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Three-dimensional reconfiguration of an elastic
sheet with unidirectional side flaps
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Motivated by drag-based propulsion of crinoids, the shape reconfiguration of a feather-like
elastic structure under both steady and unsteady translational motions is investigated.
The simplified elastic structure consists of a centre rod to which numerous side flaps
are attached by elastic hinges. These side flaps fold in only one direction to realize a
dramatic reduction in the area of the structure during the recovery stroke. Compared with
experimental measurements, analytical methods developed to couple the dynamics of the
centre rod and the side flaps successfully predict the drag force and three-dimensional
reconfiguration of the elastic structure during both power and recovery strokes. A
dimensionless speed given by the ratio of inertial fluid force to elastic bending force is
proposed for the coupled deflections of the centre rod and side flaps, and is found to
determine primarily the reconfiguration of the elastic structure. A reconfiguration number
defined specifically for our model provides an appropriate characterization of the effect
of side-flap folding on drag force reduction. Moreover, the ratio of drag forces between
the power and recovery strokes is evaluated to find model conditions for the optimal force
ratio.

Key words: flow-structure interactions, propulsion

1. Introduction

Swimming mechanisms of marine animals can be categorized generally into lift-based,
drag-based and jetting forms of propulsion, based on how thrust is generated (Vogel
2003). While lift-based propulsion by undulating motion is commonly adopted for
high-performance swimming or by more aquatically adapted animals (Fish 1996),
drag-based propulsion has been adopted by many aquatic animals because of its
better performance in low-speed swimming and in manoeuvring (Walker & Westneat
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2000). Studies of the mechanism of drag-based propulsion have covered a broad range
of topics, including, for example, three-dimensional kinematics of pectoral fins and
their relation to the movement of a swimming fish (Lauder & Jayne 1996), dynamic
modelling of swimming gaits and evaluation of their performance (Walker & Westneat
2000) combined with actual measurements of fin motion (Walker & Westneat 2002),
three-dimensional vortex formation coupled with thrust generation considering different
propulsor geometries (Kim & Gharib 2011a) and flexibility effects (Kim & Gharib 2011b),
and application of a passive hinge design for the orientation control of pectoral fins of a
fish robot (Behbahani & Tan 2016). As a fundamental strategy of drag-based propulsion,
enhancement of net thrust over a cycle is achieved by modulating the effective area of the
propulsor during both power and recovery strokes (Walker 2002).

In the context of bio-inspired engineering design, the unique configuration of the arms
of crinoids (also known as feather stars) possesses great potential as a propulsor structure
that incorporates a significant change in area between power and recovery strokes. The
arms of crinoids are feather-like, with lateral extensions known as pinnules that resemble
the barbs of a feather. During the recovery stroke, reconfiguring of the arm and its pinnules
leads to a dramatic decrease in the area of the arm. Although the swimming performance
of actual crinoids has been evaluated using simple biomechanical models (Janevski &
Baumiller 2010), the form and function of their unique arms still remain unclear from the
perspective of thrust generation.

On the other hand, the reconfiguration represented by passive adaptation of an elastic
structure to surrounding flow was first investigated in the context of drag reduction in
vegetation, including the pioneering studies by Vogel (1984, 1989) that introduced the
well-known Vogel exponent. Subsequent studies of reconfiguration have characterized
successfully the dynamics of elastic structures coupled with steady flow for various
geometries and flexibilities, ranging from elastic fibres (Alben, Shelley & Zhang 2002;
Gosselin & de Langre 2011) or plates (Gosselin, de Langre & Machado-Almeida 2010;
Luhar & Nepf 2011; Leclercq & de Langre 2016; Pezzulla et al. 2020) to various plants
(Whittaker et al. 2013; Whittaker, Wilson & Aberle 2015). Furthermore, the transient
dynamics of elastic structures coupled with unsteady flow conditions has been examined
in work by Luhar & Nepf (2016), Leclercq & de Langre (2018) and Zhang & Nepf (2021).
In these studies, for both steady and unsteady flow conditions, the theoretical modelling
of the fluid–structure interaction has enabled reasonable estimates to be obtained of the
flow-induced forces and resulting deformation of the structures.

In this study, motivated by the unique propulsive feature of a crinoid arm, we investigate
experimentally the fluid–structure interaction of a simplified feather-like elastic structure
composed of a centre rod to which barb-like rigid side flaps are attached by elastic hinges,
aiming to reveal the principles of the complex deformation involving multiple elastic parts
(figure 1). For both power and recovery strokes, one end of the centre rod is prescribed
to undergo linear translation, resulting in deformation of the centre rod and hinges by
interaction with quiescent surrounding fluid. Passive folding of the rigid flaps via the
elastic hinges occurs generally in the recovery stroke, which is achieved by allowing the
hinges to bend in only one direction. We also establish a theoretical model of the dynamics
of the elastic structure. Because the flaps as well as the centre rod undergo reconfiguration
in each stroke, the two-dimensional deflections of the centre rod and the flaps need to be
coupled in an appropriate manner to fully reconstruct the three-dimensional deformation
of the elastic structure. The present study focuses primarily on the quasi-static interaction
of the elastic structure with the surrounding flow as a prerequisite to draw general
relations between the flow-induced drag and three-dimensional reconfiguration of the
structure. Extending the quasi-static analysis, we explore the unsteady dynamics of the
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Figure 1. (a) Schematic of the experimental set-up. The initial position of the elastic structure is shown by the
dashed line. (b) Schematic of the elastic structure. (c) Illustration of how tape and strips are placed to connect
the side flaps to the centre rod. (d) Orientation of (i) the side flaps and (ii) the elastic structure during power
and recovery strokes; the arrows in (d) indicate the direction of translation.

elastic structure, although not comprehensively, to identify key differences arising from
oscillatory motion.

Our experimental set-up is described in § 2, and theoretical modelling of the
deformation of the elastic structure is conducted in § 3. The characteristics of structural
deformation under steady translation are identified, and their dependence on several
parameters, such as dimensionless bending stiffness and translational speed, is discussed
in § 4.1. In addition, the effects of flap geometry and hinge stiffness on the drag exerted
on the elastic structure are examined in § 4.2. The theoretical model is extended to cases
with a extremely rigid or flexible centre rod in § 4.3. Finally, the unsteady dynamics of the
elastic structure under oscillatory motion is discussed in § 4.4. Our concluding remarks
are presented in § 5.

2. Experimental set-up

Experiments were conducted in a water tank with internal dimensions 490 mm width,
1200 mm length and 500 mm height. The elastic structure under consideration was
connected to the block of a linear guide (MW-EQB45, NTRexLAB) placed above the
water tank (figure 1a). Driven by a stepper motor controlled via a data acquisition board
(PCIe-6321, National Instrument Co.), the linear guide block and the clamped top end of
the elastic structure underwent translation where a simple code in MATLAB (Mathworks
Inc.) was used to prescribe the motion. Both steady and unsteady translational motions
of the top end were considered. For the cases of steady motion, translation at a constant
speed U = U0 was prescribed for the power stroke along the positive x axis and for the
recovery stroke along the negative x axis, with each stroke being of length 85 cm. For
smooth acceleration at the start of each stroke, a quarter of a sinusoidal velocity profile
was implemented within the first 10 cm displacement of each stroke. For the cases of
unsteady motion, simple oscillation was considered with sinusoidal speed profile U(t) =
U0 sin(2πft) repeated for 10 cycles, where U0 and f are translational speed amplitude and
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lr Centre rod length 20 cm
wr Centre rod width 1 cm
lf Side flap length 2, 3, 4 cm
wf Side flap width 1 cm
h Structure thickness 1.10–1.75 mm
ρs Structure density 1180 kg m−3

ρw Water density 997 kg m−3

U0 Translational speed 4–60 cm s−1

f Oscillation frequency 0.1–1.0 Hz
Re Reynolds number (= U0wr/ν) 400–6000

Table 1. Experimental parameters.

oscillation frequency, respectively. For both steady translation and harmonic oscillation,
we waited a couple of minutes between successive cases to settle perturbed flow.

An elastic structure was fabricated with acrylic sheets of thickness h = 1.10–1.75 mm;
in this study, the elastic structure comprises the combination of the centre rod and all side
flaps. The overall shape of the elastic structure is feather-like, as shown in figure 1(b). Both
the centre rod and side flaps were fabricated from a single acrylic sheet to minimize local
variations in sheet thickness as much as possible; such local variations were within 5 % of
the mean value. The length of the centre rod, lr, had fixed value 20 cm, and the length of
the side flaps, lf , varied from 2 to 4 cm. The widths of the centre rod and side flaps, wr and
wf , respectively, were 1 cm. A total of 20 side flaps were placed along the longitudinal
direction of the centre rod, with 1 cm spacing between adjacent flaps. The Reynolds
number Re = U0wr/ν was between 400 and 6000, where U0 is the speed amplitude
(U0 = 4–60 cm s−1), and ν is the kinematic viscosity of water (ν = 1.0 × 10−6 m2 s−1

at 20 ◦C). The main experimental parameters are summarized in table 1.
A high-speed camera (FASTCAM MINI-UX50, Photron, Inc.) with resolution 1280 ×

1024 pixels was used to capture the deflected profile of the translating elastic structure
in water at 250 f.p.s. for cases with U0 over 30 cm s−1, and 125 f.p.s. for the other cases.
The image plane was illuminated using an LED lamp. To acquire the deflected profile,
raw images were processed using a MATLAB code. A force transducer (MB-5, Interface
Inc.) was attached between the linear stage and the model to obtain the drag force acting
on the entire model (figure 1a). The transducer was calibrated using various static loads
and exhibited repeatable and reliable results with resolution approximately 0.01 N. For a
steady translation case, the quasi-steady drag force was acquired at sampling rate 100 Hz
by taking the arithmetic mean of the measured values over a certain period of constant
translational speed during which the time series data of the force formed a plateau. The
time history of the force shows minor variations during steady translation despite highly
unsteady wakes behind the elastic structure. The standard deviation of the drag in a plateau
is less than 4 % of its mean value for cases with U0 > 20 cm s−1, although the standard
deviation tends to be relatively larger for low-speed cases with small drag. To eliminate
the effect of the submerged part connecting the elastic structure to the linear stage mount,
force measurements were also conducted without the elastic structure. By subtracting the
force measured in the absence of the elastic structure from the force measured with it
present, the drag force of the elastic structure alone could be obtained. Measurements
were repeated three times, and the standard deviation was within 5 % of the mean value
of the three repetitions for cases with U0 > 10 cm s−1. Owing to the limitations on the
resolution of the force transducer, the error tended to be amplified for cases with small
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drag (U0 < 10 cm s−1), where measured drag is comparable to the resolution of the
transducer. For an oscillation case, the drag force was acquired at sampling rate 500 Hz
over the entire 10 cycles. Similar to the steady translation cases, measurements were also
conducted without the elastic structure to eliminate the contribution of the connecting
part. As the cyclic motion of the elastic structure was observed after two cycles, the drag
force was phase-averaged over the last eight cycles. The root-mean-square error of the
phase-averaged data with respect to the raw data was within 6 % of the standard deviation
of the raw data over a cycle, indicating good periodicity of the time series data.

The main feature of the elastic structure is the unidirectional bending of the side flaps.
The centre rod and side flap were as close as possible to each other, and they were
connected using an adhesive tape (3M Scotch Transparent Film Tape 550, 3M) which
functioned as an elastic hinge (figure 1c). The tape was attached on only one side of the
centre rod and side flap so that the side flap could hinge to the side to which it was taped
during the recovery stroke (figure 1d). During the power stroke, the side flaps could not
hinge to the other side past the initial flat configuration owing to the restriction on their
motion: the side surfaces of the centre rod and the side flaps were in contact with each
other because of the finite thickness of the acrylic sheets, thus prohibiting hinge motion.
That is, during the power stroke, the side flaps were eventually aligned parallel along the
centre rod (figure 1d-i). Because of the asymmetric motion of the side flaps, the deformed
shape of the model differed between the two strokes.

To realize various bending stiffness values of the elastic hinge, a 1 mm wide strip of
polycarbonate (PC) or polypropylene (PP) sheet, of thickness 0.2 mm, was placed under
the tape (figure 1c); the tape itself was made of 0.038 mm thick PP backing. Thus a total
of three types of hinges were tested: only tape, tape with a polycarbonate strip, and tape
with a polypropylene strip. These three hinges are hereinafter termed hard, medium and
soft, respectively, according to their relative stiffnesses (table 3). The bending stiffness of
the hinges will be assessed in § 3.

Even slight variations in the thickness of the acrylic sheet will result in dramatic
changes in the bending stiffness of the centre rod, Br. Furthermore, although small, the
contributions of the acrylic tape and the elastic strips, providing elastic connections of
the multiple side flaps to the centre rod, should be considered. To obtain an accurate
measurement of the bending stiffness of the centre rod in its longitudinal direction (along
the curvilinear coordinate s in figure 2a), the effective bending stiffness Br was calculated
by fitting the actual deflected profile of the elastic structure under gravity, which was
obtained from a filmed image, with a theoretically estimated profile based on the nonlinear
elastica theory, assuming the centre rod to be a slender body because lr/wr = 20 (figure 2);
the elastic structure was initially horizontal with its left end clamped. Note that this
particular set of experiments was conducted in air rather than water. For the theoretically
estimated profile, the following equation was used, which represents a balance between
the internal bending force, the gravitational force, and a point load P at the free end:

Br
d2θr(s)

ds2 +
[
ρsgh

∫ lr

s
(wr + 2lsf ) ds∗ + P

]
cos θr(s) = 0, (2.1)

where lsf is a shape function defined to take account of the existence of the side flaps,

lsf =
{

0 for regions without side flaps,
lf for regions with side flaps,

(2.2)

ρs is the density of the elastic structure, and θr is the deflection angle with respect to the x
axis (figure 2a).
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(b) (c)

10 cm

θr

s

(a)

Pg

P

Figure 2. (a) Schematic of the elastic structure under gravity and with a point load P at the free end. (b,c) Raw
images of the bent elastic structure and theoretically estimated profiles (red solid lines) using (2.1): (b) under
gravity only; (c) under gravity with the point load at the free end.

To obtain the deflected profile, (2.1) is solved numerically with the following boundary
conditions at the clamped and free ends: θr = 0 at s = 0, and dθr/ds = 0 at s = lr. A total
of 15 elastic structures with different hinge types and side-flap lengths were tested, both
with and without a point load P of 0.23 N for more accurate measurement. The point load
was applied at the free end of the elastic structure by attaching a load vertically to the
end of the centre rod with a string. The effective bending stiffness Br acquired by fitting
the actual experimental profile with the theoretical profile from (2.1) is used throughout
this study (table 2). The cases in table 2 are divided into those in which the centre rod is
thin and those in which it is thick, based on the magnitude of Br. In the thin-centre-rod
cases, Br ranges from 3.33 × 10−3 to 5.49 × 10−3 N m2, and in the thick-centre-rod cases,
it ranges from 10.83 × 10−3 to 13.40 × 10−3 N m2.

3. Theoretical model

3.1. Characterization of hinge deflection
Although the present study covers both quasi-steady and unsteady dynamics of the elastic
structure, only the quasi-static deformation with constant translational speed (U = U0)
will be addressed in this section to determine a relation between the deflection angle of
the side flap and the applied torque. Before considering the deflection of the centre rod,
we first examine the deflection of the elastic hinges attached to this rod. Elastic sheets
were used as hinges to act as torsional springs by Ishihara, Horie & Denda (2009a) and
Ishihara et al. (2009b). A similar hinge model was adopted recently by Wu, Nowak &
Breuer (2019), where the deformation of an elastic sheet could be estimated from a linear
relation between deflection angle and flow-induced torque. However, in the present study,
the side flaps are connected as closely as possible to the centre rod, almost eliminating any
gap between the two components. Because the hinge region located between the centre
rod and a side flap is very confined, the local deflection of the hinge is so large that the
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Case Hinge type lf (cm) Br (N m2)

h2 Hard 2 4.54 × 10−3

h3 Hard 3 3.80 × 10−3

h4 Hard 4 3.80 × 10−3

m2 Medium 2 3.33 × 10−3

m3 Medium 3 3.33 × 10−3

m4 Medium 4 3.15 × 10−3

s2 Soft 2 5.49 × 10−3

s3 Soft 3 4.77 × 10−3

s4 Soft 4 4.65 × 10−3

M2 Medium 2 11.23 × 10−3

M3 Medium 3 10.83 × 10−3

M4 Medium 4 13.40 × 10−3

S2 Soft 2 11.23 × 10−3

S3 Soft 3 11.23 × 10−3

S4 Soft 4 13.40 × 10−3

Table 2. Hinge type, side-flap length lf and effective bending stiffness Br for the 15 cases considered in
this study. Case names with small letters and capital letters indicate a thin centre rod and a thick centre rod,
respectively.

x
y

U

θr(s)

s

(a) (b)

A

A

A–A plane

θf (s)

lh
Hinge

U cos θr(s)

Figure 3. (a) Side view of the elastic structure during the recovery stroke in the (x, y) plane. (b) Cross-sectional
view of the deflected side flaps in the A–A plane marked in (a). Here, θr is the deflection angle of the centre
rod, and θf is the deflection angle of the side flap.

deflection of the hinge cannot be predicted accurately by a linear relation between the
deflection angle and the flow-induced torque.

As a first step in modelling the response of the elastic hinge and the resulting deflection
angle of a side flap (and a hinge) under the influence of surrounding fluid, the external
torque applied on the side flap needs to be identified. Although the model translates in a
quiescent fluid, we will consider a reference frame fixed with the model; in this reference
frame, the relative incoming flow with respect to the model has uniform velocity U. Owing
to the reconfiguration of the model by the flow-induced force, the normal velocity along
the centre rod can be expressed as U cos θr. Then the normal velocity component of the
relative flow with respect to the side flap is U cos θf cos θr, where θf is the deflection
angle of the side flap; see figure 3 for the definitions of θr and θf . With the assumption
of quasi-steady flow, the resistive fluid force acting normally to the surface of a single side
flap deflected by θf is 1

2 CNρwwf lf (U cos θf cos θr)
2 (where ρw is the density of water),

and the fluid-induced torque T can be obtained by multiplying by the moment arm 1
2 lf :

T = 1
2 CNρwwf lf (U cos θf cos θr)

2 1
2 lf . The bending of the side flap itself by the normal

force is marginal, therefore the side flap is assumed to be straight.
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Hard Bh,h Tape and polycarbonate strip 1.7 × 10−6 N m2

Medium Bh,m Tape and polypropylene strip 1.1 × 10−6 N m2

Soft Bh,s Tape 0.7 × 10−7 N m2

Table 3. Bending stiffness Bh of three hinge types.
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(b)(a)
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Figure 4. (a) Hinge angle θf obtained from experiment (�) and theoretical prediction using (3.1) (solid lines).
(b) Drag force obtained from force transducer measurement (♦) and theoretical prediction using (3.1) and (3.2)
(solid lines). Red, blue and black correspond to hard, medium and soft hinges, respectively. Straight centre rods
with θr = 0 are used to neglect the effect of centre-rod deflection on the folding of the side flaps.

The fluid-induced torque T should be balanced by the internal torque of the hinge, which
can be modelled as a torsional spring. According to Wu et al. (2019), the torsional stiffness
of a short elastic sheet (i.e. a hinge in our study) takes the form Bh/lh, where Bh and lh
are the bending stiffness and length of the hinge, respectively (figure 3b). Then the torque
due to the linear torsional spring is (Bh/lh)θf . To compensate for the nonlinearity of the
relation between the flow-induced torque and the structural deformation, we assume that
(Bh/lh)θf is multiplied by a trigonometric function cos θf as follows:

Bh

lh
θf cos θf = 1

2
CNρwwf lf (U cos θf cos θr)

2 1
2

lf , (3.1)

where Bh is obtained from Bh = EhI (table 3). Young’s modulus Eh of the hinge was
measured in a uniaxial tensile test using a universal tensile testing machine (AGX-V,
Shimadzu), and the second moment of area I was calculated using the dimensions of the
hinge.

The use of a trigonometric function in (3.1) is based on empirical observations. The
linear spring relation (Bh/lh)θf balanced with the flow-induced torque T can be reasonably
fitted to the experimental results for small deflections occurring at low U. However, as
U increases, the balance equation diverges from the experimental results, where θf at a
given U is underestimated; i.e. the torque required for the side flap to be deflected by θf
is overestimated. The experimental results show a gradual decrease in the growth rate of
the torque to achieve a greater deflection angle θf . Therefore, for the relation to hold for
the higher range of U, the left-hand side of (3.1) requires an additional function of θf that
decreases as θf increases. We found that the addition of cos θf in (3.1) could eliminate
the error in the high-U range, yielding a better approximation of the internal torque; the
validity of the model will be addressed later, in figure 4.
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To solve (3.1) and find θf , the values of the normal force coefficient CN and hinge length
lh need to be determined a priori. The geometry of the side flap is rectangular, with aspect
ratio lf /wf between 2 and 4. Although the value of CN for a rectangular flat plate varies
with the angle of incidence and the aspect ratio (Tavallaeinejad, Païdoussis & Legrand
2018), a constant CN value of 1.95 was used by Luhar & Nepf (2011) to model the dynamics
of elastic blades with aspect ratio ranging from 5 to 25 in steady flow. In a later study
by Luhar & Nepf (2016), implementation of a constant CN value for a two-dimensional
plate from the work of Keulegan & Carpenter (1958) was successful in modelling the
dynamics of elastic plates with aspect ratios ranging from 2.5 to 10, showing that the use
of a constant coefficient value is plausible in modelling reconfiguration under quasi-steady
conditions, even for relatively low-aspect-ratio plates. Moreover, Fernando & Rival (2016)
and Tavallaeinejad et al. (2018) suggested a steady-state CN value of approximately 1.9 for
plates oriented normal to the flow. On the basis of these previous studies, the assumption
CN = 2 appears to be acceptable for our side flap with aspect ratio between 2 and 4.

As mentioned earlier, the deflection of the hinge occurs within a very narrow region less
than O(10−1) cm in length. Due to the difficulty of measuring the hinge length directly, its
value should be estimated with an alternative experimental approach. A set of experiments
to determine the hinge length was conducted using an elastic structure similar to that
shown in figure 1(b) for all three hinge types, but with a centre rod sufficiently rigid that
it remained vertically straight under translational motion, with only the side flaps being
deflected backwards. This is equivalent to θr = 0 along the entire length of the centre rod.
To obtain the deflection angles of the side flaps, a high-speed camera was placed below
the water tank to capture directly the deflected side flaps. Although the hinges were made
as uniform as possible, a slight variation in the deflection angle among the side flaps was
observed, thus the averaged value of the deflection angles was used.

For a translational speed U between 4 and 60 cm s−1, the deflection angles obtained from
the filmed images are presented in figure 4(a) as square symbols; the last four data points
in U = 48–60 cm s−1 for the soft hinge type are excluded because of periodic oscillations
observed only in these cases. With the value of the hinge length lh set as 0.085 cm,
the theoretical prediction using (3.1) (solid lines in figure 4a) fits the experimental
measurements well.

To verify further our theoretical approach for the hinge model, drag forces along
the x axis were measured using a force transducer for the aforementioned vertically
straight centre rod with deflected side flaps, and they are compared in figure 4(b) with
those predicted by integrating (3.2) over the whole elastic structure. The normal force
acting on the elastic structure per unit longitudinal length of the centre rod in regions
without side flaps is given by 1

2 CNρwwr(U cos θr)
2. Where side flaps are present, from

the normal fluid force (3.1) acting on a side flap, the component of the normal force
acting on the two side flaps in the direction normal to the centre rod is given by
1
2 CNρw(2lf )(U cos θr cos θf )

2 cos θf , where the extra factor cos θf ensures that only the
component normal to the centre rod is considered. In regions with side flaps, this term
should be added to the normal fluid force exerted on the centre rod per unit length. Thus
the normal force fnor acting on the elastic structure per unit longitudinal length of the
centre rod is given by

fnor =
{

1
2 CNρwwr(U cos θr)

2 for regions without side flaps,
1
2 CNρw(wr + 2lf cos3 θf )(U cos θr)

2 for regions with side flaps.
(3.2)

Because straight centre rods are used in the cases shown in figure 4(b), θr = 0 for these
particular cases. In figure 4(b), solid lines are obtained by substituting θf values from
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(3.1) (solid lines in figure 4a) into (3.2). In summary, the theoretical model of the hinge
can predict successfully the drag exerted on the entire structure, as well as the deflection
angle of the side flap. Our empirical model (3.1) has a shortcoming. Extreme side-flap
deflection, close to θf = 90◦, results in a significant decrease in the term on the left-hand
side of (3.1). This is contradictory to the fact that larger deflection induces greater internal
bending torque. However, such extreme deflection is limited to some cases with soft hinges
and high speed U.

3.2. Coupling of side-flap and centre-rod deflections
With the hinge model proposed in § 3.1, the deformation of the elastic structure in
translational motion is now examined analytically, using an approach similar to those
of previous studies (Luhar & Nepf 2016; Leclercq & de Langre 2018). The unsteady
force-balance equation of the centre rod, which consists of internal bending force/tensile
force, external hydrodynamic force, buoyancy force and inertial force, is modelled based
on the nonlinear elastica theory:

Br
∂2θr(s, t)

∂s2 + iT + exp(−iθr(s, t))

×
[∫ lr

s
fnor(s∗, t) exp(iθr(s∗, t)) ds∗ − i �ρ gh

∫ lr

s
(wr + 2lsf ) ds∗

]

= exp(−iθr(s, t))
∫ lr

s
fI(s∗, t) ds∗, (3.3)

where s is the curvilinear coordinate from the clamped end along the axis of the centre
rod (figure 3a), and i is an imaginary unit. Also, T denotes the tensile force, �ρ is the
density difference between the structure ρs and water ρw, and lsf is the shape function
defined in (2.2); f is used to denote several loads, in the form of force per unit length, fnor
is the external hydrodynamic load composed of the resistive force based on quasi-steady
flow assumption and the added-mass force, whose direction is normal to the surface of the
centre rod, and fI is the inertial load from the acceleration of the structure itself. Here, fnor
and fI are composed of both centre-rod and side-flap components:

fnor = fR,r + fR,f + fA,r + fA,f , (3.4a)

fI = fI,r + fI,f , (3.4b)

where the subscripts R, A and I denote resistive, added-mass and inertial loads,
respectively. Also, as used previously, the subscripts r and f indicate the centre rod and the
side flaps, respectively.

The external and inertial loads acting on the centre rod are given as

fR,r = 1
2

CNρwwr |Re(Ur exp(−iθr))| Re(Ur exp(−iθr)), (3.5a)

fA,r = π

4
CMρww2

r Re(U̇r exp(−iθr)), (3.5b)

fI,r = ρshwrz̈, (3.5c)

where Ur denotes the relative flow velocity of the centre rod (Ur = U − ż), the dot denotes
a time derivative, and z = x + iy is the position of the centre rod on the complex plane
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Reconfiguration of an elastic sheet with side flaps

in the Cartesian coordinate system. For unsteady motion of the elastic structure, the
normal force coefficient CN and added-mass force coefficient CM will vary locally by the
Keulegan–Carpenter number KC (Keulegan & Carpenter 1958). Instead of CN = 2 used
for the quasi-steady condition, CN dependent on KC is used for unsteady simulations:
CN = max(10KC−1/3, 1.95) from Luhar & Nepf (2016). However, the value of CM with
respect to KC cannot be determined simply. Therefore, a constant value CM = 1 is chosen
in this study for simplification, which is identical to the approach adopted by Leclercq &
de Langre (2018). According to the earlier study by Luhar & Nepf (2016), a constant value
CM = 1 did not alter the results significantly.

On the other hand, the force acting on the side flap is determined by integrating the
individual load along the lengthwise direction of the side flap. The external and inertial
loads acting on the side flaps are given as

fR,f = CNρw cos θf

∫ lsf

0
|Uf − θ̇f l∗| (Uf − θ̇f l∗) dl∗

= 1
3

CNρw cos θf lsf [l̂f 1U2
f + |Uf − θ̇f lsf | (2Uf − θ̇f lsf )], (3.6a)

fA,f = π

2
CMρwwf cos θf

∫ lsf

0
(U̇f − θ̈f l∗) dl∗

= π

2
CMρwwf cos θf lsf

(
U̇f − 1

2
θ̈f lsf

)
, (3.6b)

fI,f = 2ρsh
∫ lsf

0
[z̈ + (θ̈f cos θf + θ̇2

f sin θf )l∗]dl∗

= 2ρshlsf

[
z̈ + lsf

2
(θ̈f cos θf + θ̇2

f sin θf )

]
. (3.6c)

Here, Uf and U̇f denote the relative flow velocity and acceleration at the hinge-connected
end of the side flap, in the direction normal to the side-flap orientation:

Uf = Re(Ur exp(−iθr)) cos θf , (3.7a)

U̇f = Re(U̇r exp(−iθr)) cos θf . (3.7b)

Also, l̂f 1 in (3.6a) is defined as follows to express different integrated forms, depending on
the motion of the side flap:

l̂f 1 =

⎧⎪⎨
⎪⎩

(|Uf | − |Uf − θ̇f lsf |)/θ̇f lsf if θ̇f /= 0,

1 if θ̇f = 0 & Uf > 0,

−1 if θ̇f = 0 & Uf < 0.

(3.8)

Moreover, from the definition of lsf in (2.2), the loads induced by the side flaps (fR,f , fA,f
and fI,f ) are eliminated for the regions without the side flaps in which lsf = 0.

With the complete set of relations describing the loads acting on the centre rod and
side flaps provided, we can find that when the centre rod is rigid (θr = 0) and the
motion is steady (θ̇f = 0), l̂f 1 is 1, and the relative flow velocities normal to the centre
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rod (Re(Ur exp(−iθr))) and the side flaps (Uf ) become U and U cos θf , respectively.
Eventually, (3.4a) becomes identical to (3.2).

Next, for the dynamics of the side flaps, the deflection angle of the side flap, θf , is
evaluated from the following unsteady torque-balance equation for the hinge, which is
extended from the quasi-steady (3.1):

−Bh

lh
θf cos θf + τR + τA + τB = τI, (3.9)

where the first term on the left-hand side is the bending moment of the hinge described in
§ 3.1, and τR, τA, τB and τI are the torques induced by the resistive, added-mass, buoyancy
and inertial forces, respectively. The value of θf for each side flap can be estimated
individually since the side flaps are not connected to each other. We have

τR = 1
2

CNρwwf

∫ lsf

0
|Uf − θ̇f l∗| (Uf − θ̇f l∗)l∗ dl∗

= 1
24

CNρwwf l2sf [l̂f 2U2
f + |Uf − θ̇f lsf | (5Uf − 3θ̇f lsf )], (3.10a)

τA = π

4
CMρww2

f

∫ lsf

0
(U̇f − θ̈f l∗)l∗ dl∗

= π

24
CMρww2

f l2sf (3U̇f − 2θ̈f lsf ), (3.10b)

τB = −1
2

�ρ gwf hl2sf sin θr cos θf , (3.10c)

τI = ρshwf

∫ lsf

0

[
z̈ cos θf + θ̈f l∗

]
l∗ dl∗

= ρshwf l2sf

[
1
2

z̈ cos θf + 1
3

θ̈f lsf

]
, (3.10d)

where l̂f 2 is defined as

l̂f 2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
θ̇f lsf

[
Uf

|Uf | − |Uf − θ̇f lsf |
θ̇f lsf

− |Uf − θ̇f lsf |
]

if θ̇f /= 0,

1 if θ̇f = 0 & Uf > 0,

−1 if θ̇f = 0 & Uf < 0.

(3.11)

The detailed numerical procedure for solving (3.3) in terms of θr and (3.9) in terms of
θf is described in Appendix A.

3.3. Simplification for quasi-steady motion
The full dynamic model derived in § 3.2 is simplified to represent the quasi-static
interaction of the elastic structure with the flow. For steady translation with constant speed
U = U0 during either the power stroke or the recovery stroke and resultant quasi-static
deformation, time derivative terms θ̇r and θ̇f are assumed to be zero, yielding zero
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Reconfiguration of an elastic sheet with side flaps

added-mass and inertial loads. Consequently, the real components in (3.3) are simplified
as

Br
d2θr(s)

ds2 +
∫ lr

s
[ fR,r(s∗) + fR,f (s∗)] cos(θr(s) − θr(s∗)) ds∗

− �ρ gh sin θr(s)
∫ lr

s
(wr + 2lsf ) ds∗ = 0, (3.12)

which is similar to the forms given by Gosselin et al. (2010), Luhar & Nepf (2011) and
Pezzulla et al. (2020). Since the model is for steady translation, (3.1) can be used directly
to obtain θf .

To solve (3.12) and (3.1) simultaneously, and find θr and θf , the centre rod is discretized
into equally spaced segments each of length �s along the s axis: �s = lr/N, where
N = 20. With the central difference scheme being used for the differential term and the
mensuration by parts for the integral terms, (3.12) becomes

Br
θr,j+1 − 2θr,j + θr,j−1

(�s)2 +
N∑

k=j+1

( fR,r,k + fR,f ,k) cos(θr,j − θr,k)�s

− �ρ gh sin θr,j

N∑
k=j+1

(wr + 2lsf ,k)�s = 0, j = 1, . . . , N − 1. (3.13)

With the boundary conditions θr = 0 at s = 0 (j = 0) and dθr/ds = 0 at s = lr (j = N),
iterations were performed to solve the boundary value problem using Newton’s method
until the left-hand side of (3.13) fell below 10−5 times the second term in (3.12) at every
node.

4. Results and discussion

4.1. Reconfiguration of the elastic structure under quasi-steady motion
The quasi-static deformation of the elastic structure under steady translation (U = U0)
is first considered in §§ 4.1–4.3. A notable feature in the quasi-static deformation is the
difference in the orientation of the side flaps along the longitudinal direction of the centre
rod (along the curvilinear coordinate s in figure 3) between the power stroke and the
recovery stroke. Although the centre rod bends backwards during the power stroke, the
motion of the side flaps is constrained by the unidirectional hinge, and they remain almost
straight with respect to the centre rod, without deflection (see figures 5a-i,b-i). Thus,
regardless of the hinge type, the deflections of the centre rod are similar. By contrast, owing
to the deflection of the side flaps during the recovery stroke and the consequent reduction
in the projection area normal to the direction of translation, less drag is exerted on the
structure during the recovery stroke than the power stroke, resulting in less deflection of
the centre rod (see figures 5a-ii,b-ii). Because the reconfiguration of the centre rod causes
a reduction in the magnitude of the relative flow velocity normal to the elastic structure
along the longitudinal direction, θf values of the side flaps decrease as well along the
longitudinal direction, as shown clearly in figure 5(b-ii).

We now compare the deflection profiles of the centre rod as estimated by the theoretical
model in § 3.3 with experimental results. The deflection profiles of the thin-centre-rod
cases with soft hinges are exemplified in figure 6. With varying side-flap length lf , the
deflection profiles can be predicted to a reasonable extent. As well as the centre rod, the
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(a-i) (a-ii)

(b-i) (b-ii)

10 cm

Figure 5. Raw images of the deformed elastic structure during (i) the power stroke and (ii) the recovery
stroke: (a) soft-hinge case (s4), and (b) medium-hinge case (m4), in table 2. Here, U = 40 cm s−1. See the
supplementary movies available at https://doi.org/10.1017/jfm.2022.970.

deflection angles of the side flaps for the cases presented in figures 5 and 6 also show a
good match between the experimental results and theoretical estimates (figure 7). These
results indicate that our theoretical model incorporating two deflecting parts, namely the
centre rod and hinges, is appropriate for characterizing the quasi-static dynamics of the
elastic structure.

In previous studies of the reconfiguration of elastic bodies under steady flow, the Cauchy
number CY was introduced to characterize the deformation of the body subjected to the
flow (e.g. de Langre 2008; Gosselin et al. 2010; Whittaker et al. 2015; Leclercq & de
Langre 2016). This number is defined as the ratio of inertial fluid force to elastic force:
CY = ρf U2/E, where ρf and E are the fluid density and Young’s modulus of the elastic
body, respectively. Similarly, a dimensionless flow velocity in the form

η = U

(
ρf L3f

B

)1/2

, (4.1)

which indicates the relative magnitudes of the inertial fluid force and the bending force of
the elastic body, has been suggested by several studies (e.g. Alben et al. 2002; Shelley &
Zhang 2011; Kim et al. 2013; Kim, Kang & Kim 2017). In (4.1), B is the bending stiffness,
L is a characteristic length, and f is a geometric parameter that determines the effective
cross-sectional width of the elastic body. In the present study, a modified version of the
dimensionless flow velocity is proposed in which f is replaced with a combination of wr,
lf and θf to give a more appropriate characterization of the elastic deformation.
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Figure 6. Deflection profiles of the thin centre rod with soft hinges (cases s2, s3 and s4 in table 2) for (a) the
power stroke and (b) the recovery stroke, where (i) is from the experimental measurement, and (ii) is from the
theoretical model. Black, blue and red indicate lf = 4, 3 and 2 cm, respectively. In each panel, the three lines
of each colour correspond to the cases with U = 12, 32 and 52 cm s−1, respectively; backward deformation is
greater for larger U.

θ f 
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0
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1.00.2 0.4 0.6 0.8
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(b)(a)

s

1st
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Figure 7. Deflection angle θf of the 10 side flaps along the longitudinal direction of the centre rod during the
recovery stroke, for: (a) the s4 (�) and m4 (♦) cases with U = 40 cm s−1 (the cases shown in figures 5a-ii,b-ii);
(b) the s2 (◦, thin line) and s4 (�, thick line) cases with U = 12 cm s−1 (blue) and 52 cm s−1 (red) (the cases
shown in figures 6b-i to b-ii). Symbols indicate experimental measurements, and short horizontal lines indicate
theoretical estimates.

Because the drag force scales roughly with the projection area of the structure on the
plane normal to the direction of translation, its magnitude is determined by the geometric
parameters of the centre rod and the side flaps, such as lr, wr, lf , wf , θr and θf . Along with
the fixed values of lr, wr and wf , the parameter varied in the present study is the side-flap
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length lf , with the deflection angle of the centre rod, θr, and those of the individual
side flaps, θf , being dependent on various experimental parameters. In the quasi-static
theoretical model, the normal force acting on the elastic structure per unit length was
defined as (3.2), where wr and lf cos3 θf can be considered as the effective cross-sectional
widths of the centre rod and the side flap, respectively. Although the value of θf decreases
along the longitudinal direction of the centre rod owing to the reduction in the normal
component of the flow relative to the deformed centre rod (figures 5b-ii and 7), the
value of θf when the centre rod is vertically straight and rigid (θr = 0), and completely
perpendicular to the relative flow, is chosen as a reference θf for simplicity and is denoted
by θf ,ref . This value can be estimated with reasonable accuracy using (3.1); the limitations
of such a choice will be discussed later. Therefore, lf cos3 θf ,ref is determined for each
case, and θf ,ref differs between the power and recovery strokes; θf ,ref = 0 for the power
stroke.

The effective area of the centre rod scales with wrlr, and that of all the side flaps
scales with Nf wf lf cos3 θf ,ref , where Nf = 20 is the total number of the side flaps (10
for each side). By dividing the effective area by the centre-rod length lr, the effective
cross-sectional width of the elastic structure is expressed as (wrlr + Nf wf lf cos3 θf ,ref )/lr.
Replacing f and L in (4.1) with the defined effective cross-sectional width and the
centre-rod length, respectively, we propose the following dimensionless speed for
characterizing the reconfiguration of our model that accompanies the deformations of the
centre rod and the hinges together:

U∗ = U

[
ρwl2r (wrlr + Nf wf lf cos3 θf ,ref )

Br

]1/2

. (4.2)

For a more quantitative analysis of the structural deformation, the amplitude of tip
deflection along the x axis is examined (figure 8). Overall, the results of the theoretical
model are in good agreement with those of the experimental measurements. Notably, the
dimensionless tip deflection δ/lr is well characterized by the newly defined dimensionless
speed U∗ in (4.2); the plots of the dimensional tip deflection δ with respect to the
dimensional speed U are provided in Appendix B. Regardless of the variations in the
side-flap length and hinge type, δ/lr tends to collapse onto a single curve. Because the
numerator of U∗ scales with the drag acting on the elastic structure for both power and
recovery strokes, and takes the effect of the deformed hinges into account, a similar
degree of tip deflection is observed at the same U∗ value between the two strokes, as
can be seen from a comparison of the (i) and (ii) panels of figure 8. Furthermore, it is
worth mentioning that because the thickness of the centre rod is included in Br in the
denominator of U∗ (4.2), the tip deflections in the thin-centre-rod cases (figures 8a-i,ii)
and the thick-centre-rod cases (figures 8b-i,ii) also show similar values at the same U∗;
note that the range of the x axis differs between figures 8(a) and 8(b).

However, a diverging trend of δ/lr with variations in lf and Bh is observed during
the recovery stroke in the relatively high-U∗ regime (figures 8a-ii,b-ii). This divergence
originates from the aforementioned limitation in the way U∗ was defined using θf ,ref of
a straight centre rod. As illustrated in figures 5(b-ii) and 7(a), the deflection angle of the
side flap varies dramatically along the longitudinal direction of the centre rod when the rod
undergoes large deflection, i.e. during the recovery stroke at high U∗. That is, the single
reference value of θf ,ref used to define U∗, which was obtained from the case with the
straight centre rod, cannot represent the actual deflection angle of the side flap in such
cases. As can be inferred from (3.1), the cases with larger lf and smaller Bh generally
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Figure 8. Amplitude of tip deflection δ/lr for (a) cases with a thin centre rod (small letters in table 2), and (b)
cases with a thick centre rod (capital letters in table 2), where (i) and (ii) are for the power and recovery strokes,
respectively. Symbols and lines denote experimental and theoretical results, respectively.

lead to greater values of θf . Moreover, more distinct variations in θf along the longitudinal
direction of the centre rod originate from larger deflection of the rod. Consequently, the
δ/lr values for high U∗ tend to diverge from the collapsed curve, in contrast to figures
8(a-i,b-i).

4.2. Drag of the elastic structure
The drag force acting on the elastic structure is correlated with its reconfiguration. Here,
using a scaling analysis, we examine how the drag force changes with the experimental
parameters considered in this study, particularly with the dimensionless speed U∗ that
characterizes the reconfiguration of the elastic structure. The reconfiguration number R
(Gosselin et al. 2010), representing the ratio of the actual drag D exerted on a flexible
structure to the drag exerted on a rigid one with identical initial geometry, is expressed as

R = D
1
2ρf ACNU2

, (4.3)

where A denotes the projection area on the plane normal to the incoming flow for the initial
configuration. Since the geometry under consideration is initially normal to the direction
of translation, CN is used in the denominator of (4.3) instead of CD.

Using the definition in (4.3), the trend of the reconfiguration number R with respect to
the dimensionless speed U∗ is depicted in figure 9 for the cases of steady translation;
note that the range of the x axis differs between figures 9(a) and 9(b). The plots of
the dimensional quasi-steady drag D with respect to the dimensional speed U are also
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Figure 9. Reconfiguration number R for (a) cases with a thin centre rod (small letters in table 2), and (b)
cases with a thick centre rod (capital letters in table 2), where (i) and (ii) are for the power and recovery strokes,
respectively. Symbols and lines denote experimental and theoretical results, respectively.

provided in Appendix B. The values of the drag computed with the theoretically estimated
profile are in reasonable agreement with those acquired directly from force transducer
measurements with the same parameters, particularly for the power stroke. Because there
are no side-flap deflections for the power stroke, the reconfiguration number R is hardly
affected by the hinge type (hinge stiffness Bh) and side-flap length lf , showing a collapsed
curve (figures 9a-i,b-i). By contrast, for the recovery stroke, diverse trends exist due to the
deflection of the side flaps as Bh and lf vary (figures 9a-ii,b-ii). Overall, a more dramatic
decrease in drag with increasing U∗ is observed compared with the power stroke, and the
effect of drag reduction is greater for cases with softer hinges and longer side flaps.

While the dramatic decrease in drag during the recovery stroke is expected for the softer
hinge with greater side-flap deflection, the trend of drag reduction by the variations in the
side-flap length lf needs more careful examination. It is trivially obvious that the drag D
increases with lf at the same translational speed U. However, this statement is valid only
for the power stroke. Similar to the result shown in figure 4(b) of Gosselin et al. (2010), the
cases with longer side flaps have less drag for the recovery stroke, which is attributed to the
increase in θf . In the defined effective cross-sectional width (wrlr + Nf wf lf cos3 θf ,ref )/lr
that scales the drag force acting on the elastic structure (4.2), lf and θf ,ref are in a trade-off
relationship. Referring to the formula for the hinge deflection angle (3.1), an increase in
lf leads to an increase in θf . Accordingly, lf cos3 θf can become smaller despite a greater
lf in certain cases, depending on the magnitudes of parameters such as Bh and lh, which
results in less drag generation.
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Reconfiguration of an elastic sheet with side flaps

The definition in (4.3) might be enough if our model were to deform only at the centre
rod, as in the case of the power stroke. However, considering the bending of the side
flaps observed during the recovery stroke, an alternative definition of the reconfiguration
number is desirable. When U∗ was defined in (4.2), the effect of bending the side flaps was
considered in the numerator through the term (wrlr + Nf wf lf cos3 θf ,ref )/lr. In a similar
way, A in the denominator of (4.3) is replaced by wrlr + Nf wf lf cos3 θf ,ref , which is the
effective area subjected to a uniform speed U. Therefore, the form of the reconfiguration
number appropriate to our model is

R̂ = D
1
2ρw(wrlr + Nf wf lf cos3 θf ,ref )CNU2

. (4.4)

In figure 10, the trend of the newly defined reconfiguration number R̂ is shown with
respect to U∗ for both the power and recovery strokes and for several side-flap lengths
and hinge types; note that the range of the x axis differs between figures 10(a) and 10(b).
Regardless of the experimental parameters, the magnitude of R̂ is determined solely by
U∗. This result implies that the effects of the bending stiffness of the centre rod and the
hinges, as well as those of the geometry of the structure, on the drag force are reflected
well in the definition of R̂. While the tip deflection δ/lr increases monotonically with U∗

(figure 8), the new reconfiguration number R̂ tends to decrease with U∗. Accordingly,
R̂ has an inverse relationship with δ/lr; see figure 20 in Appendix C. That is, the drag
reduction effect of the elastic structure can be predicted using the tip deflection of the
centre rod alone, although the reconfiguration is three-dimensional.

In both figures 9 and 10, significant deviations in the experimental results of R and
R̂ are observed in the regime of low U∗ for both power and recovery strokes. The
dimensional drag D (figure 19 in Appendix B) is measured reasonably for the low-speed
regime. However, from the definition of the reconfiguration number that includes U2 in
the denominator, a small error in the measured drag at a low speed leads to significant
deviations in R and R̂.

At this point, limitations of the simple theoretical model need to be addressed in order
to explain reasons for the discrepancy in deformation and drag between the theoretical
model and experimental measurements. First, the use of a single value of CN = 2, which
was addressed in § 3.1, can cause the discrepancy for the three-dimensional rearrangement.
Connections between the centre rod and side flaps and the narrow gap between adjacent
side flaps are not reflected in the CN value chosen in our study as the value originates
from a single isolated plate. Furthermore, the flow velocity normal to the surfaces
cannot be determined simply by the three-dimensional orientations of the centre rod and
side flaps. Another major cause is the effect of finite thickness of the elastic structure.
In the theoretical model, the thickness of the structure is used only to calculate its
bending stiffness, and side surfaces, which exist in the actual structure due to finite
thickness 1.10–1.75 mm, are not considered. When the actual elastic structure deforms,
hydrodynamic force acts not only on the initially normal faces of the side flaps but also
on their side surfaces. The contribution by the side surfaces becomes greater for the cases
with larger deflection. In addition, skin friction, which is not considered in our model, may
cause the discrepancy. However, a skin-friction coefficient of a flat plate is approximately
0.1 for Re = 100 and even lower for higher Re (Kundu & Cohen 2004; Luhar & Nepf 2016),
and the effect of skin friction on net drag is insignificant, from a comparison between the
scales of skin-friction drag and pressure drag. Moreover, the assumption of quasi-static
deformation is no longer valid for the highly deflected side flaps (θf over 80◦) found in
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Figure 10. New reconfiguration number R̂ for (a) cases with a thin centre rod (small letters in table 2) and
(b) cases with a thick centre rod (capital letters in table 2). (i) and (ii) are for the power and recovery strokes,
respectively. Symbols and lines denote experimental and theoretical results, respectively.

cases with soft hinges with a translational speed U over 50 cm s−1. These side flaps with
large deflection angles exhibit fluttering motion with an amplitude within 5◦. Nevertheless,
the effect of the fluttering motion on drag is marginal because the deflection angle of the
side flaps contributes to the drag in the form cos3 θf according to (3.2); cos3 θf is less than
0.005 for θf over 80◦.

Next, we evaluate the ratio of drag forces generated during the power and recovery
strokes, respectively, DPower/DRecovery, at the same dimensional speed U (figure 11).
Although this subsection considers only simple steady motion for the power and recovery
strokes, the ratio of the drag forces provides a rough evaluation of the capability to produce
net thrust over a cycle under the condition that the time-varying speeds of the power and
recovery strokes are identical. Furthermore, the overall trend of the force ratio with respect
to U is predictable using the theoretical model.

Previously, the decrease in drag D for larger lf during the recovery stroke was explained
using the relationship between lf and θf . By contrast, the drag during the power stroke
scales with wr + lf because θf = 0, and it increases with lf . Thus for a pair of power
and recovery strokes under the same U, the use of larger lf may be a better choice in
maximizing the force ratio DPower/DRecovery, as shown in figure 11. Moreover, for a soft
hinge, a peak value of the force ratio exists in the U range considered in this study. This
is because the rates of change in drag force with respect to U differ between the power
and recovery strokes, which can be predicted from the difference in the effective width
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Figure 11. Force ratio between power and recovery strokes, DPower/DRecovery, versus dimensional translational
speed U for cases with (a) a thin centre rod, and (b) a thick centre rod. Symbols and lines are from experimental
and theoretical results, respectively. Symbols, line types and colours denote the same parameters as in figures 8
and 10.

scaling the drag between the power and recovery strokes, (wrlr + Nf wf lf )/lr and (wrlr +
Nf wf lf cos3 θf ,ref )/lr, respectively.

In describing the reconfiguration during the recovery stroke, we explained how θr and
θf are coupled. The increase in θr along the longitudinal direction of the centre rod is
accompanied by an increase in the incidence angle of the relative flow on the side flaps as
well, which can lead to a reduction in θf along the longitudinal direction of the centre rod
during the recovery stroke (figures 5b-ii and 7a). The increase in Br causes less backward
deformation of the centre rod (i.e. the overall decrease in θr of the centre rod) and weakens
the reduction in θf along its longitudinal direction during the recovery stroke. That is, for
a case with greater Br, the side flaps near the centre rod tip can maintain large deflection
angles during the recovery stroke, and a greater difference in effective area between the
power and recovery strokes is achieved. For the same hinge type, although an increase in
Br causes less deformation of the centre rod and contributes to greater drag production of
the centre rod, the drag reduction by bending of the side flaps during the recovery stroke is
more substantial, which yields an increase in the force ratio, as is seen from a comparison
of figures 11(a) and 11(b).

4.3. Extension to extreme conditions
In the preceding subsections, our theoretical model has estimated successfully the
reconfiguration and drag force of the elastic structure for both power and recovery strokes.
We now extend the range of bending stiffness Br of the centre rod to show that the
reconfiguration and drag force are also characterized by the suggested dimensionless
parameters U∗ and R̂ in extreme conditions. For the theoretical model, two extreme values
of Br, namely 0.31 × 10−3 and 0.31 N m−2, were chosen to represent very flexible and
stiff centre rods, respectively, which correspond to acrylic sheets of thickness h = 0.5 and
5 mm. In this subsection, experimental results are not presented, owing to the difficulty of
fabricating very thin or very thick elastic structures with h = 0.5 and 5 mm.

The scalings of the dimensionless tip deflection δ/lr and reconfiguration number R̂ with
the dimensionless speed U∗ hold well throughout a much wider range of U∗ and predict
that the rates of change of the magnitudes of δ/lr and R̂ gradually decrease with increasing
U∗ (figure 12). Furthermore, as discussed in connection with figure 11, an increase in Br
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Figure 12. Theoretical predictions of (a) dimensionless tip deflection δ/lr and (b) reconfiguration number R̂
in a broad range of U∗: Br = 0.31 × 10−3 N m2 (red), 5.49 × 10−3 N m2 (black), and 0.31 N m2 (blue). Here,
(i) and (ii) are for the power and recovery strokes, respectively.

for a fixed value of Bh generally induces a greater force ratio DPower/DRecovery (figure 13);
the ratio of Br to Bh increases from (a) to (c) in the figure. The black, blue and red
horizontal lines in figure 13 indicate the maximum values of the force ratio for lf = 4,
3 and 2 cm, respectively, which are obtained from the theoretical model. As Br becomes
greater and eventually the deflection of the centre rod becomes negligible for the two
strokes, the force ratio approaches the maximum value predicted by the theoretical model
at high U (figure 13). The maximum value of the force ratio is essentially the ratio of the
projection area of the elastic structure corresponding to θf = 0 (no folding of the side flaps)
during the power stroke to that corresponding to θf = π/2 (complete folding of the side
flaps) during the recovery stroke, if the effect of the side-flap thickness on drag generation
is assumed to be negligible.

4.4. Unsteady motions of the elastic structure
Thus far, we have explored the physical aspects of the elastic structure under quasi-steady
loading. While the results of quasi-static deformation have provided insight to understand
how three-dimensional reconfiguration is related with drag generation, here our analysis
is extended to periodic oscillations where transient loading takes effect; the prescribed
speed of the clamped top end of the elastic structure is U(t) = U0 sin(2πft). From the
previous studies regarding the dynamics of elastic blades under oscillatory flow (Luhar
& Nepf 2016; Leclercq & de Langre 2018), it is inferred that the reconfiguration of
the elastic structure under the harmonic oscillation of relatively low frequency (f =
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Figure 13. Force ratio between power and recovery strokes, DPower/DRecovery, of soft-hinge cases versus
translational speed U: (a) Br = 0.31 × 10−3 N m2; (b) Br = 5.49 × 10−3 N m2; (c) Br = 0.31 N m2. Line types
and colours denote the same parameters as in figures 8 and 10. The black, blue and red horizontal lines indicate
the theoretical maximum values of the force ratio for lf = 4, 3 and 2 cm, respectively.

0.10–0.25 Hz) does not differ greatly from the cases of quasi-steady loading with an
identical instantaneous translational speed. However, as the magnitudes of unsteady forces
such as added-mass force increase with the oscillating frequency, notable distinctions
appear, although the quasi-steady resistive force still acts as the main force responsible for
the reconfiguration. In this subsection, we examine the effects of the oscillation frequency
f and the side flap length lf on the unsteady dynamics. Only the models with soft hinges
and a thin centre rod (s2 and s4 in table 2) are considered, in which considerable centre-rod
and side-flap deflections are observed from the quasi-steady analysis. The speed amplitude
U0 is limited to 50 and 30 cm s−1 for the cases with side-flap length lf = 2 and 4 cm,
respectively, due to limitations in the fabrication of the elastic structures. Furthermore,
high-frequency oscillations over 1.0 Hz are not considered such that the primary vibration
mode of the centre rod is constrained to the first mode.

The differences in the deflection profile of the elastic structure with respect to the
oscillation frequency are identifiable from the sequential images in figure 14 and the time
history plots in figure 15. In figure 15, the direction of tip deflection with respect to the
clamped top end is distinguished by positive and negative values; mainly positive δ for
the power stroke (t/T = 0–0.5) and negative δ for the recovery stroke (t/T = 0.5–1.0).
For the low-frequency oscillation f = 0.2 Hz in figures 14(a) and 15(a-i), the degrees of
centre-rod and side-flap deflections are almost in phase with the prescribed oscillation
speed of the clamped top end; note that the deflection angles θf of the side flaps are
constrained to be zero for most of the power stroke. However, for the high-frequency
oscillation f = 1.0 Hz, phase shift exists between the speed profile and deflection of the
elastic structure (figures 14b and 15a-ii), which was also observed in the previous studies
for elastic blades without side flaps (Luhar & Nepf 2016; Leclercq & de Langre 2018).

The dynamics of an individual side flap rely heavily on the local motion of the centre-rod
position to which it is attached. Since vibration modes other than the first mode are avoided
for the centre rod by limiting the oscillation frequency, the magnitude of centre-rod
deflection tends to increase along the longitude of the centre rod. During each stroke,
the difference in the travel distance of the centre rod between the clamped top end and
free bottom end causes delay in the response of the side flaps. In figure 15, near the
transition from the power stroke to the recovery stroke at t/T ≈ 0.5, the centre-rod profile
of f = 0.2 Hz is nearly straight, while that of f = 1.0 Hz has tip deflection δ/lr = 0.2.
Therefore, the deflection angles of the side flaps for f = 0.2 Hz (figures 15a-i,b-i) tend to
increase in time with similar phases altogether from the start of the recovery stroke. By
contrast, for f = 1.0 Hz (figures 15a-ii,b-ii), the deflection angle of the first (uppermost)
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Figure 14. Sequential images of the oscillating elastic structure over a single cycle for lf = 2 cm (s2 in
table 2) with speed amplitude U0 = 20 cm s−1, and oscillation frequencies (a) f = 0.2 Hz and (b) f = 1.0 Hz.
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Figure 15. Time histories of (a) experimental and (b) theoretical dimensionless tip deflections δ/lr of the
centre rod (solid line) and deflection angles θf of the side flaps (◦ symbols in (a) and dashed lines in (b)) over
a single cycle for lf = 2 cm with U0 = 20 cm s−1, for (i) f = 0.2 Hz and (ii) f = 1.0 Hz. The colours of the
symbols correspond to the locations of the side flaps along the longitude of the centre rod as shown in the
insets.
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Figure 16. Maximum magnitude of tip deflection δmax/lr during (a) the power stroke and (b) the recovery
stroke, for lf = 2 and 4 cm (s2 and s4 in table 2). Symbols and lines denote experimental and theoretical
results, respectively.

side flap closest to the clamped top end starts to increase at a similar time to the side flaps
of the f = 0.2 Hz case. However, the deflections of the other side flaps are delayed until
the motion of the local point on the centre rod, to which the side flaps are attached, is
reversed. For folding during the recovery stroke and unfolding during the power stroke,
the phases of the side flaps are not uniform, and the phase is more delayed as the side flap
is closer to the free end.

In § 4.1, we have shown that the dimensionless speed U∗ defined in (4.2) characterizes
the deflection of the elastic structure for quasi-static deformation. For periodic
oscillations, U∗ is defined with the speed amplitude U0 as U∗ = U0[ρwl2r (wrlr +
Nf wf lf cos3 θf ,ref )/Br]1/2. In figure 16 for periodic oscillations, the dimensionless
maximum tip deflection magnitude δmax/lr of f = 0.2 Hz exhibits magnitudes similar to
that of the quasi-static deformation case with an identical U∗ in figure 8; the maximum
tip deflection of the centre rod is evaluated for each of the power and recovery strokes.
Because the cases of low oscillation frequency have a sufficient excursion distance and a
speed profile of gradual acceleration, the deformation of the elastic structure is close to
being quasi-static. With an increase from f = 0.2 to 1.0 Hz, the value of δmax/lr tends to
decrease for the power stroke and increase for the recovery stroke, notably for the longer
side flaps (lf = 4 cm).

In figures 17(a,b), the phase of drag force profile for the cases of low oscillation
frequency (f = 0.2 Hz) almost coincides with the prescribed speed profile, matching the
nearly in-phase kinematics of the elastic structure in figures 15(a-i,b-i). However, for the
higher f = 1.0 Hz, due to the delay in the deflection of the side flaps (figures 15a-ii,b-ii),
a loss of the drag force is expected during the power stroke because some side flaps near
the free end of the centre rod are not completely unfolded, and the effect of drag reduction
during the recovery stroke becomes weaker because some side flaps near the free end
remain partially unfolded. Indeed, a decrease in drag during the power stroke occurs when
f increases from 0.2 to 1.0 Hz, and the decrease in drag is more significant for the larger
lf = 4 cm (figures 17a,b). These results are in fair agreement with the trends of maximum
tip deflection during the power stroke (figure 16a).

As discussed in § 4.2 for quasi-steady motions, the degree of side-flap deflection during
the recovery stroke determines the amount of drag force reduction the elastic structure
can achieve. For quasi-static deformation under steady translation, longer side flaps (larger
lf ) are desired to achieve greater drag reduction because they could reduce the effective
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Figure 17. Time histories of dimensional drag force D acting on the elastic structure over a single cycle for
(a) lf = 2 cm and (b) lf = 4 cm. (c) Ratio of time-averaged drag forces between power and recovery strokes,
D̄Power/D̄Recovery, versus dimensional speed amplitude U0. In (c), symbols and lines denote experimental and
theoretical results, respectively.

area more when subjected to the same flow condition. By comparison, under periodic
oscillations, longer translational stroke and time of the centre rod are required for the
longer side flaps with lf = 4 cm to reach maximum degrees of angular deflection during
the recovery stroke or to completely unfold during the power stroke. Because the case of
high-frequency oscillation f = 1.0 Hz has insufficient stroke length and time for the side
flaps to completely unfold during the power stroke, the unfolding process of the side flaps
with lf = 4 cm continues over a relatively large portion of the power stroke compared with
those with lf = 2 cm. As a consequence, for lf = 4 cm, the drag force of the power stoke
decreases notably for a given U0 as f increases from 0.2 to 1.0 Hz (figure 17b). For the
power stroke, the kinematics and drag characteristics of cases with a larger lf are shown to
be more sensitive to the change in f .

On the other hand, difference in drag between f = 0.2 and 1.0 Hz is rather negligible
during the recovery stroke for both lf = 2 and 4 cm (figures 17a,b). The maximum tip
deflection of the centre rod during the recovery stroke becomes greater for f = 1.0 Hz
than for f = 0.2 Hz, as shown in figure 16(b). Moreover, the side flaps of f = 1.0 Hz can
be more deflected generally than those of f = 0.2 Hz (figure 15). Accordingly, a greater
reduction in the drag is expected for f = 1.0 Hz during the recovery stroke. However, the
delayed folding of the side flaps for f = 1.0 Hz contributes to the drag, which offsets
the drag reduction effect by the deflection of the side flaps. That is, the phase delay
of the side-flap deflection is responsible for a minor change in the drag with respect to
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Reconfiguration of an elastic sheet with side flaps

the oscillation frequency during the recovery stroke (figures 17a,b). Because the delayed
response of the side flaps is more distinct near the free end of the centre rod for f = 1.0 Hz,
a greater portion of drag is distributed near the free end along the longitude of the centre
rod. A larger moment by hydrodynamic loading is then induced on the centre rod, yielding
greater tip deflection for f = 1.0 Hz as depicted in figure 16(b).

As the oscillation frequency increases from 0.2 to 1.0 Hz, a remarkable decrease
in the ratio of time-averaged drag forces between the power and recovery strokes,
D̄Power/D̄Recovery, is observed for lf = 4 cm, while it remains similar for lf = 2 cm
(figure 17c). The theoretical values for the cases with lf = 4 cm and f = 1.0 Hz are not
included in figure 17(c). As discussed in § 3.1, the theoretical model for the bending of
the hinge is established based on quasi-static deformation and tends to be less accurate
for extreme deflection angles even in quasi-steady conditions. In the unsteady numerical
simulations, a longer time is spent for the highly-deflected side flaps to fully unfold
compared with the kinematics observed from the experiments. While the model is
successful in estimating the centre-rod deflection, the limitation in modelling the side-flap
dynamics with extreme deflection angles gives inaccurate results. Further improvements
of the model in a broader range of unsteady conditions are planned as future study. Overall,
larger side-flap length lf and lower oscillation frequency f are preferred to achieve a greater
drag ratio for a given speed amplitude U0. The drag ratios of f = 0.2 Hz are comparable to
those of steady translation cases in figure 11 for a given translation speed. Thus the results
in figure 11 based on quasi-static deformation are still valid in estimating the optimal
capability of the oscillating structure for net force generation. Although the analysis in this
section does not cover comprehensively the unsteady dynamics of the elastic structure,
our results indicate that low oscillation frequency is preferred in order to fully benefit
from the three-dimensional reconfiguration of the elastic structure in terms of cyclic
force generation. Moreover, the dynamics of low frequency is found to be characterized
reasonably using dimensionless parameters formulated from simple steady translation.

5. Concluding remarks

The reconfiguration of an elastic structure composed of a centre rod and multiple side
flaps has been investigated experimentally and analytically under steady and unsteady
translational motions. For unidirectional hinges that elastically connect the side flaps to
the centre rod, an empirical hinge model was proposed, and this was coupled with a
centre-rod model to examine three-dimensional reconfiguration of the elastic structure
and reveal an inverse relationship between the deflection angles of the centre rod and
side flaps. Quantitative comparisons between the experimental and theoretical results
demonstrated the adequacy of these rather simple models reflecting nonlinear properties of
various parameters. Furthermore, the dimensionless speed U∗ and reconfiguration number
R̂ were newly defined to take into account the deflections of both the centre rod and side
flaps, and it was shown that these provide an appropriate characterization of the passive
deformation and drag generation of the elastic structure. The delay in the deflection of the
side flaps, which is caused by strong unsteadiness of oscillatory motions, reduces net force
generation.

The present study provides insight into how an appropriate set of geometric and material
parameters can be found for given flow conditions in the context of force generation.
Moreover, although simple harmonic translation is considered to represent the unsteady
dynamics of the elastic structure, the proposed analytical approaches are applicable
to more complex unsteady motions and provide a useful framework to investigate
time-resolved reconfiguration process. For practical application of our multi-segmented
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model as a unit in a drag-based propulsion system, and for its optimal design, a more
comprehensive analysis on unsteady coupling between the centre rod and the side flaps
is crucial to fully understand the effects of side-flap deflections on the dramatic changes
in flow-induced force and three-dimensional reconfiguration. In future work, we aim to
optimize the design of a multi-segmented propulsion system under diverse kinematic
patterns, by improving the analytical models used in this study.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.985.
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Appendix A. Numerical procedure for unsteady model

This section presents a detailed method to predict the centre-rod deflection angle θr and
the side-flap deflection angle θf by solving numerically (3.3) and (3.9) with the iterative
method.

A.1. Numerical solution for unsteady centre-rod deflection
The position z of the centre rod and its time derivatives are expressed in terms of θr as

z =
∫ s

0
−i eiθr ds∗, (A1a)

ż =
∫ s

0
θ̇r eiθr ds∗, (A1b)

z̈ =
∫ s

0
(θ̈r + iθ̇2

r ) eiθr ds∗. (A1c)

Equation (3.3) is discretized spatially with uniform segment length �s = lr/N, where
N is the number of segments N = 20:

I l = �s

⎡
⎢⎢⎣

1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎦ , (A2a)

Iu = �s

⎡
⎢⎢⎣

1 1 · · · 1
0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎦ , (A2b)
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D2 = 1
(�s)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2c)

Rn
ccw = diag(exp(iθn

r )), (A2d)

Rn
cw = diag(exp(−iθn

r )) (A2e)

R̄n,k
ccw = diag(exp(iθ̄n,k

r )), (A2f )

R̄n,k
cw = diag(exp(−iθ̄n,k

r )), (A2g)

where I l and Iu are both spatial integration matrices, with I l starting from the origin
point (s = 0) and Iu starting from the end of the centre rod (s = lr). Also, D2 is a spatial
derivative matrix with the following boundary conditions: a fixed zero angle at the origin
point (θr = 0 at s = 0), and a free end (∂θr/∂s = 0 at s = lr). Here, Rccw and Rcw indicate
the rotation matrices, which are applied to convert the Cartesian coordinate system to the
curvilinear coordinate system (Rccw) and vice versa (Rcw), and ‘diag’ is an operator that
transforms a vector to a matrix whose off-diagonal components are zero and diagonal
components are the same as the components of a given vector. Also, θn

r is a vector for
the deflection angle of the centre rod, [θn

r,j], for s = j �s (j = 1, . . . , N), and the subscript
j is the spatial index along the s axis. The size of the matrices in (A2) is N × N. The
superscript n is the index for time step (t = n �t). The time step �t is 2 ms for f = 0.2 Hz,
and is lowered to 0.2 ms for f = 1.0 Hz. The upper bar denotes the mean of the value at
t = n �t and the value of the kth iteration at t = (n + 1)�t: e.g. θ̄n,k

r = (θn
r + θn+1,k

r )/2.
The temporal domain is also discretized with time step �t.

θ̇r = 1
�t

(θn+1,k
r − θn

r ), (A3a)

θ̈r = 1
�t

(θ̇n+1,k
r − θ̇n

r ), (A3b)

θ̇f = 1
�t

(θ
n+1,k
f − θn

f ), (A3c)

θ̈f = 1
�t

(θ̇
n+1,k
f − θ̇n

f ). (A3d)

We assume that a total of Nf side flaps move symmetrically between the two sides of
the centre rod, so that Nf /2 pairs of the side flaps are considered: Nf /2 = 10. During the
procedure to find centre-rod deflection, the size of θn

f is N, and the element of θn
f is θn

f ,j if
the side flap is attached at jth position, and zero if not. For example,

θn
f = [0, θn

f ,1, 0, θn
f ,2, . . . , 0, θn

f ,Nf /2] when N = 20. (A4)

Here, θ and θ̇ are used separately instead of using θ alone to realize the kinematic
constraints imposed on the side flaps for the power stroke.

953 A25-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

97
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.970


M. Song, J. Yoo, J. Ham and D. Kim

The time derivatives of z = −iI l exp(iθn
r ) during the transition from the nth time step to

the (n + 1)th time step are expressed as

ż = 1
�t

I l R̄n,k
ccw(θn+1,k+1

r − θn
r ), (A5a)

z̈ = 1
�t

I l R̄n,k
ccw[(θ̇n+1,k+1

r − θ̇n
r ) + i diag( ¯̇θn,k

r ) (θn+1,k+1
r − θn

r )]. (A5b)

To linearize θ̇2
r in (A1c), it is decomposed into two terms: one is θ̇r obtained from the

previous kth iteration ( ¯̇θn,k
r ), and the other is θ̇r from (A3a), containing the variable of the

current (k + 1)th iteration ((θn+1,k+1
r − θn

r )/�t). Moreover, the normal components of the
relative flow velocity and acceleration are given as

Re(Ur e−iθr) = Re
[

R̄n,k
cw Ūn − 1

�t
R̄n,k

cw I l R̄n,k
ccw(θn+1,k+1

r − θn
r )

]

= Ūn cos θ̄n,k
r − 1

�t
Īn,k
lc (θn+1,k+1

r − θn
r ), (A6a)

Re(U̇r e−iθr) = Re
[

R̄n,k
cw

¯̇Un

− 1
�t

R̄n,k
cw I l R̄n,k

ccw[(θ̇n+1,k+1
r − θ̇n

r ) + i diag( ¯̇θn,k
r ) (θn+1,k+1

r − θn
r )]
]

= ¯̇Un cos θ̄n,k
r

− 1
�t

Īn,k
lc (θ̇n+1,k+1

r − θ̇n
r ) + 1

�t
Īn,k
ls diag( ¯̇θn,k

r ) (θn+1,k+1
r − θn

r ), (A6b)

where I lc and I ls are the real and imaginary components of the matrix RcwI lRccw.
The governing equation (3.3) for the centre rod is discretized as

BrD2 θ̄n,k+1
r + iT + R̄n,k

cw Iu[R̄n,k
ccw f nor − i �ρ gh(wr + 2lsf )] = R̄n,k

cw Iuf I . (A7)

Rewriting (3.5) and (3.6) with (A5) and (A6) gives

f R,r = 1
2

CNρwwr diag(|Ūn cos θ̄n,k
r − Īn,k

lc
¯̇θn,k

r |)
[

Ūn cos θ̄n,k
r − 1

�t
Īn,k
lc (θn+1,k+1

r − θn
r )

]

= f R,r0 − MR,r0(θ
n+1,k+1
r − θn

r ), (A8a)

f A,r = π

4
CMρww2

r

[
¯̇Un cos θ̄n,k

r − 1
�t

Īn,k
lc (θ̇n+1,k+1

r − θ̇n
r )

+ 1
�t

Īn,k
ls diag( ¯̇θn,k

r )(θn+1,k+1
r − θn

r )

]

= f A,r0 − MA,r1(θ̇ r
n+1,k+1 − θ̇n

r ) + MA,r0(θ
n+1,k+1
r − θn

r ), (A8b)

f I,r = 1
�t

ρshwrI l R̄n,k
ccw [(θ̇n+1,k+1

r − θ̇n
r ) + i diag( ¯̇θn,k

r ) (θn+1,k+1
r − θn

r )]

= M I,r1(θ̇
n+1,k+1
r − θ̇n

r ) + M I,r0(θ
n+1,k+1
r − θn

r ), (A8c)
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f R,f = (Ūn)2CFR,f ◦ l̂f 1 ◦ cos2 θ̄n,k
r ◦ cos2 θ̄

n,k
f

+ CFR,f ◦ |Ūn,k
f − θ̇

n,k
f ◦ lsf | ◦ (2Ūn cos θ̄n,k

r ◦ cos θ̄
n,k
f − ¯̇θn,k

f ◦ lsf )

− 1
�t

diag[CFR,f ◦ l̂f 1 ◦ cos2 θ̄
n,k
f ◦ (2Ūn cos θ̄n,k

r − Īn,k
lc

¯̇θn,k
r )

+ 2CFR,f ◦ |Ūn,k
f − θ̇

n,k
f ◦ lsf | ◦ cos θ̄

n,k
f ] Īn,k

lc (θn+1,k+1
r − θn

r )

= f R,f 0 − MR,f 0(θ
n+1,k+1
r − θn

r ), (A9a)

f A,f = CFA,f ◦
[

¯̇Un cos θ̄n,k
r ◦ cos θ̄

n,k
f − 1

2 �t
(θ̇

n+1,k
f − θ̇n

f ) ◦ lsf

]

− 1
�t

diag(CFA,f ◦ cos θ̄n,k
r )[Īn,k

lc (θ̇n+1,k+1
r − θ̇n

r ) − Īn,k
ls diag( ¯̇θn,k

r ) (θn+1,k+1
r − θn

r )]

= f A,f 0 − MA,f 1(θ̇
n+1,k+1
r − θ̇n

r ) + MA,f 0(θ
n+1,k+1
r − θn

r ), (A9b)

f I,f = 2
�t

ρsh diag(lsf )

[
lsf

2
◦ [(θ̇n+1,k

f − θ̇n
f ) ◦ cos θ̄

n,k
f + ¯̇θn,k

f ◦ (θ
n+1,k
f − θn

f ) ◦ sin θ̄
n,k
f ]

+ I l R̄n,k
ccw[(θ̇n+1,k+1

r − θ̇n
r ) + i diag( ¯̇θn,k

r ) (θn+1,k+1
r − θn

r )]
]

= f I,f 0 + M I,f 1(θ̇
n+1,k+1
r − θ̇n

r ) + M I,f 0(θ
n+1,k+1
r − θn

r ), (A9c)

where CFR,f = 1
3 CNρwlsf ◦ cos θ̄

n,k
f and CFA,f = (π/2)CMρwwf lsf ◦ cos θ̄

n,k
f . The symbol

◦ denotes elementwise product, and Ūn,k
f is the normal component of the relative velocity

for the side flap at the hinge,

Ūn,k
f =

[
Ūn cos θ̄n,k

r − 1
�t

Īn,k
lc (θn+1,k

r − θn
r )

]
◦ cos θ̄

n,k
f . (A10)

In (A8a) and (A9a), the relative flow velocities from the kth iteration are adopted for

the terms inside the absolute sign (Ūn cos θ̄n,k
r − Īn,k

lc
¯̇θn,k

r , Ūn,k
f in l̂f 1, and Ūn,k

f − θ̇
n,k
f ◦

lsf ) because the absolute values near zero can cause nonlinearity. Therefore, (k + 1)th
variables in (A6) are replaced by known values from the previous kth iteration.

The governing equation then becomes[
R̄n,k

cw Iu[R̄n,k
ccw

(
MR,r0 − MA,r0 + MR,f 0 − MA,f 0

)+ M I,r0 + M I,f 0] − 1
2 BrD2

]
θn+1,k+1

r

+ R̄n,k
cw Iu[R̄n,k

ccw(MA,r1 + MA,f 1) + M I,r1 + M I,f 1]θ̇n+1,k+1
r

= iT + R̄n,k
cw Iu[R̄n,k

ccw(f R,r0 + f A,r0 + f R,f 0 + f A,f 0) − f I,f 0 − i �ρ gh(wr + 2lsf )]

+
[
R̄n,k

cw Iu[R̄n,k
ccw(MR,r0 − MA,r0 + MR,f 0 − MA,f 0) + M I,r0 + M I,f 0] + 1

2 BrD2

]
θn

r

+ R̄n,k
cw Iu[R̄n,k

ccw(MA,r1 + MA,f 1) + M I,r1 + M I,f 1]θ̇n
r . (A11)
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Equation (A11) can also be expressed as follows:

(
M0 − 1

2 BrD2

)
θn+1,k+1

r + M1θ̇
n+1,k+1
r = iT + F +

(
M0 + 1

2 BrD2

)
θn

r + M1θ̇
n
r ,

(A12)
where M0, M1, and F are

M0 = R̄n,k
cw Iu[R̄n,k

ccw(MR,r0 − MA,r0 + MR,f 0 − MA,f 0) + M I,r0 + M I,f 0], (A13a)

M1 = R̄n,k
cw Iu[R̄n,k

ccw(MA,r1 + MA,f 1) + M I,r1 + M I,f 1], (A13b)

F = R̄n,k
cw Iu[R̄n,k

ccw(f R,r0 + f A,r0 + f R,f 0 + f A,f 0) − f I,f 0 − i �ρ gh(wr + 2lsf )]. (A13c)

Using the linearized Crank–Nicolson scheme for θn+1,k+1
r in (A12):

θn+1,k+1
r = θn

r + �t ¯̇θn,k+1
r = θn

r + �t
2

(
θ̇n

r + θ̇n+1,k+1
r

)
, (A14)

MLHS θ̇n+1,k+1
r = iT + F + BrD2θ

n
r + MRHSθ̇

n
r , (A15)

where MLHS and MRHS are

MLHS = M1 + �t
2

(
M0 − 1

2
BrD2

)
, (A16a)

MRHS = M1 − �t
2

(
M0 − 1

2
BrD2

)
. (A16b)

Here, θ̇n+1,k+1
r is obtained from the real components in (A15),

θ̇n+1,k+1
r = [Re(MLHS)]−1 Re(F + BrD2θ

n
r + MRHSθ̇

n
r ), (A17)

and θn+1,k+1
r then is obtained from (A14).

A.2. Numerical solution for unsteady side-flap deflection
The governing equation (3.9) for the side flaps is discretized as

− Bh

lh
cos θ̄

n,k
f ◦ θ̄

n,k+1
f + τR + τA + τB = τ I, (A18)

where θn
f is a vector for the deflection angles of the side flaps, [θn

f ,jf ], where jf is the index
of the side flaps (jf = 1, . . . , Nf /2). Because of the symmetric motions of the side flaps,
only Nf /2 side flaps in one side are computed. Note that the size of θn

f is different from
that of θn

f used in the previous subsection. To acquire the velocity and acceleration vectors
at the hinges of the side flaps, a matrix to extract the information from the centre-rod
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segments is required:

Mrf (jf , j) =
{

�s
wf

if the jf th side flap is attached to the jth centre-rod segment,

0 if the jf th side flap is not attached to the jth centre-rod segment.
(A19)

The size of Mrf is Nf /2 × N. Then the terms in (3.10) are given as

τR = 1
24

CNρwwf l2f

[
l̂f 2 ◦ (Ūn,k

f )2 + 5 |Ūn,k
f − ¯̇θn,k

f lsf | ◦ Ūn,k
f

− 3
�t

lf |Ūn,k
f − ¯̇θn,k

f lf | ◦ (θ
n+1,k+1
f − θn

f )

]

= τR0 − CTR ◦ (θ
n+1,k+1
f − θn

f ), (A20a)

τA = π

24
CMρww2

f l2f

[
3 ¯̇Un,k

f − 2
�t

lf (θ̇
n+1,k+1
f − θ̇n

f )

]

= τA0 − CTA(θ̇
n+1,k+1
f − θ̇n

f ), (A20b)

τB = −1
2

�ρgwf hl2f Mrf sin θ̄n,k
r ◦ cos θ̄

n,k
f , (A20c)

τ I = 1
�t2

ρshwf l2f

[
1
2

Mrf I l R̄n,k
ccw[(θ̇n+1,k+1

r − θ̇n
r )

+ i diag( ¯̇θn,k
r ) (θn+1,k+1

r − θn
r )] ◦ cos θ̄

n,k
f + 1

3
lf (θ̇

n+1,k+1
f − θ̇n

f )

]

= τ I0 + CTI(θ̇
n+1,k+1
f − θ̇n

f ), (A20d)

where Ūn,k
f and ¯̇Un,k

f are the normal components of the relative velocity and acceleration
for the side flap at the hinge:

Ūn,k
f = Mrf

[
Ūn cos θ̄n,k

r − 1
�t

Īn,k
lc (θn+1,k

r − θn
r )

]
◦ cos θ̄

n,k
f , (A21a)

¯̇Un,k
f = Mrf

[
¯̇Un cos θ̄n,k

r − 1
�t

Īn,k
lc (θ̇n+1,k

r − θ̇n
r )

+ 1
�t

Īn,k
ls diag( ¯̇θn,k

r ) (θn+1,k
r − θn

r )

]
◦ cos θ̄

n,k
f . (A21b)

Combining with (A20), (A18) is expressed as(
CTR + Bh

2lh
cos θ̄

n,k
f

)
◦ θ

n+1,k+1
f + (CTA + CTI)θ̇

n+1,k+1
f

= τR0 + τA0 + τB − τ I0 +
(

CTR − Bh

2lh
cos θ̄

n,k
f

)
◦ θn

f + (CTA + CTI)θ̇
n
f . (A22)
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Using the linearized Crank–Nicolson scheme for θ
n+1,k+1
f in (A22):

θ
n+1,k+1
f = θn

f + �t ¯̇θn,k+1
f = θn

f + �t
2

(θ̇n
f + θ̇

n+1,k+1
f ), (A23)

[
(CTA + CTI) + �t

2

(
CTR + Bh

2lh
cos θ̄

n,k
f

)]
◦ θ̇

n+1,k+1
f

= τR0 + τA0 + τB − τ I0 − Bh

lh
cos θ̄

n,k
f ◦ θn

f

+
[
(CTA + CTI) − �t

2

(
CTR + Bh

2lh
cos θ̄

n,k
f

)]
◦ θ̇n

f . (A24)

Here, θ̇
n+1,k+1
f is obtained from

θ̇
n+1,k+1
f = 1

CLHS
◦
[
τR0 + τA0 + τB − τ I0 − Bh

lh
cos θ̄

n,k
f ◦ θn

f + CRHS ◦ θ̇n
f

]
, (A25)

where CLHS and CRHS are

CLHS = (CTA + CTI) + �t
2

(
CTR + Bh

2lh
cos θ̄

n,k
f

)
, (A26a)

CRHS = (CTA + CTI) − �t
2

(
CTR + Bh

2lh
cos θ̄

n,k
f

)
. (A26b)

Then θ
n+1,k+1
f is obtained from (A23).

A.3. Iterative method for coupled equations
The iterative method is applied for the discretized equations for the centre rod and side
flaps. The deflections of the centre rod and side flap are estimated in parallel at the
(k + 1)th iteration. The centre-rod angle θn+1,k+1

r is updated, using (A17) where the
side-flap angle at the kth iteration, θ

n+1,k
f , is applied as shown in the external load relation

(A9). In a similar way, the side-flap angle θ
n+1,k+1
f is updated, using (A25) where the

centre-rod angle at the kth iteration, θn+1,k
r , is applied as shown in the external torque

relation (A20). To make θn+1,k
r (N × 1) and θ

n+1,k
f (Nf /2 × 1) compatible, (A4) and (A19)

should be used to change the size of a vector between the two coupled processes.
When the iteration begins (k = 1), variables at the previous time step are used for

initialization: θn+1,1 = θn. Also, the angular accelerations of the previous time step are
employed to compute the added mass and structural inertia at the initial iteration. The
iteration terminates when the root-mean-square of errors is smaller than 10−8, where the
errors are defined as

er = (θ̇n+1,k+1
r − θ̇n+1,k)

r )/θ̇n+1,k
r , (A27a)

ef = (θ̇
n+1,k+1
f − θ̇

n+1,k)
f )/θ̇

n+1,k
f . (A27b)
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Figure 18. Dimensional amplitude of tip deflection δ with respect to dimensional speed U0 for (a) cases with
a thin centre rod, and (b) cases with a thick centre rod, where (i) and (ii) are for the power and recovery strokes,
respectively. Symbols and lines denote experimental and theoretical results, respectively.

To model properly the power and recovery strokes, additional conditions about θ f and θ̇ f
are necessary. When the deflection angle of the side flap at an arbitrary jf = jlb becomes
less than zero (θn+1

f ,jlb < 0), both θn+1
f ,jlb and θ̇n+1

f ,jlb are restricted to be 0. The restriction of the
deflection angle should be imposed after the end of the iteration loop because it makes the
iteration diverge when θf ,jlb is near zero.

Appendix B. Dimensional tip deflection and drag force for steady translation

Figures 18 and 19 present the dimensional tip deflection δ of the centre rod and
the quasi-steady drag force D with respect to the dimensional speed U for steady
translation, which correspond to the dimensionless forms in figures 8 and 10,
respectively.

Appendix C. Relation of dimensionless tip deflection and reconfiguration number

Figure 20 shows the relationship between the dimensionless tip deflection magnitude δ/lr
and the new reconfiguration number R̂ for steady translation.
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Figure 19. Dimensional quasi-steady drag force D with respect to dimensional speed U for (a) cases with a
thin centre rod, and (b) cases with a thick centre rod, where (i) and (ii) are for the power and recovery strokes,
respectively. Symbols and lines denote experimental and theoretical results, respectively.

δ/lr δ/lr

1.0

2.0

0

(a-i) (a-ii)

(b-i) (b-ii)

0

Black

Blue

Red

lf = 4 cm

lf = 3 cm

lf = 2 cm

Hard
Medium
Soft

Exp Theo
1.5

0.5

1.0

2.0

1.5

0.5

1.0

2.0

1.5

0.5

1.0

2.0

1.5

0.5

R̂

R̂

1.00.60.40.2 0.8 1.00.60.40.2 0.8

0 01.00.60.40.2 0.8 1.00.60.40.2 0.8

Figure 20. New reconfiguration number R̂ for (a) cases with a thin centre rod, and (b) cases with a thick
centre rod with respect to dimensionless tip deflection magnitude δ/lr, where (i) and (ii) are for the power and
recovery strokes, respectively. Symbols and lines denote experimental and theoretical results, respectively.
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