Tissue-specific regulation of acetyl-CoA carboxylase gene expression by dietary soya protein isolate in rats

Chao Wu Xiao1,2*, Carla Wood1, Wenxin Huang1, Mary R. L’Abbé1, G. Sarwar Gilani1, Gerard M. Cooke2,3 and Ivan Curran3

1Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, Canada K1A 0L2
2Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
3Toxicology Research Division, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, Canada K1A 0L2

(Received 23 September 2005 – Revised 16 January 2006 – Accepted 8 February 2006)

We have recently reported that intake of soya protein isolate (SPI) inhibited the DNA-binding activities of hepatic thyroid hormone receptor (TR). The genes for acetyl-CoA carboxylase (ACC), a rate-limiting enzyme in fatty acid synthesis, contain the thyroid hormone response element in their promoters and are regulated by TR. The present study has examined the effect of long-term feeding of SPI and soya isoflavones (ISF) on the gene expression and protein phosphorylation of different ACC isoforms in different tissues and plasma triacylglycerol (TAG) levels in rats. Sprague-Dawley female rats were fed diets containing 20% casein or alcohol-washed SPI with or without supplemental ISF for 70, 190 and 310 d. SPI intake significantly reduced plasma TAG concentrations compared with casein, whereas supplemental ISF had no effect. Hepatic ACCα and ACCβ mRNA abundance and protein content were markedly lower in the rats fed SPI than in those fed casein. The protein contents of ACCα in the kidney and ACCβ, the predominant isoform in the heart and kidney, were unchanged by dietary SPI. The ratios of phospho-ACCα/ACCα and phospho-ACCβ/ACCβ were not different among dietary groups in all tissues measured. The present study demonstrates that ingestion of SPI decreases plasma TAG level and down-regulates ACCα and ACCβ gene expression in the liver but not in the heart and kidney. The results indicate that the effect of SPI is tissue-specific and that alteration of ACC gene expression rather than phosphorylation status may play a major role in the regulation of ACC activities by soya proteins.

Rats: Soy protein isolate: Acetyl-CoA carboxylase gene: Triacylglycerol

The blood triacylglycerol (TAG) level is one of the important risk factors for chronic diseases such as CVD, type 2 diabetes and atherosclerosis. In particular, high plasma TAG levels in women are better predictors of CVD risk than total cholesterol (Cullen, 2000; Meagher, 2004).

Soya consumption has been associated with a decreased risk of CVD, type 2 diabetes and atherosclerosis (Anderson et al. 1995; Potter, 1998; Hermansen et al. 2001). These beneficial effects of soya appear to be, at least partially, due to its hypotriacylglycerolaemic actions. Soya diets decreased the blood TAG level in both animals (Lin et al. 2004; Moriyama et al. 2004; Ascencio et al. 2004) and hyperlipidaemic human subjects (Wang et al. 2004). The hypotriacylglycerolaemic action of soya components is believed to be a consequence of decreased biosynthesis and enhanced degradation of fatty acids.

Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme that catalyses the carboxylation of acetyl-CoA to form malonyl-CoA, the first step in the pathway of long-chain fatty acid biosynthesis (Wakil et al. 1983). Two isoforms of ACC have been identified. ACCα is a cytosolic protein and highly expressed in liver and adipose tissue, whereas ACCβ is located in mitochondria and is predominantly expressed in heart and muscle, and to a lesser extent in liver. ACCβ plays a pivotal role in the regulation of mitochondrial fatty acid β-oxidation (Hillgartner et al. 1996) through feedback inhibition of carnitine palmitoyltransferase-1, an enzyme that controls the entry of long-chain fatty acid CoA esters into the mitochondria for degradation (Abu-Elheiga et al. 2000). Suppression of ACCβ increases carnitine palmitoyltransferase-1 activity and enhances fatty acid β-oxidation. ACC activity in different tissues is regulated differently. For instance, ACCβ activity in skeletal muscle is mainly regulated by phosphorylation and dephosphorylation (Dyck et al. 1999; Minokoshi et al. 2002), whereas the hepatic ACCβ activity is regulated at the transcriptional level (Harwood et al. 2003; Oh et al. 2003).

Thyroid hormones play an important role in the regulation of lipid metabolism. Our previous studies showed that

Abbreviations: ACC, acetyl-CoA carboxylase; ISF, isoflavones; pACC, phospho-ACC; SPI, soya protein isolate; TAG, triacylglycerol; TR, thyroid hormone receptor.

* Corresponding author: Dr Chao Wu Xiao, fax +1 613 941 6182, email chaowu_xiao@hc-sc.gc.ca
consumption of soya protein isolate (SPI) increased hepatic thyroid hormone receptor (TR) β1 protein content and inhibited the binding activities of hepatic nuclear TR to its target genes in rats (Xiao et al. 2004; Huang et al. 2005). These cellular responses of TR to dietary SPI are believed to affect thyroid hormone functions and alter the downstream gene expression. The ACCα gene contains thyroid hormone response elements in its promoter regions (Huang & Freake, 1998), and is regulated by thyroid hormones in a tissue-specific manner (Blennemann et al. 1995; Huang & Freake, 1998). Although soya protein intake was shown to suppress the enzymatic activity of ACC in rat liver (Iritani et al. 1986), the regulation of the gene expression for different ACC isoforms (α and β) in different tissues by dietary soya components are not fully understood.

The objective of the present study was to determine the effect of dietary soya proteins and soya-derived ISF on plasma TAG levels as well as ACCα and ACCβ phosphorylation and gene expression in different tissues of rats.

Materials and methods

Chemicals and reagents

Alcohol-washed SPI (Pro Fam 930) and Novasoy soya ISF concentrate were purchased from Archer Daniels Midland Company (Decatur, IL, USA). Casein protein (90 % total protein) was from ICN Biomedicals (Cleveland, OH, USA). Agarose, Tris and phenylmethylsulphonyl fluoride were from Sigma Chemical (St. Louis, MO, USA). ECL Western blotting detection kit was obtained from Amersham (Arlington Heights, IL, USA). Nitrocellulose membranes, acrylamide, N, N'-methylene-bis-acrylamide, ammonium persulphate, dithiothreitol, glycine, goat anti-rabbit IgG (H+L)–horseradish peroxidase conjugated antibody, goat anti-mouse IgG (H+L)–horseradish peroxidase conjugated antibody and Bio-Rad protein assay kit were purchased from Bio-Rad Laboratories (Hercules, CA, USA). X-ray film was from MJS Biolyx (Brockville, ON, Canada). Rabbit polyclonal anti-rat phospho-ACC (pACC; Ser79) and anti-human ACCα and ACCβ antibodies that cross-react with rat proteins were purchased from Upstate (Lake Placid, NY, USA). TRIZol reagent and M-MLV RT were from Invitrogen Canada Inc. (Burlington, ON, Canada). Taq DNA polymerase was purchased from New England Biolabs (Beverly, MA, USA). QuantumRNA 18S internal standards were purchased from Ambion (Austin, TX, USA). Reagents for TAG quantitation in plasma were from Wako Chemicals (Richmond, VA, USA). Mouse leptin ELISA kits were from Crystal Chem (Downers Grove, IL, USA) and ultrasensitive rat insulin ELISA kits were purchased from Alpco Diagnostics (Windham, NH, USA).

Plasma triacylglycerol, insulin and leptin

Plasma TAG concentrations were measured using a microplate enzymatic colorimetric method (Wako Chemicals). Briefly, plasma (5 μl) was added to microtitre plate wells and incubated with 80 μl Enzyme Color A for 5 min to decompose free glycerol. Subsequently, 40 μl Enzyme Color B was added and incubated for 5 min. The absorbance was read at 595 nm in a microplate reader (Model 3500UV; Bio-Rad). The TAG concentrations were calculated using the standard curves. Plasma insulin and leptin concentrations were determined using double-antibody sandwich enzyme immunoassay according to the manufacturer's instructions.

Animals and diets

Animal experimental protocols were approved by the Health Canada Animal Care Committee and all animal handling and care followed the guidelines of the Canadian Council for Animal Care. Pubertal Sprague-Dawley rats (Charles River, St. Constant, PQ, Canada) were pair housed in stainless steel cages and randomly allotted into three groups (thirty-five females per group), and kept in an environmentally controlled room with a 12 h light–dark cycle. After acclimation, starting at 50 d of age, rats were given free access to one of the three diets (Table 1) and tap water before being killed. All diets were formulated according to the specifications of AIN93G (Reeves et al. 1993) except that in diets 2 and 3, casein was replaced by alcohol-washed SPI (Pro Fam 930). In addition, diet 3 was supplemented with ISF (250 mg/kg diet; Novasoy ISF concentrate). Body weights and food consumption were recorded weekly. The actual content of ISF including genistein, daidzein and glycitein was determined by Waters HPLC linear gradient with UV detection monitored at 254 nm (Wang & Murphy, 1994) and is shown in Table 1. After being fed for 70, 190 and 310 d, ten rats from each diet group were killed by exsanguination through cardiac puncture under general anaesthesia with isoflurane, and the tissues were collected, immediately frozen in liquid N and stored at −80°C until analysis.

Table 1. Composition of experimental diets (g/kg diet)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Casein</th>
<th>SPI</th>
<th>SPI + ISF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein*</td>
<td>222.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Soya protein†</td>
<td>222.2</td>
<td>222.2</td>
<td>222.2</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Maize starch</td>
<td>375.3</td>
<td>373.5</td>
<td>374.5</td>
</tr>
<tr>
<td>Dextrose maize starch</td>
<td>132.0</td>
<td>132.0</td>
<td>132.0</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>70.0</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Mineral mix‡</td>
<td>35.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Vitamin mix‡</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>3.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>-Methionine</td>
<td>–</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>tert-Butyl hydroquinone</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Novasoy‡</td>
<td>–</td>
<td>–</td>
<td>0.833</td>
</tr>
<tr>
<td>Total isoflavones (mg/kg diet)§</td>
<td>0.0</td>
<td>31.7</td>
<td>235.6</td>
</tr>
<tr>
<td>Genistein (mg/kg diet)§</td>
<td>ND</td>
<td>18.6</td>
<td>124.4</td>
</tr>
<tr>
<td>Daidzein (mg/kg diet)§</td>
<td>ND</td>
<td>15.5</td>
<td>90.9</td>
</tr>
<tr>
<td>Glycitein (mg/kg diet)§</td>
<td>ND</td>
<td>2.6</td>
<td>20.5</td>
</tr>
</tbody>
</table>

ISF, isoflavones; ND, not detectable; SPI, soya protein isolate.

*Casein from ICN Biomedicals contains 90 % crude protein.
†Alcohol-washed SPI contains 90 % crude protein, and Novasoy ISF concentrate contains 30 % total ISF.
§AIN-93G Mineral mix and AIN-93G Vitamin mix were from ICN Biomedicals.

The actual content of ISF (genistein, daidzein and glycitein) was determined by Waters HPLC linear gradient with UV detection monitored at 254 nm.
Protein extraction and Western blot analysis of acetyl-CoA carboxylase and phospho-acetyl-CoA carboxylase

Total protein preparation and ACC analyses were carried out as recommended by Upstate with minor modifications. Briefly, rat tissues were homogenized in lysis buffer with a glass homogenizer and then sonicated three times for 30 s on ice. The homogenate was centrifuged to separate the cell debris, and the protein content of the extracts was determined. Total proteins (80 µg) were mixed with loading buffer and incubated at 37°C for 30 min before they were separated in 6% SDS–PAGE. The resolved proteins were electrotransferred (30 V, overnight) on to nitrocellulose membranes. The blots were immunostained with ACC or pACC antibodies and the immunoreactivity was detected using the ECL kit. The intensities of ACCα, ACCβ, pACCα and pACCβ protein bands were measured densitometrically using Scion Image (Scion Corporation, Frederick, MD, USA), and normalized by the respective Ponceau-stained total protein (Xiao et al. 2003). The ratios of pACCα:ACCα and pACCβ:ACCβ were calculated. The specificities of these antibodies were confirmed using their respective blocking peptides.

Quantitation of hepatic acetyl-CoA carboxylase α and acetyl-CoA carboxylase β mRNA abundances

Total RNA was isolated from rat liver samples with TRIzol reagent according to the manufacturer’s instructions. Total RNA (500 ng) was reverse transcribed for cDNA synthesis. One-tenth of the cDNA synthesized was then amplified with the following primers: rat ACCα [forward: 5′-CTTCTCATGAGGTCCAGCA-3′ (213–232), reverse: 5′-ACTCGAGAGACCACCTGCACT-3′ (797–778)]; rat ACCβ [forward: 5′-CTGTAGATGGCCAGTCAGCA-3′ (232–251), reverse: 5′-GACATGCTGGGCTCATATG-3′ (653–634)] and universal 18S rRNA primers and competitors (Ambion) in a ratio of 4:6 for ACCα or 3:5:6:5 for ACCβ. PCR cycle conditions were 94°C for 5 min, 94°C for 45 s, 60°C for 45 s and 72°C for 45 s, 72°C for 10 min. Amplification cycle numbers were twenty-six for ACCα and thirty-two for ACCβ. Samples were resolved on 2% agarose gels and visualized with SYBR Green. ACCα and ACCβ mRNA levels were normalized against their respective 18S rRNA content.

Statistical analyses

Results are expressed as means with their standard errors. Effects of treatment on plasma insulin, leptin, TAG concentrations and mRNA or protein contents of ACCα and ACCβ, as well as the ratios of pACCα:ACCα and pACCβ:ACCβ were analysed using two-way ANOVA, which included the main effects of diet and feeding period as well as the interactions of diet × feeding period. The dietary effects on food consumption, body and liver weights were analysed by one-way ANOVA. Differences between individual means were determined by Fisher’s least significant difference test. Dietary effects on renal or cardiac ACCα and ACCβ protein contents and the ratios of pACCα:ACCα or pACCβ:ACCβ were assessed by t test. A probability of P < 0.05 was considered to be statistically significant. Data were analysed using Statistica version 7.1 (StatSoft, Tulsa, OK, USA).

Results

Food consumption, body and liver weights

Food consumption, body and liver weights did not differ among the dietary groups (P > 0.05, data not shown), demonstrating the nutritional adequacy of the test diets.

Plasma triacylglycerol concentration

Plasma TAG concentrations in the rats fed the casein diet increased with age, whereas the rats fed the diets containing SPI for 70, 190 and 310 d had significantly lower TAG levels than those fed the casein-based diet. However, the TAG levels in rats fed SPI or SPI + ISF were not different (Fig. 1).

Hepatic acetyl-CoA carboxylase α and acetyl-CoA carboxylase β mRNA steady-state level and protein content

Hepatic ACCα and ACCβ mRNA abundances and protein contents in the rats fed the diet containing SPI for 70, 190 and 310 d were significantly lower than those fed casein-based diet (Figs 2 and 3(a)). Supplemental ISF had no additional effect on either ACCα or ACCβ protein content (Fig. 3(a)).

Tissue-specific regulation of acetyl-CoA carboxylase α and acetyl-CoA carboxylase β expression

ACCβ protein was detected in all the tissues measured, and its expression was higher in the liver and heart but was very low in the kidney. ACCα protein was detectable by Western blot only in the liver and kidney but not in the heart. Dietary SPI significantly decreased both ACCα and ACCβ protein contents in the liver, but had no effect on ACCα and ACCβ in the heart or kidney (Fig. 4(a)).

Fig. 1. Plasma triacylglycerol concentrations in rats fed diets containing either casein (■) or alcohol-washed soya protein isolate in the absence (▲) or presence (▼) of supplemental isoflavones (250 mg/kg diet) for 70, 190 and 310 d. For details of diets and procedures, see Table 1 and p. 1049. Values are means with their standard errors depicted by vertical bars (n = 6). a,b,c Mean values with unlike letters were significantly different (P < 0.05).
Soya protein isolate suppresses acetyl-CoA carboxylase

Acetyl-CoA carboxylase α and acetyl-CoA carboxylase β phosphorylation

Both hepatic pACCα and pACCβ contents in the rats fed SPI-based diets were significantly lower than those fed the casein diet, and showed the same pattern as their total ACCα and ACCβ proteins (Fig. 3(b)). However, the ratios of pACCα:ACCα and pACCβ:ACCβ in the liver (Fig. 3(b)), heart and kidney (Fig. 4(b)) were not different among dietary groups except that supplemental ISF increased the pACCα:ACCα ratio in the rats fed for 70 d (Fig. 3(b)).

Plasma insulin and leptin concentrations

Dietary effects on plasma insulin concentration were not significant at all three time-points examined. However, the insulin levels in the rats fed SPI diet alone for 190 or 310 d were markedly higher than those fed the same diet for 70 d (Table 2). The rats fed diets containing casein or SPI alone for 310 d had significantly higher plasma leptin concentrations than those fed the same diets for 70 or 190 d (P<0.01). However, the dietary effect was not significant (Table 2).

Discussion

The tissue samples analysed in the present study actually were from a part of the multigeneration study as described previously (Xiao et al. 2004). The TR protein content and plasma thyroid hormone (triiodothyronine and thyroxine) levels of these animals were measured and reported (Xiao et al. 2004). In the present study, we have shown that ingestion of soya proteins remarkably decreased plasma TAG concentrations in female rats compared with a casein diet, regardless of the presence of added ISF. This is consistent with previous studies showing that soya proteins rather than ISF play major roles in lowering blood TAG levels (Greaves et al. 1999; Gardner et al. 2001; Fukui et al. 2004b). This concept is further supported by recent studies in healthy post-menopausal women in which soya ISF were shown to have no effect on serum TAG level (Cheng et al. 2004; Colacurci et al. 2005). Although the components responsible for hypotriglycerolaemic actions of soyabeans have not been confirmed, increasing evidence suggests that β-conglycinin, the major 7S soyabean globulin, may contain the bioactive fraction since intake of β-conglycinin reduced serum TAG level in mice (Moriyama et al. 2004), rats (Aoyama et al. 2001; Duranti et al. 2004; Fukui et al. 2004a) and young women (Baba et al. 2004). Furthermore, the α subunit of β-conglycinin was shown to be hypotriacylglycerolaemic and as effective as the whole proteins (Duranti et al. 2004).

ACC is a rate-limiting enzyme in the long-chain fatty acid biosynthesis. The results of the present study have demonstrated that both ACCα and ACCβ mRNA and protein expression in the liver were significantly reduced by dietary SPI, regardless of the presence of supplemental ISF. However, dietary SPI had no effect on ACCα and ACCβ protein contents in both kidney and heart, suggesting tissue specificity of the soya effect. This appears to be consistent with our recent observations that dietary SPI elevated TR protein content and suppressed its DNA binding activity in rat livers, but not in the other tissues (Xiao et al. 2004; Huang et al. 2005). Since the liver is a key organ for fatty acid synthesis, and plays pivotal roles in the regulation of blood TAG levels, down-regulation of hepatic ACCα and ACCβ expression may contribute, at least in part, to the hypotriacylglycerolaemic actions of SPI.

It has been suggested that modulation of insulin levels by soya components might play a role in the regulation of lipogenic gene expression because ingestion of soya proteins in the presence of ISF (410–456 mg/kg diet) (Tovar et al. 2002; Ascencio et al. 2004) or soyabean β-conglycinin (Moriyama et al. 2004) decreased serum insulin levels compared with casein. Administration of insulin up-regulated ACCα mRNA expression and stimulated ACC enzymatic activity in rat liver (Katsurada et al. 1990). However, discrepancies exist in this regard. For example, a recent human study showed that soya ISF markedly reduced blood glucose and insulin levels, but had no effect on serum TAG levels (Cheng et al. 2004). In addition, although plasma and liver TAG levels were significantly lowered by soya proteins in both lean and fatty rats, plasma insulin concentrations were either unaffected in lean rats or even markedly increased in fatty rats (Iritani et al. 1996). In the present study, plasma
insulin levels were not affected by either SPI or added ISF, which is supported by a recent study in fatty rats (Tovar et al. 2005). Taken together, all these findings suggest that decreased insulin levels might not be the only mechanism involved in the hypotriacylglycerolaemic actions of soya proteins.

We have recently suggested that modulation of hepatic TR may play important roles in the mediation of hypolipidaemic actions of soya through alteration of gene expression of key enzymes involved in lipogenesis. We demonstrated that dietary SPI remarkably inhibited the binding ability of hepatic nuclear TR to their target genes (Huang et al. 2005), which is supported by a recent study in fatty rats (Tovar et al. 2005). Taken together, all these findings suggest that decreased insulin levels might not be the only mechanism involved in the hypotriacylglycerolaemic actions of soya proteins.

In summary, the present results show for the first time that consumption of 20% alcohol-washed SPI suppressed hepatic ACCβ gene expression. In addition, dietary SPI lowered the plasma TAG level and reduced ACCα mRNA and protein contents in liver, but had no effect in both kidney and heart compared with a casein diet. Furthermore, supplemental ISF had no effect. The ratios of pACCα:ACCα and pACCβ:ACCβ were unchanged by SPI. This suggests that regulation of ACC by dietary SPI is mainly through alteration of its gene expression rather than phosphorylation or dephosphorylation. The potential involvement of leptin in the regulation of ACC gene expression and TAG levels is under investigation.
Acknowledgements

This is publication no. 606 of the Bureau of Nutritional Sciences. The research was supported by Health Canada.

References


Fig. 4. Acetyl-CoA carboxylase (ACC) α and ACCβ protein contents and the ratios of phospho-ACCα (pACCα):ACCα and phospho-ACCβ (pACCβ):ACCβ in the heart (a) and kidney (b) of the rats fed diets containing casein (C) or alcohol-washed soya protein isolate (S) for 310 d. The images shown are representatives of three replicates. Expression of ACCα and ACCβ was extremely low in kidney, and the images shown were obtained after extended exposure of the film (b). For details of diets and procedures, see Table 1 and p. 1049. Values are means with their standard errors depicted by vertical bars (n 6). * Mean values with unlike letters were significantly different (P<0·05).

Table 2. Plasma insulin and leptin concentrations in rats fed diets containing either casein or alcohol-washed soya protein isolate (SPI) for different periods (pmol/l)*

<table>
<thead>
<tr>
<th>Days†</th>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Casein</td>
<td>SPI</td>
<td>SPI + ISF‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>259·5ab</td>
<td>54·6</td>
<td>149·2a</td>
<td>42·1</td>
<td>270·3ab</td>
<td>56·7</td>
</tr>
<tr>
<td>190</td>
<td>325·4b</td>
<td>86·7</td>
<td>312·3b</td>
<td>42·4</td>
<td>303·0b</td>
<td>69·8</td>
</tr>
<tr>
<td>310</td>
<td>269·1b</td>
<td>47·0</td>
<td>353·6b</td>
<td>51·9</td>
<td>355·8b</td>
<td>92·0</td>
</tr>
<tr>
<td>Leptin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>174·8a</td>
<td>42·0</td>
<td>115·6a</td>
<td>42·3</td>
<td>137·2a</td>
<td>19·4</td>
</tr>
<tr>
<td>190</td>
<td>197·0a</td>
<td>26·6</td>
<td>216·8a</td>
<td>18·5</td>
<td>194·8a</td>
<td>31·0</td>
</tr>
<tr>
<td>310</td>
<td>316·0b</td>
<td>57·2</td>
<td>277·2b</td>
<td>56·0</td>
<td>241·5ab</td>
<td>35·0</td>
</tr>
</tbody>
</table>

ISF, isoflavones.

* Mean values with the standard errors (n 6).

† Days of feeding the experimental diets.

‡ Alcohol-washed SPI supplemented with 250 mg ISF/kg diet.


Hillgartner FB, Charon T & Chesnut KA (1996) Alterations in nutri-

tional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism. Biochem J 319, Pt 1, 263–268.


