SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPHERES

QIN ZHANG
Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China e-mail: zhangdiligence@126.com

(Received 9 October 2010; revised 13 April 2011; accepted 28 April 2011; first published online 2 August 2011)

Abstract

Let M^{n} be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \leq \varepsilon(n)$ in a unit sphere $S^{n+1}(1), n \leq 8$ and S the square of the length of the second fundamental form of M. There exists a constant $\delta(n, H)>0$, which depends only on n and H such that if $S_{0} \leq S \leq S_{0}+\delta(n, H)$, then $S \equiv S_{0}$ and M is isometric to a Clifford hypersurface, where $\varepsilon(n)$ is a sufficiently small constant depending on n and $S_{0}=n+\frac{n^{3}}{2(n-1)} H^{2}+\frac{n(n-2)}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}}$.

2010 Mathematics Subject Classification. Primary 53C42, 53B25.

1. Introduction. Let M^{n} be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere $S^{n+1}(1)$ of dimension $n+1$, denoted by S the squared norm of the second fundamental form of M^{n}.

When $H \equiv 0$, Lawson [16], Simons [10] and Chern et al. [8] obtained independently the famous rigidity theorem, which says, if $S \leq n$, then $S \equiv 0$, or $S \equiv n$, i.e. M^{n} is the great sphere $S^{n}(1)$, or the Clifford torus. Further discussions in this direction have been carried out by many other authors $[\mathbf{2}, 5, \mathbf{7}, \mathbf{1 2}, \mathbf{1 8}, \mathbf{1 9 - 2 1]}$. In [14], Peng and Terng proved that if the scalar curvature of M is constant, then there exists a positive constant $\alpha(n)$ depending only on n such that if $n \leq S \leq n+\alpha(n)$, then $S \equiv n$. Later, Cheng and Yang [6] improved the pinching constant $\alpha(n)$ to $\frac{n}{3}$. Without the assumption of constant scalar curvature, Peng and Terng [15] proved that if $M^{n}(n \leq 5)$ is a closed minimal hypersurface in S^{n+1}, then there exists a positive constant $\alpha(n)$ depending only on n such that if $n \leq S \leq n+\alpha(n)$, then $S \equiv n$. So they proposed the following attractive problem:

Let $M^{n}(n \geq 6)$ be a closed minimal hypersurface in S^{n+1}. Does there exist a positive constant $\alpha(n)$ depending only on n such that if $n \leq S \leq n+\alpha(n)$, then $S \equiv n$ and M is isometric to a Clifford torus $S^{k}\left(\sqrt{\frac{k}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right)$?

In [3], Cheng gave a positive answer under the additional condition that M has only two distinct principal curvatures. Later, Hasanis and Vlachos [9] proved that if M^{n} is a compact minimal hypersurface in S^{n+1} with two distinct principal curvatures and the squared norm S of the second fundamental form of M^{n} satisfies $S \geq n$, then M^{n} is a minimal Clifford torus. In [5], Cheng and Ishikawa improved the result of Peng and Terng [15] when $n \leq 5$. Later, Wei and Xu [17] solved the problem proposed by Peng and Terng [15] for $n=6$ and 7. Recently, we [22] obtained a sharper pinching constant of S for $n \leq 7$ and solved this problem for $n=8$.

When M is a hypersurface with constant mean curvature, Alencar and do Carmo [1] proved the first rigidity result under the assumption that the traceless second fundamental form is sufficiently bounded. Later, Li [11] extended the result of Peng and Terng [15] for minimal hypersurfaces to the case of hypersurfaces with constant mean curvature. That is, Li [11] proved the following theorem:

Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \leq \varepsilon(n)$ in a unit sphere $S^{n+1}, n \leq 5$, and S the square of the length of the second fundamental form of M. Then there exists a constant $\delta(n, H)>0$, which depends only on n and H, such that if $S_{0} \leq S \leq S_{0}+\delta(n, H)$, then $S \equiv S_{0}$ and M is isometric to a Clifford torus $S^{k}\left(\sqrt{\frac{k}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right)$ if $H=0 ; M$ is isometric to a Clifford hypersurface $C_{1, n-1}=S^{1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times S^{n-1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)$ if $H \neq 0$, where $\lambda=\frac{n H+\sqrt{n^{2} H^{2}+4(n-1)}}{2}$ and $\varepsilon(n)$ is a sufficiently small constant depending on $n, S_{0}=$ $n+\frac{n^{3}}{2(n-1)} H^{2}+\frac{n(n-2)}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}}$.

In [4], Cheng, He and Li proved the above theorem is valid for the case of $n=6,7$. In this paper, we study the case of $n=8$. We prove the following theorem.

Theorem 1.1. Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \leq \varepsilon(n)$ in a unit sphere $S^{n+1}, n \leq 8$, and S the square of the length of the second fundamental form of M. Then there exists a constant $\delta(n, H)>0$, which depends only on n and H, such that if $S_{0} \leq S \leq S_{0}+\delta(n, H)$, then $S \equiv S_{0}$ and M is isometric to a Clifford torus $S^{k}\left(\sqrt{\frac{k}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right)$ if $H=0$; M is isometric to a Clifford hypersurface

$$
C_{1, n-1}=S^{1}\left(\frac{1}{\sqrt{1+\lambda^{2}}}\right) \times S^{n-1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)
$$

if $H \neq 0$, where $\lambda=\frac{n H+\sqrt{n^{2} H^{2}+4(n-1)}}{2}$ and $\varepsilon(n)$ is a sufficiently small constant depending on n,

$$
\begin{equation*}
S_{0}=n+\frac{n^{3}}{2(n-1)} H^{2}+\frac{n(n-2)}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}} \tag{1.1}
\end{equation*}
$$

2. Fundamental formulas. Let M^{n} be an n-dimensional hypersurface with constant mean curvature H in an $(n+1)$-dimensional unit sphere $S^{n+1}(1)$. We choose a local orthonormal frame field e_{1}, \ldots, e_{n+1} in $S^{n+1}(1)$, restricted to M^{n}, so that e_{1}, \ldots, e_{n} are tangent to M^{n}. Let $\omega_{1}, \ldots, \omega_{n+1}$ denote the dual coframe field in $S^{n+1}(1)$. Then in $M^{n}, \omega_{n+1}=0$. It follows from Cartan's Lemma that

$$
\begin{equation*}
\omega_{n+1 i}=\sum_{j} h_{i j} \omega_{j} \tag{2.1}
\end{equation*}
$$

The second fundamental form α and the mean curvature H of M^{n} are defined by

$$
\begin{equation*}
\alpha=\sum_{i j} h_{i j} \omega_{i} \omega_{j} e_{n+1}, \quad n H=\sum_{i} h_{i i}, \tag{2.2}
\end{equation*}
$$

respectively. The connection form $\omega_{i j}$ is characterized by the structure equations

$$
\begin{gather*}
d \omega_{i}+\sum_{j} \omega_{i j} \wedge \omega_{j}=0, \quad \omega_{i j}+\omega_{j i}=0, \tag{2.3}\\
d \omega_{i j}+\sum_{k} \omega_{i k} \wedge \omega_{k j}=\Omega_{i j}, \tag{2.4}\\
\Omega_{i j}=\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.5}
\end{gather*}
$$

where $\Omega_{i j}$ (resp. $R_{i j k l}$) denotes the curvature form (resp. the components of the curvature tensor) of M^{n}. The Gauss equation is given by

$$
\begin{equation*}
R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{2.6}
\end{equation*}
$$

Denote by $h_{i j k}, h_{i j k l}, h_{i j k l m}$ components of the first, second and third covariant derivatives of the second fundamental form, respectively. Then

$$
\begin{gather*}
h_{i j k}=h_{i k j}=h_{j i k}, \tag{2.7}\\
h_{i j k l}-h_{i j l k}=\sum_{m} h_{i m} R_{m j k l}+\sum_{m} h_{m j} R_{m i k l}, \tag{2.8}\\
h_{i j k l m}-h_{i j k m l}=\sum_{r} h_{r j k} R_{r i l m}+\sum_{r} h_{i r k} R_{r j l m}+\sum_{r} h_{i j r} R_{r k l m} . \tag{2.9}
\end{gather*}
$$

For any fixed point p in M^{n}, we take a local orthonormal frame field e_{1}, \ldots, e_{n} such that

$$
h_{i j}= \begin{cases}\lambda_{i}, & i=j, \tag{2.10}\\ 0, & i \neq j\end{cases}
$$

We define the squared norm of the second fundamental form S of M, f_{3}, f_{4} to be

$$
\begin{equation*}
S=\sum_{i, j} h_{i j}^{2}, \quad f_{3}=\sum_{i, j, k} h_{i j} h_{j k} h_{k i}, \quad f_{4}=\sum_{i, j, k, l} h_{i j} h_{j k} h_{k l} h_{l i} . \tag{2.11}
\end{equation*}
$$

Then at the point p, we have

$$
\begin{equation*}
S=\sum_{i} \lambda_{i}^{2}, \quad f_{3}=\sum_{i} \lambda_{i}^{3}, \quad f_{4}=\sum_{i} \lambda_{i}^{4} . \tag{2.12}
\end{equation*}
$$

Since the mean curvature H of M is a constant, using the above equations, we easily get

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{i, j, k} h_{i j k}^{2}-S(S-n)-n^{2} H^{2}+n H f_{3}, \tag{2.13}\\
\frac{1}{2} \triangle \sum_{i, j, k} h_{i j k}^{2}= & \sum_{i, j, k, l} h_{i j k l}^{2}+(2 n+3-S) \sum_{i, j, k} h_{i j k}^{2}+3(2 B-A) \\
& +3 n H \sum_{i, j, k} \lambda_{i} h_{i j k}^{2}-\frac{3}{2}|\nabla S|^{2}, \tag{2.14}
\end{align*}
$$

where $A=\sum_{i, j, k} \lambda_{i}^{2} h_{i j k}^{2}, B=\sum_{i, j, k} \lambda_{i} \lambda_{j} h_{i j k}^{2}$.
3. Proof of Theorem. At first, we give two lemmas which will play a crucial role in the proof of our theorem. For convenience, we define

$$
\begin{equation*}
\mu_{i j}=h_{i j}-H \delta_{i j}, \quad \mu_{i}=\mu_{i i}, \quad \widetilde{A}=\sum_{i, j, k} \mu_{i}^{2} h_{i j k}^{2}, \quad \widetilde{B}=\sum_{i, j, k} \mu_{i} \mu_{j} h_{i j k}^{2} . \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{gather*}
A-2 B=\widetilde{A}-2 \widetilde{B}+2 H \sum_{i, j, k} \lambda_{i} h_{i j k}^{2}+H^{2} \sum_{i, j, k} h_{i j k}^{2} \tag{3.2}\\
\sum_{i} \mu_{i}=0, \quad \sum_{i} \mu_{i}^{2}=S-n H^{2}
\end{gather*}
$$

Lemma 3.1. Let M be a closed hypersurface with constant mean curvature H in $S^{n+1}(1)$. Then

$$
\begin{aligned}
\sum_{i, j, k, l} h_{i j k l}^{2} \geq & \frac{3}{2}\left\{\left(S f_{4}-f_{3}^{2}-S^{2}+n H f_{3}\right)-\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right]\right\} \\
& +\frac{3\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right]^{2}}{2(n+4)\left(S-n H^{2}\right)}
\end{aligned}
$$

Proof. From formulae (2.6) and (2.8), we have

$$
\begin{align*}
h_{i i j}-h_{j j i i} & =h_{i j i j}-h_{i j i}=\sum_{m} h_{i m} R_{m i j}+\sum_{m} h_{j m} R_{m i i j} \tag{3.3}\\
& =\lambda_{i} R_{i j i}+\lambda_{j} R_{j i j}=\left(\lambda_{i}-\lambda_{j}\right) R_{i j i j} \\
& =\left(\lambda_{i}-\lambda_{j}\right)\left(1+\lambda_{i} \lambda_{j}\right) .
\end{align*}
$$

We define

$$
\begin{equation*}
u_{i j k l}=\frac{1}{4}\left(h_{i j k l}+h_{j k l i}+h_{k l i j}+h_{l i j k}\right) . \tag{3.4}
\end{equation*}
$$

Since $h_{i j k l}$ is symmetric in the indices i, j, k, from equation (3.3) we obtain

$$
\begin{align*}
\sum_{i, j, k, l} h_{i j k l}^{2} & =\sum_{i, j, k, l} u_{i j k l}^{2}+\frac{3}{8} \sum_{i, j, k, l}\left(h_{i j k l}-h_{i j l k}\right)^{2} \\
& \geq \sum_{i, j, k, l} u_{i j k l}^{2}+\frac{3}{4} \sum_{i, j}\left(h_{i i j}-h_{j j i l}\right)^{2} \\
& =\sum_{i, j, k, l} u_{i j k l}^{2}+\frac{3}{2}\left\{\left(S f_{4}-f_{3}^{2}-2 S^{2}+n S-n^{2} H^{2}+2 n H f_{3}\right]\right\} \tag{3.5}
\end{align*}
$$

Since $\sum_{i} h_{i k l}=0$, we have

$$
\begin{equation*}
\sum_{i, j} \mu_{i} u_{i i j}=\frac{1}{2}\left(n S-S^{2}-n^{2} H^{2}+n H f_{3}\right) \tag{3.6}
\end{equation*}
$$

Since for any $\alpha \in R$,

$$
\begin{equation*}
\sum_{i, j, k, l}\left[u_{i k l}+\alpha\left(\mu_{i j} \delta_{k l}+\mu_{i k} \delta_{j l}+\mu_{i l} \delta_{j k}+\mu_{j k} \delta_{i l}+\mu_{j l} \delta_{i k}+\mu_{k l} \delta_{i j}\right)\right]^{2} \geq 0 \tag{3.7}
\end{equation*}
$$

it follows from equations (3.2) and (3.6) that

$$
\begin{equation*}
\sum_{i, j, k, l} u_{j i k l}^{2} \geq 6 \alpha\left(S^{2}-n S-n H f_{3}+n^{2} H^{2}\right)-6 \alpha^{2}(n+4)\left(S-n^{2} H^{2}\right) \tag{3.8}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\alpha=\frac{S(S-n)+n^{2} H^{2}-n H f_{3}}{2(n+4)\left(S-n^{2} H^{2}\right)}, \tag{3.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{i, j, k, l} u_{i j k l}^{2} \geq \frac{3\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right]^{2}}{2(n+4)\left(S-n H^{2}\right)} \tag{3.10}
\end{equation*}
$$

Thus we have finished the proof of Lemma 3.1.
Lemma 3.2. Let M be an n-dimensional closed hypersurface with constant mean curvature H in $S^{n+1}(1)$, for $n \leq 8$. Then

$$
3(\widetilde{A}-2 \widetilde{B}) \leq 2.34\left(S-n H^{2}\right) \sum_{i, j, k} h_{i j k}^{2} .
$$

Proof. Since $\sum_{i} \mu_{i}=0$ and $\sum_{i} \mu_{i}^{2}=S-n H^{2}=\widetilde{S}$, the following equation can be proved in the same method as in our early paper (Lemma 3.4 in [22]):

$$
\begin{equation*}
\sum_{i(\neq j)}\left(\mu_{j}^{2}-4 \mu_{j} \mu_{i}\right) h_{i j j}^{2}-\mu_{j}^{2} h_{i j}^{2} \leq 2.34 \widetilde{S}\left(\sum_{i(\neq j)} h_{i j}^{2}+\frac{1}{3} h_{i j}^{2}\right), \quad \forall j . \tag{3.11}
\end{equation*}
$$

Hence we get

$$
\begin{aligned}
3(\widetilde{A}-2 \widetilde{B})= & \sum_{i \neq j \neq k \neq i}\left[2\left(\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}\right)-\left(\mu_{i}+\mu_{j}+\mu_{k}\right)^{2}\right] h_{i j k}^{2} \\
& -3 \sum_{i} \mu_{i}^{2} h_{i i i}^{2}+3 \sum_{i \neq j}\left(\mu_{j}^{2}-4 \mu_{i} \mu_{j}\right) h_{i j}^{2} \\
\leq & 2 \widetilde{S} \sum_{i \neq j \neq k \neq i} h_{i j k}^{2}+3 \sum_{j}\left\{\sum_{i \neq j}\left[\left(\mu_{j}^{2}-4 \mu_{i} \mu_{j}\right) h_{i i j}^{2}-\mu_{j}^{2} h_{i j j}^{2}\right]\right\} \\
\leq & 2.34 \widetilde{S}\left\{\sum_{i \neq j \neq k \neq i} h_{i j k}^{2}+3 \sum_{i \neq j} h_{i j}^{2}+\sum_{j} h_{i j i}^{2}\right\} \\
= & 2.34 \widetilde{S} \sum_{i, j, k} h_{i j k}^{2} .
\end{aligned}
$$

This completes the proof of Lemma 3.2.

Proof of Theorem 1.1. Now, we assume

$$
\begin{equation*}
S_{0} \leq S \leq S_{0}+\delta(n, H) \tag{3.12}
\end{equation*}
$$

where S_{0} is defined by equation (1.1).
It is not difficult to prove the following elementary inequality (cf. [13]):

$$
\left|\sum_{i}\left(\lambda_{i}-H\right)^{3}\right| \leq \frac{n-2}{\sqrt{n(n-1)}}\left(S-n H^{2}\right)^{\frac{3}{2}} .
$$

Since $S \geq S_{0}$ is equivalent to

$$
\sqrt{n+\frac{n^{3} H^{2}}{4(n-1)}}-\sqrt{S-n H^{2}}+\frac{n(n-2)|H|}{2 \sqrt{n(n-1)}} \leq 0
$$

we have

$$
\begin{align*}
& S(S-n)+n^{2} H^{2}-n H f_{3} \\
& =-\left(S-n H^{2}\right)\left\{n+n H^{2}-\left(S-n H^{2}\right)\right\}-n H \sum_{i}\left(\lambda_{i}-H\right)^{3} \\
& \geq-\left(S-n H^{2}\right)\left\{n+n H^{2}-\left(S-n H^{2}\right)+\frac{n(n-2)|H|}{\sqrt{n(n-1)}} \sqrt{S-n H^{2}}\right\} \\
& \geq-\left(S-n H^{2}\right)\left\{\sqrt{n+\frac{n^{3} H^{2}}{4(n-1)}}+\sqrt{S-n H^{2}}-\frac{n(n-2)|H|}{2 \sqrt{n(n-1)}}\right\} \\
& \quad \times\left\{\sqrt{n+\frac{n^{3} H^{2}}{4(n-1)}}-\sqrt{S-n H^{2}}+\frac{n(n-2)|H|}{2 \sqrt{n(n-1)}}\right\} \\
& \geq 0 . \tag{3.13}
\end{align*}
$$

The following equation can be found in [22] or [11]:

$$
\begin{equation*}
\int_{M}(A-2 B) d M=\int_{M}\left[S f_{4}-f_{3}^{2}-S^{2}+n H f_{3}-\frac{1}{4}|\nabla S|^{2}\right] d M \tag{3.14}
\end{equation*}
$$

Integrating equation (2.13) and $S \times(2.13)$ gives

$$
\begin{gather*}
\int_{M} \sum_{i, j, k} h_{i j k}^{2} d M=\int_{M}\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right] d M . \tag{3.15}\\
\int_{M} \frac{1}{2}|\nabla S|^{2} d M=\int_{M}\left[S^{2}(S-n)+n^{2} H^{2} S-n H S f_{3}-S \sum_{i, j, k} h_{i j k}^{2}\right] d M . \tag{3.16}
\end{gather*}
$$

Noticing that

$$
\begin{align*}
& S(S-n)+n^{2} H^{2}-n H f_{3} \\
& \quad=\left(S-n H^{2}\right)\left(S-S_{0}\right)+n^{2} H^{2}-n H f_{3}-n H^{2} S_{0}+\left(S_{0}+n H^{2}-n\right) S \tag{3.17}
\end{align*}
$$

from equations (3.12) and (3.13), there exists some constant α_{1} such that

$$
\begin{equation*}
\frac{3\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right]^{2}}{2(n+4)\left(S-n H^{2}\right)} \geq\left\{\frac{3\left(S-S_{0}\right)}{2(n+4)}-\alpha_{1} H\right\}\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right] \tag{3.18}
\end{equation*}
$$

It follows from equations (3.14), (3.15), (3.18) and Lemma 3.1 that

$$
\begin{align*}
\int_{M} \sum_{i, j, k, l} h_{i j k l}^{2} d M \geq & \int_{M}\left[\frac{3}{2}(A-2 B)-\frac{3}{2} \sum_{i, j, k} h_{i j k}^{2}+\frac{3}{8}|\nabla S|^{2}\right] d M \tag{3.19}\\
& +\int_{M}\left[\frac{3\left(S-S_{0}\right)}{2(n+4)}-\alpha_{1} H\right]\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right] d M
\end{align*}
$$

From equations (2.14) and (3.2), we have

$$
\begin{aligned}
\int_{M} \sum_{i, j, k, l} h_{i j k l}^{2} d M= & \int_{M}\left[(S-2 n-3) \sum_{i, j, k} h_{i j k}^{2}+\frac{3}{2}|\nabla S|^{2}+\frac{3}{2}(A-2 B)\right] d M \\
& +\int_{M}\left[\frac{3}{2}(\widetilde{A}-2 \widetilde{B})+3(1-n) H \sum_{i, j, k} \lambda_{i} h_{i j k}^{2}+\frac{3}{2} H^{2} \sum_{i, j, k} h_{i j k}^{2}\right] d M .
\end{aligned}
$$

Since $S_{0} \leq S \leq S_{0}+\delta(n, H)$, there exists some constant α_{2} such that

$$
\begin{align*}
\int_{M} \sum_{i, j, k, l} h_{i j k l}^{2} d M \leq & \int_{M}\left[\left(S-2 n-3+\alpha_{2} H\right) \sum_{i, j, k} h_{i j k}^{2}+\frac{3}{2}(A-2 B)\right] d M \\
& +\int_{M}\left[\frac{3}{2}(\widetilde{A}-2 \widetilde{B})+\frac{3}{2}|\nabla S|^{2}\right] d M \tag{3.20}
\end{align*}
$$

From equations (3.13), (3.15), (3.16), (3.19), (3.20) and Lemma 3.2, we obtain

$$
\begin{align*}
0 \leq & \int_{M}\left\{\left[S-2 n-\frac{3}{2}+\left(\alpha_{1}+\alpha_{2}\right) H\right] \sum_{i, j, k} h_{i j k}^{2}+\frac{3}{2}(\tilde{A}-2 \widetilde{B})\right\} d M \\
& +\int_{M}\left\{\frac{9}{8}|\nabla S|^{2}-\frac{3\left(S-S_{0}\right)}{2(n+4)}\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right]\right\} d M \\
\leq & \int_{M}\left[-0.08 S-2 n-\frac{3}{2}+\left(\alpha_{1}+\alpha_{2}-1.17 n H\right) H\right] \sum_{i, j, k} h_{i j k}^{2} d M \\
& +\int_{M}\left[\frac{9}{4} S-\frac{3\left(S-S_{0}\right)}{2(n+4)}\right]\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right] d M \\
\leq & \int_{M}\left[-0.08 S-2 n-\frac{3}{2}+\left(\alpha_{1}+\alpha_{2}-1.17 n H\right) H\right] \sum_{i, j, k} h_{i j k}^{2} d M \\
& +\int_{M}\left\{\frac{9}{4} S_{0}+\frac{9 n+30}{4(n+4)} \delta(n, H)\right\}\left[S(S-n)+n^{2} H^{2}-n H f_{3}\right] d M \\
\leq & \int_{M} G \sum_{i, j, k} h_{i j k}^{2} d M, \tag{3.21}
\end{align*}
$$

where $G=2.17 S_{0}+\frac{9 n+30}{4(n+4)} \delta(n, H)-2 n-\frac{3}{2}+\left(\alpha_{1}+\alpha_{2}-1.17 n H\right) H$.

Since $2.17 n-2 n-\frac{3}{2}<0$ and $|H| \leq \varepsilon(n)$, if $\varepsilon(n)$ is small enough, we can choose $\delta(n, H)$ such that

$$
\begin{equation*}
2.17 S_{0}+\frac{9 n+30}{4(n+4)} \delta(n, H)-2 n-\frac{3}{2}+\left(\alpha_{1}+\alpha_{2}-1.17 n H\right) H<0 \tag{3.22}
\end{equation*}
$$

According to equations (3.21) and (3.22), we infer $\sum_{i, j, k} h_{i j k}^{2} \equiv 0$. Hence, all of the above inequalities are equalities. From equation (3.13) and (3.15), we have $S \equiv S_{0}$ and M is isometric to a Clifford hypersurface. Thus we have finished the proof of Theorem 1.1.

REMARK 3.3. In the proof of Theorem 1.1, the constants α_{1} and α_{2} are chosen so that

$$
\alpha_{1} \geq \frac{3 \delta(n, H)}{3(n+4) H}, \quad \alpha_{2}>\frac{3 S_{0}}{2 n H} \quad \text { if } H>0
$$

and so

$$
\delta(n, H):=\min \left\{\frac{(n+4)(2 n+3 / 2-2.17 n)}{3 n+10}, \frac{2(n+4) H}{3} \alpha_{1}, \frac{2 n H}{3} \alpha_{2}-S_{0}\right\} .
$$

Acknowledgements. The author would like to express his gratitude to the referee for his valuable suggestions that have really improved the paper.

REFERENCES

1. H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120(1994), 1223-1229.
2. Q. M. Cheng, The classification of complete hypersurfaces with constant mean curvature of space form of dimension 4, Meт. Fac. Sci. Kyиshu Univ. 47 (1993), 79-102.
3. Q. M. Cheng, The rigidity of Clifford torus $S^{1}\left(\sqrt{\frac{1}{n}}\right) \times S^{n-1}\left(\sqrt{\frac{n-1}{n}}\right)$, Comment. Math. Helvetici 71 (1996), 60-69.
4. Q. M. Cheng, Y. He and H. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, Glasgow Math. J. 51 (2009), 413-423.
5. Q. M. Cheng and S. Ishikawa, A characterization of the Clifford torus, Proc. Amer. Math. Soc. 127(3) (1999), 819-828.
6. Q. M. Cheng and H. C. Yang, Chern's conjecture on minimal hypersurfaces, Math. Z. 227(3) (1998), 377-390.
7. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225(3) (1977), 195-204.
8. S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional analysis and related fields (Springer, New York, 1970), pp. 59-75.
9. T. Hasanis, T. Vlachos, A pinching theorem for minimal hypersurfaces in a sphere, Arch. Math. 75 (2000), 469-471.
10. H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math. 89 (1969), 179-185.
11. H. Li, Scalar curvature of hypersurfaces with constant mean curvature in spheres, Tsinghua Sci. Technol. 1 (1996), 266-269.
12. A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. (Basel) 58(6) (1992), 582-594.
13. M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
14. C. K. Peng and C. L. Terng, Minimal hypersurfaces of sphere with constant scalar curvature, Ann. Math. Stud. 103 (1983), 179-198.
15. C. K. Peng and C. L. Terng, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983), 105-113.
16. J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62-105.
17. S. M. Wei and H. W. Xu, Scalar curvature of minimal hypersurfaces in spheres, Math. Res. Lett. 14 (2007), 423-432.
18. H. W. Xu , A rigidity theorem for submanifolds with parallel mean curvature in a sphere, Arch. Math. (Basel) 61(5) (1993), 489-496.
19. H. W. Xu, On closed minimal submanifolds in pinched Riemannian manifolds, Trans. Amer. Math. Soc. 347(5) (1995), 1743-1751.
20. H. W. Xu, W. Fang and F. Xiang, A generalization of Gauchman's rigidity theorem, Pac. J. Math. 228(1) (2006), 185-199.
21. S. T. Yau, Submanifolds with constant mean curvature, I, II, Amer. J. Math. 96 (1974), 346-366; 96 (1975), 76-100.
22. Qin Zhang, The pinching constant of minimal hypersurfaces in the unit spheres, Proc. Amer. Math. Soc. 138(5) (2010), 1833-1841.
