Eiopa rate – Shock up

1 −0.539 −0.578 0.422
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −0.513 −0.587 0.413
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −0.480 −0.575 0.425
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 −0.389 −0.528 0.472
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 −0.079 −0.331 0.669

and the SCR for interest rate risk is found to be:

SCRinterest rate =
∑

w∈{1,2,3,5,10}
SCRPw

The equity risk and interest rate risk are the only sources of market risk we have. Hence, under an
assumption of null correlation, the SCR for market risk is found to be:

SCRmarket =
√

SCR2
equity + SCR2

interest rate

The capital requirements of the SF and our IM are quite similar, because of their similar assump-
tions. In general, the capital requirements of the bond investments are bigger in the SF than in our
IM, as are the overall capital requirement. We indeed remind that in our IM the asset allocation
is recalibrated at year end only, hence we do not suffer from changes in the market value dur-
ing the year. In addition, the SF does not consider any form of expected profit in its calculation.
The diversification benefits are slightly bigger in the SF than in our IM. We indeed remind that
in our IM we model the tail dependence between stock and bond factors using Student’s t copu-
las, while in the SF, the SCR for market risk is obtained through a linear correlation aggregation
process.

3.1.2 Non-life premium risk
Wenow isolate the effect of the premium risk, and so we leave aside themarket risk. In this regard,
we drop the investment result obtained by the risk reserve, assuming that the annual rate of return
is null. Once again, we believe that this is not a simplification and is a reasonable solution to make
a stand-alone analysis of the premium risk with respect to the market risk. As a result, the risk
reserve is found to be:

U t =U t−1 +
[
(1+ λ) πt − Xt

]
and the risk reserve ratio is found to be:

ut = 1
(1+ i) (1+ g)

ut−1 + 1− c
1+ λ

[
(1+ λ)− Xt

πt

]

Using the total claim amount given by the Collective Risk Model, we are also able to calculate the
capital requirements over a time span of 1, 2, and 3 years. The results are presented in Table 11,
together with the comparison to the SF.

In order to understand the pattern of the capital requirements in our IM, we should now focus
on the riskiness of the total claim amount and on the expected profit produced by the safety load-
ings. The first one contributes to a bigger RBC, and the second one contributes to a smaller RBC.
Again, the dynamic portfolio assumption has a scaling effect on the RBC. The RBC is bigger than
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Table 11. Single-line capital requirements over the initial GPW (expressed in%) under the SF
and our IM over a period of 1, 2, and 3 years

Year 1 (SF) Year 1 (IM) Year 2 (IM) Year 3 (IM)

Market risk 11.42 10.63 14.98 18.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NL Premium risk 31.06 21.63 29.66 36.47

in the previous subsection. It is quite common that in non-life insurance the capital requirements
for underwriting risk are quite big, because the business is mainly devoted to the underwriting
side. However, in our numerical analysis the capital requirements for premium risk are much
higher than for market risk. This is because we have a quite risky insurance portfolio resulting
from the upper tail of the total claim amount distribution being quite heavy. Furthermore, the
investment portfolio is composed of simple assets expressed in euro currency and issued by Euro
Area governments, so that many important sources of market risk (i.e. the spread risk, liquidity
risk, and default risk) are not considered.

Under the SF, the SCR for non-life premium and reserve risk (in our case referring only to the
premium risk) is calculated using the following simplified formula:10

SCRnl prem res = 3 σnl Vnl

where σnl andVnl are respectively the volatility factor (i.e. the standard deviation, in relative terms)
and the volume measure for premium and reserve risk. The latter is distinguished in earned pre-
miums and best estimate of the provisions for claims outstanding. We remind that the reserve
risk and reinsurance are not considered, and the single-line insurance company only underwrites
MTPL policies. The volatility factor for premium and reserve risk is thus found to be 10%, and the
volume measure for premium and reserve risk is found to be 103.53 million, i.e. the GPW at the
end of the first year. Furthermore, since there are no other sources of risk, the SCR for non-life
underwriting risk refers to the premium risk only.

Once again, the capital requirement is bigger in the SF than in our IM. This is because the
expected profit produced by the safety loadings is not considered in the SF. Moreover, the size
factor is not considered, so that in the SF the volatility factors for premium and reserve risk are
assumed to be the same for each European insurance company. However, in our IM we also con-
sider the insurance company size, coming from the expected number of claims. In addition, we
remind that in the SF, the underlying distribution for premium and reserve risk is assumed to be
a Lognormal, and the multiplier 3 is consistent only when the volatility factor is roughly equal
to 14.5%. As previously mentioned, the assumption of a constant multiplier is flawed, because it
should change as the relative volatility changes.

3.1.3 Market and non-life premium risk
In Section 3.1.1, we assumed that the underwriting result was always equal to the safety loadings
and that it produced interest each year. Actually, the interest is obtained from the investment of
the occurring value of the underwriting result. Finally, we take into account both the market risk
and premium risk, considering equations (4) and (6).

Using the annual rate of return given by the financial market model and the total claim amount
given by the Collective Risk Model, we are able to calculate the capital requirements over a period

10Note that until QIS 5 (i.e. the fifth Quantitative Impact Study, carried out in 2010) a very elegant and consistent
solution had been adopted. It assumed the exact formula for the quantile calculation in case of a Lognormal distribution
underlying the premium and reserve risk. Under QIS 5, the higher the volatility factor, the higher the multiplier. The latter
was equal to 3 only when the volatility factor was roughly 14.5%. We point out that the multiplier should approach 2.58 (i.e.
the multiplier of a Standard Normal distribution) when the skewness is extremely close to zero.
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Table 12. Single-line capital requirements over the initial GPW (expressed in%) and diversification benefits under the SF
and our IM over a period of 1, 2, and 3 years

Year 1 (SF) Year 1 (IM) Year 2 (IM) Year 3 (IM)

Market risk 11.42 10.63 14.98 18.73


NL Premium risk 31.06 21.63 29.66 36.47


Market and NL Premium risk 35.67 28.84 38.29 45.51


Market diversification benefit 23.15% 18.20% 11.63% 6.88%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NL Premium diversification benefit – – – –


Market and NL Premium diversification benefit 16.03% 10.62% 14.22% 17.55%


Total diversification benefit 22.32% 16.73% 17.85% 19.57%

Figure 2. Percentage increase in capital requirements according to our IM over a period of 1, 2, and 3 years, against the
square root of time horizon.

of 1, 2, and 3 years. The diversification benefit is calculated at module level (i.e. market risk and
premium risk) and sub-module level (i.e. equity risk, interest rate risk, and premium risk), so
that we can observe both the partial diversification benefit and the total one.11 The results are
presented in Table 12, together with the comparison to the SF.

It can be observed that the capital requirements (for market and premium risk both sepa-
rately and combined) increase over time by approximately the square root of time horizon, as
presented in Figure 2. This pattern is commonly relied upon when analyzing capital requirements
with respect to time. Note that it is just a rule of thumb, and there are many elements (e.g. expected
profits) that can invalidate it.

11A neat solution to calculate the diversification benefit, without using stand-alonemodels, is to determine the threshold
of the Tail Value-at-Risk of the portfolio that gives the same result of our Value-at-Risk and to use this threshold to allocate
the capital using Tasche’s approach (see Boonen et al., 2020, for further details).
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Table 13. General parameters of our numerical analysis

LoB B0 λ c δ

MTPL 50,000,000 0.87% 21.24% 156.10%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOD 25,000,000 13.81% 30.30% 22.88%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GTPL 25,000,000 6.61% 32.30% 416.52%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 100,000,000 4.99% 26.27% 187.90%

Under an assumption of moderate correlation (+0.25), the SCR for market and non-life
underwriting risk (in our case referring only to the premium risk) is found to be:

SCR=
√

SCR2
market +

1
2
SCRmarket SCRnon-life + SCR2

non-life

where SCRnon-life is the SCR for non-life underwriting risk.
Finally, we can observe that the total capital requirement is bigger in the SF than in our IM,

mostly because of the premium risk. We remind that in our IM the high upper tail dependence
between the annual rate of return and total claim amount is modeled using a rotated Gumbel
copula. For this reason, the diversification benefits according to our IM are smaller than for the
SF, which is based on a linear correlation aggregation process.

3.2 Multi-line insurance company
We now investigate the case in which a similar insurance company has underwriting business,
not only in MTPL but also in Motor Other Damages (MOD) and General Third-Party Liability
(GTPL). The GPW is the same as in the single-line case (100 million), and the business mix is 50%
forMTPL, 25% forMOD, and 25% for GTPL. For this reason, we use Gaussian or Gumbel copulas
to inject some dependence structure in the total claim amount of the three different LoBs. This
step is not necessary in case of a single-line insurer. We point out that for many results within this
subsection, the same comments apply as applied to the single-line insurance company; hence, we
focus only on the main developments and differences.

Almost all the parameters are the same as in the case of the single-line insurance company, and
the new ones are estimated by the same procedure (see IVASS 2020, in this case). As a result, the
parameters of MTPL are identical to those used for the single-line insurer. Furthermore, we main-
tain the same claims inflation rate i and real growth rate g for each single LoB, even if empirically
they might differ.

The new general parameters of our numerical analysis are presented in Table 13. The GPW
is now found to come from three different sources, and the safety loading coefficient of MOD
(13.8%) is much bigger than in the other two LoBs (0.9% and 6.6%). Furthermore, the ratio of
claims reserve to GPW of MOD is very low (22.9%), since the claims settlement speed is fast.
On the other hand, the same ratio for GTPL is very high (416.5%), since the settlement speed is
considerably lower. This is because MOD deals only with material damages to property, whereas
GTPL (as well as MTPL) deals with a significant portion of bodily injuries, from which a long
settlement process derives. As a result, the initial claims reserve of the insurance company is found
to be equal to 187.9 million (mainly affected by the ratio of claims reserve to GPW of GTPL), and
together with 25 million of initial risk reserve we obtain an initial asset value of the portfolio equal
to 212.9 million.

The new main indicators of the distributions of both the single claim amount and number
of claims are presented in Table 14 for each LoB, while the new parameters of the Lognormal and
Negative Binomial distributions are presented in Table 15. The coefficient of variation of the single
claim amount CV

{
Z0
}
and the standard deviation of the structure variable Std

{
q
}
are the main
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Table 14. Main indicators of the distributions of the single claim amount and
number of claims

LoB E{Z0} CV{Z0} n0 Std{q}
MTPL 4,000 7 9,760 0.0821

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOD 2,500 2 6,124 0.0500
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GTPL 10,000 12 1,587 0.1478

Table 15. Parameters of the Lognormal and Negative Binomial distributions

LoB m0 s h p0

MTPL 6.3380 1.9779 148.47 0.0150
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOD 7.0193 1.2686 399.40 0.0612
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GTPL 6.7220 2.2309 45.78 0.0280

Table 16. Parameters of the Gaussian copula for the aggregate total claim amount

MTPL and MOD MTPL and GTPL MOD and GTPL

+0.5000 +0.5000 +0.2500

Table 17. Parameters of the Gumbel copula for the aggregate total claim amount

Year MTPL and MOD MTPL aggregated to MOD and GTPL

1 1.5000 1.4893
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.5000 1.4893
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1.5000 1.4892

risk drivers, together with the expected number of claims n0, which determines the LoB size. We
have the highest values for GTPL, because the large portion of claims relating to bodily injuries
makes the segment rather volatile compared to the others. The coefficient of variation of MOD is
quite small (2), with respect to GTPL (12) and MTPL (7). Furthermore, the standard deviation of
the structure variable plays a significant role, even if the LoB sizes are limited, since it is around
15% for GTPL, 8% for MTPL, and 5% for MOD, and it affects the asymptotic behavior of the total
claim amount volatilities.

The parameters of the Gaussian copula, used to inject some dependence structure in the total
claim amounts, are presented in Table 16. They are assumed to be equal to the linear correla-
tion coefficients between the three LoBs, as reported in the SF for premium and reserve risk and
defined in the Commission Delegated Regulation (EU) 2015/35 (2015).

The parameters of the Gumbel copula are presented in Table 17. As proposed by Savelli and
Clemente (2011), we here consider a hierarchical structure in which we join MTPL and MOD at
the first step, and we add GTPL at the second step. The first column of parameters is estimated
by using the Kendall’s rank correlation coefficient corresponding to the linear correlation coef-
ficient of the Gaussian copula mentioned above. The second column of parameters is estimated
by using the Kendall’s rank correlation coefficient corresponding to the implicit linear correlation
coefficient between GTPL and the sum of MTPL and MOD. This is done in order to have the
same linear correlation structure with or without a tail dependence, so that we can make a proper
comparison between the Gaussian copula, Gumbel copula, and SF.

The distribution of the annual rate of return is the same as in the case of the single-line insurer.
Figure 3 shows the simulated distribution of the total claim amount of each LoB after 1, 2, and
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Table 18. Multi-line descriptive statistics of the simulated total claim amounts after 1, 2, and 3 years (amounts in millions)

LoB Year Mean St. dev. Skew. Min. 1st qu. Median 3rd qu. Max.

MTPL 1 40.39 4.40 1.0170 24.42 37.42 40.14 43.05 166.19


MTPL 2 41.82 4.55 1.3330 25.29 38.76 41.55 44.58 214.07


MTPL 3 43.32 4.76 3.6336 27.17 40.14 43.04 46.15 340.53


MOD 1 15.85 0.91 0.1156 11.85 15.22 15.83 16.45 19.95


MOD 2 16.41 0.94 0.1224 12.48 15.77 16.39 17.03 21.32


MOD 3 16.99 0.97 0.1207 13.11 16.33 16.97 17.63 21.70


GTPL 1 16.44 6.20 42.6100 5.53 13.32 15.63 18.46 976.36


GTPL 2 16.98 5.49 6.6964 5.55 13.80 16.18 19.08 250.63


GTPL 3 17.60 5.45 4.7099 5.28 14.30 16.78 19.80 253.37

Figure 3. Multi-line simulated total claim amounts after 1, 2, and 3 years (MTPL in red, MOD in black, GTPL in blue, and x-axis
values in millions).

3 years, and Table 18 shows some descriptive statistics. Table 19 shows the same indicators for
the simulated distribution of the aggregate total claim amount given by Gaussian and Gumbel
copulas.

As shown in the figures, the mean and standard deviation of the total claim amount of each LoB
rise slightly over time, because of a limited increase in the GPW (a nominal growth rate around
3.5% for all the LoBs). It is also noted that the distribution of MOD is heavily concentrated around
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Table 19. Multi-line descriptive statistics of the simulated aggregate total claim amount given by the Gaussian copula and
by the Gumbel copula after 1, 2, and 3 years (amounts in millions)

Year Mean St. dev. Skew. Min. 1st qu. Median 3rd qu. Max.

Gaussian copula


1 72.65 9.13 11.8311 46.95 67.04 71.81 77.12 964.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 75.24 8.93 2.4206 49.33 69.47 74.39 79.90 320.53


3 77.91 9.10 2.2536 49.60 71.96 77.05 82.69 382.94


Gumbel copula


1 72.63 8.94 3.6824 47.92 66.98 71.51 76.85 437.72


2 75.30 9.51 5.1145 49.96 69.50 74.14 79.57 456.19


3 77.94 9.28 2.6501 53.51 71.97 76.78 82.42 405.32

the mean compared to GTPL, notwithstanding that they have a similar volume. This is mainly due
to the coefficient of variation of the single claim amount (2 and 12 respectively). Besides, it can be
seen from the values in the table that the skewness trend is affected by some outliers. It is evident
at the third year for MTPL and, more significantly, at the first year for GTPL (in order to better
understand, it is useful to see the maximum value in the last column of the table). In any case, the
skewness realized for the three LoBs is quite different. It is very significant for GTPL (around+5),
it has a medium value for MTPL (around +1), and it is less significant for MOD (around +0.1).
The skewness is mainly influenced by the single claim amount distribution, due to the quite small
portfolio size, in particular for GTPL. In case of bigger insurance companies, all these skewness
values would be closer to the skewness of the structure variable. In any case, these skewness values
will be helpful to properly understand the effective multipliers of our IM, in comparison to the SF.

Using the annual rate of return given by the financial market model, the aggregate total claim
amount given by the Collective Risk Model, and copula functions, we are now able to calculate
the capital requirements over a period of 1, 2, and 3 years. The results are presented in Table 20,
together with the comparison to the SF.

Considering market risk, the main difference compared to the single-line insurance com-
pany is that the invested resources are now larger, mainly because of the higher initial claims
reserve (187.9 million against 156.1 million of the single-line insurer, which corresponds roughly
to +20%). This is the reason we now have higher capital requirements, both in our IM and in the
SF. As already explained, the main difference between our IM and the SF is that only in the for-
mer is expected profit considered, represented by the real-world return on the investments and by
the interest on the investment of the claims reserve and safety loadings. The European insurance
supervisory authorities are reluctant to allow insurance companies to include an expected profit
or loss in their IM for capital requirement calculation, because of the desire for consistency with
the SF framework. Even if we believe that a prudent approach is suitable and desirable, we also
think that a correct quantification of the solvency position of an insurance company should con-
sider not only the sources of risk but also the risk mitigation elements (at least partially). Another
difference between our IM and the SF is that the latter does not take account of the peculiarity
of the investments. For instance, under the SF, all equity instruments of a certain type and with
a particular characteristic (e.g. strategic nature) have equal capital requirements. Accordingly, we
remind that obviously the SF is a simplified and standardized approach, and an IM can be used to
better fit the various characteristics of a particular portfolio.

Focusing on the premium risk, in our IM the RBC of each LoB increases over time, except
for MOD, in which the limited risk is more than compensated by the significant expected profit
created by the safety loadings. The aggregate total claim amount is now riskier with respect to
the single-line insurance company, because of the presence of GTPL, and it is even riskier adopt-
ing the Gumbel copula in the aggregation process, where there is a high upper tail dependence
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Table 20. Multi-line capital requirements over the initial GPW (expressed in%) and diversification benefits under the SF and
our IM over a period of 1, 2, and 3 years

Year 1 (SF) Year 1 (IM) Year 2 (IM) Year 3 (IM)

Stock 1 7.47 6.09 8.03 9.43


Stock 2 3.74 3.80 4.86 5.56


Stock 3 1.25 1.49 1.87 2.09


Total stocks 12.45 11.38 14.76 17.09


Bond with maturity in 1 0.72 0.35 0.98 1.99


Bond with maturity in 2 0.90 0.46 0.48 0.74


Bond with maturity in 3 0.80 0.43 0.42 0.39


Bond with maturity in 5 0.88 0.67 0.78 0.78


Bond with maturity in 10 1.72 2.00 2.64 3.00


Total bonds 5.02 3.91 5.30 6.91


MTPL 15.53 13.01 18.27 21.89


MOD 6.21 0.27 −0.96 −2.43


GTPL 10.87 21.08 28.74 33.94


Total LoBs 32.61 34.36 46.05 53.41


Gaussian copula for NL Premium risk


Market risk 13.43 12.51 17.71 22.28


NL Premium risk 26.40 27.69 35.97 40.73


Market and NL Premium risk 32.47 35.67 44.70 52.14


Market diversification benefit 23.15% 18.20% 11.71% 7.12%


NL Premium diversification benefit 19.05% 19.40% 21.89% 23.74%


Market and NL Premium diversification benefit 18.47% 11.27% 16.73% 17.25%


Total diversification benefit 35.16% 28.16% 32.39% 36.63%


Gumbel copula for NL Premium risk


Market risk 13.43 12.51 17.71 22.28


NL Premium risk 26.40 31.11 39.82 45.91


Market and NL Premium risk 32.47 38.90 48.89 56.37


Market diversification benefit 23.15% 18.20% 11.71% 7.12%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NL Premium diversification benefit 19.05% 9.44% 13.54% 14.03%


Market and NL Premium diversification benefit 18.47% 10.83% 15.01% 17.34%


Total diversification benefit 35.16% 21.66% 26.05% 27.16%

(consequently a smaller diversification benefit and higher capital requirements). However, it is
noted that under the SF, the total SCR is smaller than in case of the single-line insurer (we now
have the same volume measure as before, but a smaller volatility factor, equal to 8.5%). It is also
important to see that, in contrast to the other LoBs, the SCR of GTPL is lower in the SF than in
our IM. Overall, the numerous differences seen between our IM and the SF are due to the sim-
plified logic behind the latter approach. In contrast with the SF, in our IM we indeed calibrated
the parameters on specific data, considering the size factor and using an aggregation procedure
different to the linear correlation one. Moreover, as previously mentioned, the multiplier 3 used
in the SF for the premium and reserve risk is not fully consistent, because it is fixed regardless
of the level of volatility. For this formula, EIOPA declared an underlying Lognormal distribution.
In this case, when the volatility is around 14.5% we have a multiplier equal to 3, otherwise the
appropriate multiplier would be different. The drawback of this formula is that it does not respect
the relationship satisfied by the Lognormal distribution. In particular, when we have a quite low
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Figure 4. Percentage increase in capital requirements according to our IM over a period of 1, 2, and 3 years, against the
square root of time horizon.

volatility, the skewness is small, and then the multiplier will be closer to 2.58, which is the quan-
tile of order 99.5% of a Standard Normal distribution (e.g. with a volatility of 5% the multiplier
is equal to 2.72). On the other side, with a higher volatility, the skewness is bigger, and then the
multiplier is larger (e.g. with a volatility of 25% the multiplier is equal to 3.32). Clearly, in the first
case the SF overestimates the capital requirement, whereas in the second case, it underestimates
it. In our IM the multipliers for the first year are equal to 3.05 for MTPL, 2.71 for MOD, and 3.57
for GTPL. Hence, the SF creates an inconsistent benefit in the first and third case. In addition,
the SF does not allow expected profit to be considered, for example that produced by the safety
loadings. All the limitations described above can be clearly solved by implementing an IM as we
have outlined in this paper.

Finally, in Figure 4 we show the yearly percentage increase of the capital requirements for
premium risk, against the square root of time horizon. We can observe that for MTLP and GTPL
the expected trend is again confirmed. However, this is not the case for MOD, because its capital
requirement decreases, in the opposite direction from the square root of time horizon. This is
because in MOD we have a highly significant expected profit, that over time is higher than the
risk of this LoB. Consequently, the total capital requirement for premium risk (for simplicity, in
the figure there is the case of Gaussian copula only) is not fully consistent with the above rule of
thumb. This is one situation in which the proxy described above is not supported, hence care must
be taken to merely use this as an indicator.

4. Conclusion
In this paper, we showed that as the cash flows produced by the insurance business are invested,
they consequently create a risk, above the underwriting risk (here represented by the premium
risk only). This highlights that non-life insurers not only face underwriting risk but also market
risk. More specifically, we pointed out that premium risk, equity, and interest rate are all relevant
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risks for the non-life insurer. Consequently, we described an approach to modeling the distri-
butions of the annual rate of return and aggregate total claim amount, in order to calculate the
capital requirements for market and premium risk and to illustrate their combined effect. We
produced a numerical analysis for a single-line and a multi-line insurance company in a multi-
annual dynamic perspective, using current and available market data, in order to show a realistic
and heterogeneous time-dependent non-life insurance context.

In this paper, we also showed that capital requirements are clearly more demanding from a
methodological point of view when an IM is applied than when using the SF. Moreover, notwith-
standing that an IM must be approved by an insurance supervisory authority, the calibration
is critical, because it influences the final result of the capital requirements. For this reason,
supervisory authorities pay close attention to cases of so-calledmodel change.

We explained the main differences between our IM and the SF according to our numerical
analysis, where market and underwriting risks are examined in connection to each other. In par-
ticular for our single-line MTPL insurance company, the SF results in higher capital requirements
than our IM (35.7% against 28.8% as percentages of the initial GPW, see Table 12). This is caused
by three main reasons. Firstly, they are given by the higher volatility factor for premium risk (10%
for MTPL in the SF), secondly by a more conservative approach regarding the expected profits
(not counted as a mitigation of risk in the SF), and thirdly by the fixed multiplier in the SF, irre-
spective of the relation between the skewness and volatility underlying the Lognormal distribution
assumption.

Compared to the single-line insurer, themulti-line insurance company (having the sameGPW)
has higher market risk for both the SF and our IM, because of larger investment resources (in
particular, the initial claims reserve) given by the GTPL characteristic of extremely high ratio of
claims reserve to GPW (more than 400%).

Considering the premium risk, the multi-line insurance company has smaller capital require-
ments than the single-line insurer if the SF approach is adopted (26.4% against 31.1% as
percentages of the initial GPW, see Tables 11 and 20). The significant reduction is mainly given by
the diversification benefit among the different LoBs (due to the linear correlation matrix), which
is absent for the single-line insurer. By contrast, for our IM the multi-line capital requirement is
higher than in the single-line, because of the high volatility and skewness of GTPL, which is not
counterbalanced by either the limited values registered for MOD or the diversification benefit.
Consequently, in our case study, the total capital requirement of the SF is lower than our IM when
using the Gaussian copula for premium risk (32.5% against 35.7% as percentages of the initial
GPW, see again Table 20), while for the single-line insurance company it is the opposite (35.7%
against 28.8% as percentages of the initial GPW, see again Table 12). In addition, in case of Gumbel
copula for the premium risk, which is distinguished by a higher upper tail dependence than the
Gaussian copula, the multi-line capital requirement in our IM increases from 35.7% to 38.9%. We
remind that our IM can only be accounted as partial, because a full IM would obviously consider
all the sources of risk (e.g. reserve risk, cat risk, counterparty default risk, operational risk, . . .).
Moreover, the analysis was performed with simple assets expressed in euro currency and issued
by Euro Area governments, which means many important sources of market risk (i.e. the spread
risk, liquidity risk, and default risk) were not considered. Hence, we obtained a market risk much
smaller than premium risk, unlike in practice, where market risk is often larger than underwriting
risk.

Further studies can regard, for instance, the introduction of a more complex and dynamic asset
allocation to better describe a real investment portfolio and to further exploit the diversification
benefit of the overall market risk. Other future studies building on our research could be addressed
to the Risk Appetite Framework (RAF) limits, using the IM results. We remind that in our IM no
dividends are taken into consideration. Hence, it could be interesting to analyze the impact of
different dynamic dividend policies on the solvency ratio and capital requirement, fixing a target
zone and an extreme downside zone, where a strong limitation occurs in case the solvency ratio
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approaches or oversteps either 100% of the target or RAF lower bound. In addition, we believe the
analysis of multi-year modeling could be very promising, in order to derive a natural proxy as a
benchmark for the capital requirement calculation on a time span longer than 1 year. For instance,
the square root of the time could be studied as a rule of thumb. In this paper, wemade some studies
using a period of 2 and 3 years and the same risk measure. In our analysis, we observed similar
results to this rule of thumb for both the market risk and premium risk. The differences with
respect to the square root of time horizon aremainly given by the expected profits (on bothmarket
and underwriting sides) and volume increase time by time. This might be relevant in future, for
instance in case EIOPA decides to modify the capital requirement metrics, lengthening the 1-year
time horizon (e.g. to a 2-year or 3-year time horizon) and introducing a multi-approach (e.g. a
double approach, in which both the 1-year and multi-year risk measures are taken into account).
This would necessitate an update in the confidence levels and an enhancement of risk strategies
to take a medium-term view.
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