
SPHERICAL GEOMETRIES AND MULTIGROUPS 

WALTER PRENOWITZ 

1. introduction. The notion spherical geometry is suggested by the familiar 
geometry of the Euclidean 2-sphere in which the role of path is played by 
"arc of great circle". The first postulational treatment of the subject seems 
to be that of Halsted [10] for the two-dimensional case. Kline [11] under the 
name double elliptic geometry, gave a greatly simplified foundation for the 
three-dimensional case based on the primitive notions point and order.1 Hal­
sted and Kline study not merely descriptive (that is positional, non-metrical) 
properties of figures but also introduce metrical notions by postulating or de­
fining congruence. Kline includes a continuity postulate designed to yield 
real spherical geometry. 

Our object is to study the descriptive properties of spherical geometries by 
general mathematical methods under the weakest possible hypotheses. Just 
as there exist affine or projective geometries of arbitrary dimension correspond­
ing to any coefficient field (not necessarily commutative), we should like to 
define spherical geometries of arbitrary dimension corresponding to any ordered 
field. This is possible if we consider the prototype of a spherical geometry to 
be the set of rays emanating from a point of an ordered affine geometry. This 
model of course is suggested by the familiar isomorphic mapping of a Euclidean 
2-sphere into the family of rays which emanate from its centre. The model 
does not always (that is for all underlying fields) enjoy all the metrical prop­
erties of a Euclidean sphere, but it does exhibit the familiar descriptive prop­
erties and it does yield, in a sense, a ''topological" sphere for every ordered 
field. 

In order to give spherical geometries an autonomous existence we charac­
terize them abstractly by postulates taking point as primitive. To do justice 
to ordinary goemetrical intuition we follow Kline in adopting as the second 
primitive notion the 3-term relation order suggested by the relation of points 
a,b,c when b is interior to the minor arc of a great circle which joins a and c. 
However this relation, despite its intuitive salience, does not facilitate general­
ization—it is, so to speak, too strongly linear or one-dimensional. Thus we 
define from it the notion join of a pair of points, which can be generalized to 
sets and extended to n points and forms the basis of our treatment of spherical 
geometries. 

Consider then the following postulates involving a set 5 of elements a,b,c, . . . 
called points and a 3-term relation order indicated (abc), which may be read 
points a,b,c are in the order abc, or b lies between a and c: 

Received February 18, 1949. 
^al le t t [9], Flanders [8] have also given treatments of the subject. 

100 

https://doi.org/10.4153/CJM-1950-010-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-010-7


SPHERICAL GEOMETRIES AND MULTIGROUPS 101 

0 1 . If (abc) then a,b,c are distinct. 
02. If (abc) then (cba). 
0 3 . For each point a there exists a unique point p such that p 9^ a and (axy) 

always implies (xyp). 
DEFINITION 1. The uniquely determined point p in 0 3 is called the opposite 

of a and is denoted functionally by a''. 
04. If b ^ a,a' there exists x such that (axb). 
DEFINITION 2. If a,b are points and b 7^a,af the set of all x for which (axb) 

is called the join or sum of a,b and is denoted operationally by a + b. The 
join of a and a, denoted a + a, we take to consist of a itself. For simplicity 
we shall identify element a and set (a) whose only member is a,2 so that for 
example we may assert the idempotent law a + a = a. This also enables us 
to employ the inclusion signs C , D for elements as well as sets. For the 
present we do not define a + a' (see sec. 3). 

In order to iterate the operation + we must define sum of sets of points. 
Thus we introduce 

DEFINITION 3. If A,B are non-void sets of points A + B, the join or sum 
of A and B is the set union ^acA, bcB (& + b). Observe that this is consistent 
with the definition of join of points a,b just adopted since if A,B consist of 
single elements, say A = a, B — b then A + B as defined reduces to a + b.z 

Further note that if any element of B is the opposite of an element of A then 
A + B is meaningless, since one of the summands in its definition is not 
significant. 

05 . (a + b) + c — a + (b + c) provided both members are defined. 
Observe that 0 5 involves the restrictions b 7^ a', that c shall not be the 

opposite of any point of a + b, etc. We shall consider later (sec. 3) the matter 
of removing these restrictions. 

Now we formally define the sense in which the term spherical geometry is to 
be employed. 

DEFINITION 4. A set 5 in which is defined a relation (abc) satisfying 
0 1 , . . . , 0 5 is called a spherical geometry. 

If we take S to be a Euclidean w-sphere and (abc) to mean b is an interior 
point of the minor arc of a great circle which joins a and c then 0 1 , . . . , 0 5 
are satisfied, and we call 5 with order thus defined a Euclidean spherical 
geometry. A second type of spherical geometry (which includes the first in 
the sense of isomorphism) arises if 5 is the set of rays emanating from a point 
P of an ordered affine space of arbitrary (finite or infinite) dimension and (abc) 
means ray b is interior to the angle formed by the non-opposite rays ayc. We 
can form an analogous class of analytic spherical geometries as follows. In a 

2In virtue of this agreement which is maintained throughout the paper (whether or not the 
elements are points) our definitions and theorems concerning non-void sets hold also for 
elements. 

3A similar consistency principle holds throughout the paper whenever a notion defined for 
sets is apparently ambiguous when applied to elements. 
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linear vector space L over an ordered division ring F, define [a /3 y ] to mean 
there exist X, Y in F satisfying 

p = Xa+Yy, X+Y=1, 0 < X, F. 
Define a, the ra;y of L determined by a a non-zero element of L, to be the set 
of Xa where X > 0 and ranges over F. Call rays a, — a opposite. Then 5, 
the set of all rays of L, is a spherical geometry if we define (abc) to mean rays 

a,c are distinct and not opposite and a=ayb=(3, c=y where [a/3y]. It is 
noteworthy that any spherical geometry of sufficiently high "dimension" is 
representable as such an analytic spherical geometry just as any projective 
geometry of dimension greater than 2 can be coordinatized—the proof of the 
former can be made to depend on the latter and will be given elsewhere. 

The postulate set 0 1 , . . . , 0 5 was evolved from that of Kline [11, Axioms 
I, . . . , X] with the object of formulating a simple and natural basis for spher­
ical geometry and facilitating the study of the operation join. In 0 5 the only 
essential novelty is an operational formulation of a triangle transversal postu­
late used by Kline [11, Axiom VII]4 generalized so as to include as many 
degenerate cases as possible within the limits imposed by the restriction in our 
definition of + ; this gives it increased deductive power since it covers linear 
as well as two-dimensional cases. 

Our procedure in the study of spherical geometries will be to exploit consis­
tently the algebraic properties of the operation join. We shall show that by 
adjoining an ideal element o to spherical geometry S to play the role of an 
identity element and by extending the definition of + appropriately we can 
convert .S into a generalized group with many-valued composition, called a 
multigroup.5 The multigroups thus generated are in a class which we call 
regular multigroups; these bear close analogies to abelian groups since each 
element a has a unique inverse — a and subtraction is related to addition by 
the familiar formula, a — b = a + ( — b). Thus we are able to subsume the 
theory of spherical geometries under that of regular multigroups, in fact we 
show it is equivalent in a certain sense to the theory of a particular class of 
regular multigroups (Theorems 12, 13). 

It is known [14, 15] that projective and descriptive (ordered linear) geome­
tries can be characterized and developed as multigroups,6 which however do not 
bear close formal analogies to abelian groups or to the multigroups which have 
received most attention from algebraists. On the other hand our regular 
multigroups are covered by the multigroup theory of Dresher and Ore[6] which 

4Compare Veblen [17, Assumption 5] ; see also Flanders [8, Axiom 05] and his reference to 
Hallett [9]. 

5A multigroup is a system closed under an associative many-valued operation °, which con­
tains elements x,y satisfying the relations a° xD b, y ° aD b when a,b are in the system; see 
[6, pp. 706, 707]. For references on multigroups see J. E. Eaton, "Associative multiplicative 
systems," Amer. J. Math., vol. 62 (1940) 222-232; also see J. Kuntzmann, "Contribution à 
l 'étude des systèmes multiformes," Ann. Sciences Toulouse, (4) vol. 3 (1939), 155-194. 

6For a "simultaneous" formulation of these geometries as multigroups see [16]. 
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was motivated by algebraic considerations suggested by group theory. Thus 
from the viewpoint of this paper it would seem that spherical geometries are 
more '"regular" than descriptive or projective geometries and may possibly 
deserve a more central position in the comparative theory of geometrical 
systems. 

We explicitly develop the theory of spherical geometries only to the point 
necessary to establish their equivalence to a class of regular multigroups. We 
then outline the theory of regular multigroups including: subsystems and their 
generation; cosets, homomorphisms and factor multigroups; linear indepen­
dence and rank. These ideas cover the geometrical topics: linear (or spherical) 
subspaces, their alignment and intersection properties; half-spaces (for example 
in a Euclidean spherical geometry, semicircles, hemispheres, etc.); separation 
of linear subspaces; linear independence and dimension. For the sake of con-
creteness and familiarity we use Euclidean spherical geometries to exhibit the 
geometrical significance of the above algebraic ideas, although they are appli­
cable to arbitrary spherical geometries with no essential change in the discus­
sion. 

2. Order properties. In this section we develop the theory of order in a 
spherical geometry S from postulates 0 1 , . . . , 0 5 to prepare for the extension 
of the associative law for + . The main results (Theorems 7,8) give combina­
tory formulas for certain sums of points. Theorems 1, . . . , 6 are principally 
theorems or postulates of Kline [11] and are intuitively very familiar. 

THEOREM 1. (axaf) and (aafx) are always false? 
Proof. By 03 , {axa') implies (xa'a') which is contrary to 0 1 . Similarly 

{aa'x) implies (a'xa') contrary to 0 1 . 
COROLLARY. (a')' = a; or equivalently b — a* implies a — b'. 
Proof. Let a" denote (a')'. Suppose a" ^ a. By 0 3 a" ^ a'. Thus by 

04 (axaff) holds for some x. Thus by 0 3 (xa"af), which by 0 2 implies (afa"x). 
This contradicts Theorem 1, so that a" = a. 

The following result enables us to interpret order relations in "join" language 
and vice versa. 

THEOREM 2. (abc) implies b C. a + c\ conversely b C # + c implies (abc) 
provided a 9^ c. 

Proof. Suppose (abc). Then c ^ a by 0 1 and c ^ a' by Theorem 1. 
Thus b C # + c by Definition 2. The remainder of the theorem is immediate 
by Definition 2. 

Next we prove (Kline [11, Axiom V]) 
THEOREM 3. (abc), (acd) imply (abd). 
Proof. Suppose (abc), (acd). By Theorem 2 we have 

(1) b d a + c, c C a + d. 
We wish to assert 
(2) b C a + (a + d) = (a + a) + d. 

7Compare Kline [11, Axiom I, Theorem 3]. 
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The first relation in (2) is implied by (1) in view of Definition 3, provided the 
expression a + (a + d) is significant; that is, provided a' (£ a + d. Suppose 
a' C a + d. By 0 1 , (acd) implies a ^ d. Thus the second part of Theorem 2 
implies (aa'd), contrary to Theorem 1. Thus the first relation in (2) is justified. 
Ety 0 5 the second relation in (2) is valid, provided the expression (a + a) + d 
is significant. But by the idempotent law (a + a) + d reduces to a + d whose 
existence is involved in relation (1). Thus (2) is verified and it implies b(Za+d. 
By the second part of Theorem 2 we have (abd) and the proof is complete. 

COROLLARY 1. (abc) implies that (bea) is false. 
Proof. Suppose (abc), (bca). Then (acb), which with (abc) implies by 

Theorem 3 (abb). 
COROLLARY 2. (abc), (acd) imply (bed). 
Proof. By 02 , 0 3 we have the following implications: (acd) -> (dca) ->• (cadf). 

Also (abc) •> (cba). By Theorem 3, 02 , 0 3 and the corollary to Theorem 1 
we have 

(cba), (cad') > (cbdf) > (d'bc) > (bed). 

We continue with three theorems on order of four points [11, Theorems 22, 
24, 25]. We dispense with the proofs—the first depends on the associative 
law like Theorem 3 and the latter two then follow by standard arguments of 
the foundations of geometry. 

THEOREM 4. If (abc), (bed) and d ^ a' then (abd) or (ab'd). 
THEOREM 5. If (abc), (abd) and c 9^ d then (acd) or (adc). 
THEOREM 6. If (axb), (ayb), x ^ y then (axy) or (ayx). 
We now prove the principal results of this section. 
THEOREM 7. a + (a' + b)=a + bKJb\Ja' + b provided8 b 5* a,a'. 

Proof. Suppose b 7e a,a'. Then a1 + b is defined and is non-void. Further­
more a' C 0! +b implies (a'a'b) since a' y^ b. Thus a' (£_ a' + b and a + 
(a' + b) is significant. Clearly the right member of the relation to be estab­
lished is significant. We shall complete the proof by showing the equivalence 
of the following relations: 

(1) xQa + (a' + b), 

(2) xCa + b\JbKJa'+b. 

Suppose (1). Then by Definition 3 

(3) xCa+y, y C a' + b 

holds for some y. The second relation in (3) implies (afyb). From this we 
have (yba) and so (aby). Thus a 9e y and the first relation in (3) implies 
(axy). If x = b then (2) holds. Suppose x 9^ b. Then by Theorem 6 (axy), 
(aby) imply (axb) or (abx). If (axb) then x (Z a + b. If (abx) then (bxa') so 
that (a'xb) and x C a1 + b. In either case (2) holds. 

8We use the symbol U to denote set theoretic addition. In expressions involving -f, U 
we adopt the convention tha t portions separated by U signs are to be considered enclosed in 
parentheses unless the contrary is explicitly indicated. 
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Conversely we show (2) implies (1). First suppose x C. a + b. Then (axb) 
since a ^ b. Since b ^ a'' ,a there exists z such that (a'zb) by 04. Hence (zba) 
and (abz). By Theorem 3, (axb), (abz) imply (axz). Thus we have 
(4) x C a + z, z C a' + b 

and (1) follows by Definition 3. Now suppose x = b. Then (4) holds with 
the same choice of z and (1) follows as before. Finally suppose x C a' + b. 
Then (a'xb) and x ^ a',a. Now choose s such that (a'zx). Then (:sxa) and 
(axz). Furthermore (a'zx), (arxb) imply by Theorem 3 (afzb). Thus (4) holds 
and the theorem is established. 

THEOREM 8. If p C a + b then a + b = a + pKJ p\J b + p. 

Proof. Suppose p C Q> + b. U a = b the result is trivial. Suppose a ^ b. 
Then (apb). Let R = a + p\J p\J b + p. Suppose x C R- H x = p then 
x C. a + b. Supposes C a + p. Since a ^ p we have (axp). This with (apb) 
implies by Theorem 3 (axb), so that x (Z a + b. Similarly x (Z b + p implies 
x C a + b. Thus R Q a + b. Conversely suppose x C a + b. Then (axb). 
lix = p then x Q R. Suppose x 9^ p. Then (ax6), (apb) imply by Theorem 6 
(axp) or (apx). If (ax/>) then x C a + p C ^ . If (a£x), then (axb) implies 
by Corollary 2 of Theorem 3 (pxb). Thus (bxp) and x C b + p C -R. Hence 
a + b = R and the theorem is proved. 

3. The associative law. In this section we show how to extend the defini­
tion of + in a spherical geometry S so as to obtain the unrestricted validity 
of the associative law. However this is impossible within the confines of S 
(Theorem 9), if S is non-trivial, but can be accomplished very simply in the 
system formed by the adjunction to 5 of an "ideal" element o which plays the 
role of an identity for the operation + . 

THEOREM 9. Let spherical geometry S contain at least three points. Then it 
is impossible to extend our definition of + (Definition 2) to all pairs of points of 
S in such a way as to preserve the associative law.9 

Proof. Suppose such an extension of Definition 2 possible in 5—it being 
understood of course that the iterated sums appearing in the associative law 
are defined by Definition 3. Suppose p ?£ a,a'. The associative law and 
Theorem 7 imply 

(1) (a + a') + p = a + p \J p \J a' + p. 

Thus (a + a') + p Z) P and by Definition 3 there exists o in S satisfying 

(2) o + pDp, a + a'Do. 

If p y£ o,o' the first relation in (2) implies (opp). Thus p = o or o' so that 
o = p or p' and (2) implies a + a' 3 P or p'. It is not restrictive to suppose 
(3) pCa + a'. 

9The numerical restriction is essential since the spherical geometry composed of points p,q 
satisfying p = q\ q = p' with vacuous order relation satisfies the associative law if we define 
a -j- a' to consist of a,a'. 
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By 04, {p'qa) for some g. Thus (qap) and a C P + q_. By Definition 3 we 
may add q to both sides of (3) and we obtain 

(4) a C (a + a') + q. 
Since q 3̂  a,a' we may replace p in (1) by q getting in view of (4), a C # + q ^ 
q VJ a' + 5. This implies (aaq), a = 5 or {a'aq) which are false, and the proof 
is complete.10 

This is not as disappointing as it might seem. The associative law fails in S 
because it implies (2) which requires that a + a' contain for each p, a "relative" 
identity element o. This is impossible in 5, and suggests the possibility of 
validating (2) and the associative law by going outside S. The simplest 
way to do this is to assign to a + a' an ideal element o, not in 5, such that 
x-\-o — o-\-x — x for each x in S. Thus o plays the role of an additive 
'dentity and (2) becomes valid. Then if the associative law is to hold 

a + a' = (a + a) + a' — a + (a + a') D a + o = a . 
Similarly we get a + a' D a'. Conversely if we require a + a' to consist of 
a,a',o the associative law holds; we formalize and complete the discussion in 
the following definition and theorem. 

DEFINITION 5. Let Sf be the set formed by adjoining to S an "ideal" 
element o, which is not in 5. We extend Definition 2 on sum of elements to 
S' as follows: 

a + a' — a\J a '^J o, a C S\ 

è + o = o + 6 = 6, bCS'. 

Sum of sets is determined in S' as in S by Definition 3.11 

THEOREM 10. In Sf we have (a) a+b = b+a; (b) (a+b)+c=a + (b + c). 

Proof, (a) This follows easily from 02 , the corollary to Theorem 1 and 
Definition 5. 

(b) The degenerate cases in which one of a,b,c is o or one is the 
opposite of another can be disposed of using Definition 5, Theorem 7 and 0 5 . 
Suppose a,b,c ^ o and neither is the opposite of another. Then a + &, b -\-c 
are significant in the sense of Definition 2, and the result holds by 0 5 unless 
one of the following is true: 

(1) c' C a + b, 
(2) a' C b + c. 

But (1) and (2) are equivalent. For (1) implies a 9^ b (otherwise c1 = a) and 
so (ac'b). Thus (ac'b) > (crbar) > (ba'c) -> (2). Similarly we can show (2) 
implies (1). Thus we have only to consider the case in which both (1) and (2) 
hold. In this case we may apply Theorem 8 to a + b and cr, and using the 
associative law for cases already mentioned we have 

10 We have implicitly required tha t a + a' be non-void since the sum of a + o! and p must 
be significant by Definition 3, which excludes the void set from consideration. However the 
theorem is also valid if we allow a + a' to be void. 

n Note that the converse of Theorem 2 still holds for a,b,c in S with the added proviso c 7^ a''. 
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(a +b) +c = (a + c'KJc'\Jb + c') +c 
= a + c' + cU cr + c U b + c' + c 
= a + (c' U cV o) KJ c' V c\J o\J b + (c'UcUo) 
- a + c'V a + cKJ aV c'\J c\J o\J b + c'\Jb+cVJb 
= a + c'\J c'KJb + c'\Jb + c\Ja + c\Ja\Jb\Jc\Jo 
= a + b\Jb + c\Jc + a\Ja\Jb\Jc\Jo. 

Since the last expression is symmetrical in a,fr,c, when we apply the same 
argument to a + (b +c) = (b + c) + a, as we may in view of (2), we get the 
same result. Thus (b) is verified. 

4. Spherical geometries as multigroups. Continuing the discussion of the 
last section we show that 5", with + as defined, is a multigroup with strong 
regularity properties and that the theory of spherical geometries is in a sense 
equivalent to that of a certain class of abelian multigroups. 

We begin with the following definition. 
DEFINITION 6. A regular multigroup is a set G of elements a,b,c, . . . in 

which is defined a 2-term operation + satisfying postulates12 Ml , . . . , M5: 

Ml . a + b is a uniquely determined non-void subset of G. 

M2. (a + b) + c = a + (b + c). 
M3. a + b = b + a. 

M4. There exists in G an element o, called an identity element, such that 
a + o = a for each a in G. 

In G we define a — b to be the set of all x satisfying b + x 3 a. 

M5. For each b in G there exists b* in G satisfying13 

(1) a - b = a + b*. 

The order of regular multigroup G is its cardinal number. 
It is easily seen that G has a unique identity element, which may then be 

represented unambiguously by o. Observe that in view of M5, M l a — b^O.14 

M5, M4, M3 imply 
(2) o - b = 6*. 
Thus o — b is a single element and b* in M5 is uniquely determined. In view 
of (2) we naturally call b* the negative or inverse of b and denote it — b. Thus 
— b = o — b and in view of the definition of o — b, we may characterize — b 
as the unique solution x of the relation b + x D o. It easily follows that 
— ( — b) = b. Replacing b* in (1) by — b, (1) assumes the form 

a—•& = # + (— b) 
which is the familiar relation between subtraction and addition of abelian 
group theory. Thus an abelian group is seen to be a regular multigroup. 

12We maintain the agreements on identification of elements and unit sets and the use of D, 
C adopted above (Definition 2) and we extend + from elements to non-void sets by Definition 3. 

13We are using the term regularity in a much more restricted sense than Dresher and Ore 
[6, p. 708]; in our sense it implies self-reversibility and complete regularity [6, pp. 717, 723]. 

uO denotes the void set. 
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We now discuss the relation between spherical geometries and regular 
multigroups. 

THEOREM 11. If S is a spherical geometry then Sf, with + as defined, is a 
regular multigroup in which the negative of point a is its opposite a1'. 

Proof. M l , . . . , M4 hold in S' in view of Definitions 2,5 and Theorem 10. 
If b = o M5 holds with b* = o since a — o = a. If b ^ o then b Q S and we 
choose &* = b', the opposite of b. Then M5 is easily verified if a = o}b or V. 
Suppose a y£ o,b,b'. Supopse x C. a — b. Then b + x D a and x ^ b,b',o. 
Thus ô + x is defined by Definition 2 so that by Theorem 2, H x 3 a implies 
(frax) and so (axbf). Thus x C # + &'. Conversely x C a + &' > (axV) > 
(Vxa) -> (xaè) -> (Jax) > a C H ^ > ^ C a — J. Thus M 5 is completely veri­
fied and the theorem is proved. 

This result suggests 
DEFINITION 7. Let 5 be a spherical geometry. Then S' with + as defined, 

is called the associated multigroup of 5.15 

The last result does not distinguish associated multigroups of spherical 
geometries from abelian groups or other regular multigroups. Thus we must 
find special properties to characterize these multigroups. First we introduce 

DEFINITION 8. Let G be a regular multigroup. A submultigroup of G is a 
non-void subset of G which contains with a,b also — a and a -\-b.16 The order 
of element a of G is the cardinal number of the submultigroup of G generated 
by a, that is the least submultigroup of G which contains a. 

Now we can state and easily derive the characteristic properties of multi-
group S'. 

THEOREM 12. The associated multigroup of a spherical geometry is regular, 
satisfies the idempotent law and each of its elements, with the exception of o, has 
order 3. 

Proof. In view of the last theorem and Definitions 2,5 we have only to show 
that if 5 is a spherical geometry and Sf D a 9^ o then the order of a is 3. 
Any submultigroup of 5 ' which contains a must contain A = a U a' U o, 
since — a — a' and a + a' Z) o. Moreover the negatives of the elements of 
A are a'\ — {a') = a,o; and A is closed under + in view of the idempotent 
law and Definition 5. Thus A is the least submultigroup of S' which contains 
a. The cardinal number of A is 3, since a,a' ^ o and by 0 3 , a ^ ar. Thus a 
has order 3 and the theorem is proved. 

Now we prove a sort of converse of this result and characterize the multi-
groups associated with spherical geometries. 

THEOREM 13. Let G be a regular multigroup which satisfies the idempotent 

15Strictly speaking S' is not uniquely determined, since o is not, but we naturally consider 
the various S' to be identical. 

16Observe that a submultigroup of G is a regular multigroup with respect to the composition 
of G. The term submultigroup is often used in a weaker sense than that of Definition 8 to 
denote a subset which is a multigroup with respect to the composition of the given multigroup 
[6, p. 714]. 
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law and each element of which, with the exception of o, has order 3. Then G is 
the associated multigroup of a spherical geometry. 

Proof. Let 5 be the set obtained by deleting from G its identity element 
o. In 5 we define (abc) to mean c ^ a,— a and b C a + c and we show that 
5, with order so defined, is a spherical geometry and that Sf its associated 
multigroup coincides with G. 

First we show for a 9e o 

(1) a + ( - a) = a U ( - a) U o. 
Adding a to both members of the relation o <Z a + (— a) we have 

a C. a + (a + (— a) ) = (a + a) + (— a) = a + ( — a). 
Similarly — a C # + ( — a); a,— a,o are distinct, for — a 9e o and a = — a 
implies a + ( — a) = a + a = a so that the set a U o i s the least submulti-
group of G containing a} and a has order 2 contrary to hypothesis. Thus since 
a + (— a) 2) #,— a,o and a has order 3, (1) is verified. 

To show 5 a spherical geometry we observe 01 is a consequence of M5 and 
(1) ; 0 2 follows from M3 and — (— a) = a; 0 3 can be verified by taking p (the 
opposite of a) to be — a, for a in 5; 04 follows from Ml . To verify 0 5 con­
sider the operation © defined in 5 by Definition 2: if b 9e a, — a then a © b is 
the set of x for which (axb) ; a © a = a. We see immediately that a © b = a + b 
for a>b(ZS provided £ 7̂  —a. Thus since + is associative, the associative law 
for © certainly holds for those triples a,b,c in S for which it is significant. 
Hence 0 5 is verified and S is a spherical geometry. 

Now to construct S\ the associated multigroup of 5, we adjoin o to S to 
form set 5" so that as a set S' = G. Then we extend © to S' by the agreements 
(Definition 5) a © ( — a) = a VJ ( — a) U o for a C S and 6 © o = o © & = 6 
for b C 5". Thus in view of (1) a © b = a + 6 for all a,6 C S' and as a 
multigroup Sf = G. 

5. Regular multigroups. In this section we sketch the theory of regular 
multigroups. The results are analogues of familiar theorems of group theory 
and are given without proof to avoid duplication of methods in the literature.17 

There is implicit in the discussion, in view of sec. 4, a corresponding theory 
for arbitrary spherical geometries, which we explicitly derive for Euclidean 
spherical geometries. The theory of course also applies to abelian groups. In 
later sections we add restrictions when necessary and obtain finally the multi-
groups associated with spherical geometries. 

In this section G denotes an arbitrary regular multigroup with elements 
a,b,c, . . . and operation + ; A,B,C, . . . denote subsets of G which are non-void 
unless the contrary is stated. For simplicity of expression we shall refer to G 
as a group and to its submultigroups as subgroups ; and we shall call the usual 
type of group with single-valued composition a classical group. The operations 

17See in particular Dresher and Ore [6]; observe however that many of our definitions differ 
from theirs. 
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of subtraction and taking inverses are defined for sets in the natural way: 
A — B = ]EOCA,&CS(^ — b); — A denotes the set of all — a for a C A. 
Familiar formal laws of additive algebra hold for sets: A C A', B C Bf imply 
A +B CA' +B'; (A + B) + C = A + (B + C); A + B = B + A; 
A - B = A + ( - B); ~(-A)=A; -(A +B) = ( - A) + ( - B). Sub­
groups can be characterized formally. A is a subgroup of G if and only if (a) 
A + A — A — — A or (b) A — A — A. Generation of subgroups is defined 
in the usual way: 

DEFINITION 9. Let M be an arbitrary (not necessarily non-void) subset 
of G. By the subgroup of G generated by M, denoted {M}, we mean the least 
subgroup of G which contains M. If {M) = A we say M generates A or is a 
set of generators of A. In general if Mi, iel, is a system of arbitrary subsets of 
G we define {Mi\ iel}, the subgroup of G generated by Mi, iel, to be the least 
subgroup of G which contains each Mi. If I is the set 1, . . . , n we use the 
notation {.Mi, . . . , Mn} for {M{; iel}. Note that {O) = o for any G; if G 
is the associated multigroup of spherical geometry 5 then {a} = a VJ ( — a) \J o, 
and if S is Euclidean and a,b C S, (b i£ a,a') then {a,b} is the great circle 
containing a,b to which is adjoined o. 

In classical group theory \M), where M 9^ 0, consists of all "polynomial" 
combinations of elements of M which can be formed using the group operation 
and taking inverses. Here we have an analogous result. 

THEOREM 14. {M}, if M 7^ 0, is the set union of all expressions ax + . . . +an 

where ai C M or ai C — M, 1 ^ i S n. 
COROLLARY. (Finiteness of dependence). Suppose M y£ 0. Then xÇ_\M} 

if and only if x C {#i, • • . , Q<n} where a4- C -M, 1 ^ i ^ n. 
Exactly as in classical abelian group theory we have 
THEOREM 15. If A,B are subgroups of G then {Aïs} = A + B. 
From this Dedekind's famous modular law [4, p. 34, L5] follows, essentially 

by Dedekind's proof [4, p. 35, Theorem 3.2]. 
THEOREM 16. (Modularity). If A,B,C are subgroups of G and A<ZC then1* 

{AfB}.C = {A,B.C\. 
Now we point out the geometrical significance of the ideas presented thus 

far. Let G be the associated multigroup of a Euclidean spherical geometry 5 
and let A be a subgroup of G. By Definition 8, A D a>b implies A 3 — a, 
a + b. Hence A contains with each point a, its opposite a' and with each 
pair of points a,b (b ^ a,a') the minor arc of a great circle which joins a and b. 
An arbitrary (not necessarily non-void) subset of S which enjoys these proper­
ties we call a spherical subspace or simply a linear subspace of S. (Examples 
are: 0, SL pair of opposite points, a great circle, etc.) Observe that a linear 
subspace of S contains with a,b (b 9e a,af) the great circle passing through 
a,b and so is an analogue in spherical geometry 5 of a linear subspace of a 
projective or affine geometry. Let B be the set obtained by deleting o, the 

18We use the symbol . to denote set theoretic multiplication. 
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identity element of G, from subgroup A of G. Then B is a linear subspace of 
S. Furthermore if we adjoin o to B any linear subspace of 5 we obtain, in 
view of Definition 5, a corresponding subgroup A of G which we call the sub­
group associated to B. Thus the trivial operation of adjoining o effects a 
(1 — 1) correspondence between the set of linear subspaces of S and the set of 
subgroups of G, which we call the natural correspondence between these sets. 
In view of this we may consider the concept linear subspace of 5 as essen­
tially identical with subgroup of G.19 

To obtain geometrical significance for {M}, we suppose M t> o, which is not 
essentially restrictive. If we delete o from {M} we obtain a linear subspace 
M of S which, in view of the natural correspondence between linear subspaces 
of S and subgroups of G, is the least linear subspace of S containing M. Thus 
M is called the linear subspace of S determined or spanned by M. For example 
the linear subspace of S determined by point a is a W a', by a KJ b (b ^ a,a') 
is the great circle containing a and b. Thus the geometrical notion determin­
ation of linear subspaces is subsumed under the familiar algebraic concept 
generation of subgroups™ Furthermore we note that the natural correspon­
dence associates {M} to M, in particular it associates o to 0\a\ to the linear 
space a VJ a', and {a,b) to the great circle containing a,b where b 5* a,a''. 

We continue with coset and associated ideas. 
DEFINITION 10. Let H be a subgroup of G. Then a + H is called the 

coset of H determined by a and is denoted (a)H. The set of all cosets (a)H where 
a C A is denoted (A)H. Let G/H denote (G)#. In G/H we define addition 
thus: (fl)fl®(ô)ff= (a + b)H. We call G/H with addition so defined the factor 
group of G with respect to H. 

As in classical group theory the cosets of H form a decomposition of G. 
Furthermore the sum of. two elements of G/H (cosets) is independent of their 
representation and G/H, like G, is a group (regular multigroup). The corres­
pondence x > {x)H maps G on G/H in such a way as to preserve addition. This 
suggests 

DEFINITION 11. Let Ku K2 be arbitrary systems (not necessarily groups) 
consisting of a set of elements and a 2-term operation (not necessarily single-
valued) the composition in each being denoted + . Let there exist a single-
valued mapping/ of Kx on K2 which satisfies f{x + y) = f{x) + f(y). Then 
we ca l l / a homomorphism of K\ on K2 and say Ki is homomorphic to K2. If/ 
is (1 — 1) we use the terms isomorphism, isomorphic and write Ki £= K2.

21 

If i f is a subgroup of G then G is homomorphic to G/H. Furthermore if 
G is homomorphic to K, then K also is a group (regular multigroup) and is 
isomorphic to G/H, where H is the set of elements of G mapped by the homo­
morphism on the identity of K. If A,B are subgroups of G the mapping 

"Compare [14,§4], [15, §5]. 
20Compare [14, §5], [15, p. 350, Definition 2]. 
21Congruence relations in groups can be introduced by the definition of [15] and have the 

familiar relations to homomorphisms [4, pp. 2,3]. 
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(b)A—>(b)A.B effects an isomorphism of {A,!})/A into B/A.B and we may 
assert 

THEOREM 17 (Isomorphism Theorem). If A,B are subgroups of G then 
{A,B}/Ais isomorphic to B/A.B.22 

From this the Jordan Holder theorem can be deduced as in classical group 
theory. 

We conclude this section with the geometrical significance of coset and factor 
group. First let G for simplicity of illustration be the associated multigroup of 
Sf the spherical geometry of a Euclidean 2-sphere, and let H be the subgroup 
of G formed by adjoining o, the identity element of G, to T a great circle of 5. 
Suppose a (]LH. Then (a)H = a + (o U T) = a\J a + T. That is (a)H con­
sists of a and all interior points of minor arcs of great circles which join a to 
points of T. This is of course the hemisphere of 5, bounded by T, which con­
tains a. On the other hand (a)H = H if a C H. Similarly if we replace T by 
a pair of opposite points p,p' and let H be the subgroup of G composed of 
p,pf,o we find that the cosets of H are the (open) semicircles with endpoints 
p,p'j and H itself. In general let 5 be any Euclidean spherical geometry, T 
be a linear subspace of 5, G be the associated multigroup of 5 and H= o \J T. 
Then (a)H is the * 'hemisphere" bounded by T which contains a provided a C H, 
otherwise (a)H = II. Thus the coset concept subsumes the idea half-space 
(point, semicircle, 2-hemisphere, etc.). Furthermore the coset decomposition 
of G determined by II yields, by exclusion of o from consideration, a decom­
position of 5 into the set of half-spaces (or hemispheres) bounded by T, to­
gether with T. Examples are the decomposition of a 2-sphere (1) into a 
great circle and the hemispheres which it bounds and (2) into a pair of opposite 
points and the semicircles joining them. 

To illustrate the notion factor group consider the second example of the 
preceding paragraph in which T consists of a pair of opposite points p,p'. 
Then G/H is the set composed of H and the semicircles joining p and pf in 
which the "join" or "sum" of two non-opposite semicircles consists of all the 
semicircles in the lune bounded by the given semicircles. G/H is easily seen 
geometrically to be isomorphic to the multigroup associated with a great 
circle of S. We prove this formally as a simple application of the Isomorph­
ism Theorem. Let K be the subgroup of G formed by adjoining o to a great 
circle U which contains neither p nor p'. Then G = {H,K} and H.K — o 
so that by Theorem 17 

G/H = {H}K}/H^K/H.K = K/o = K. 

6. Linear independence and dimension. We continue with the theory of 
linear independence and dimension or rank which are of importance both in 
classical group theory and spherical geometry. We consider the assignment of 
dimension to subgroups of G and its relation to generation and intersection 

22Compare [6, p. 726, Theorem 6], also see [7, p. 68]. For classical groups see [1, p. 134, 
Theorem 15], [18, p. 136, the first Isomorphism Theorem]. 
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properties of subgroups. The theory covers the corresponding topics for linear 
subspaces of a Euclidean spherical geometry and is applicable to spherical 
geometries in general. The theory requires a restriction on the regular multi-
groups G we have been studying which relates them in an interesting way to 
projective geometries (Theorem 19). 

In developing the familiar theory of dimension for a Euclidean spherical 
geometry 5 we assign to the linear subspaces in order of increasing complexity : 
0, pair of opposite points, great circle, 2-sphere, . . . , the "dimensions": — 1, 
0, 1, 2, . . . . We may take this to signalize that a linear subspace of 5 of each 
type is a maximal proper subspace of one of the succeeding type. Thus a 
necessary condition for validation of the familiar theory of dimension of S is 
that 0 be a maximal proper linear subspace of each pair of opposite points, in 
other words that there be no linear subspace "between" 0 and a pair of op­
posite points a,a'. Translating this into the corresponding restriction on G, 
the associated multigroup of S, we get since {a} is the subgroup of G associated 
to the linear space composed of a,a': there is no subgroup of G "between" o and 
{a} if a^o. This property is sufficient to yield the desired dimension theory. 
In order to phrase it more carefully and conveniently we introduce 

DEFINITION 12. Let A, B be distinct subgroups of a regular multigroup 
G such that A Z) X ^) B (where X is a subgroup of G) implies X — A or 
X = B. Then we say A covers B. 

We state the desired property of a regular multigroup G which we assume 
throughout this section as the 

COVERING POSTULATE. If a 9^ o, {a} covers o. 
We continue with consequences of this postulate, postponing to the end 

of the section interpretations of the theory. Suppose {a} D b 9^ o. Then {a} 
2> {b} D o , and {b} 9^0. Hence by the Covering Postulate {b\ = {a}. 
Thus we may assert the 

COROLLARY. If a9^ o, {a} is generated by each of its elements other than o. 
We generalize the Covering Postulate in 
THEOREM 18. If H is a subgroup of G and a (£ H then {a,H} covers H. 
Proof, Suppose H C X C {a,H} where X 9^ H and is a subgroup of G. 

Suppose x C X, x (£_ H. Then x C { { 4 , H } = {&} + H so that x C. b + h 
where b C {#} and h C H> If 6 = o then x = h contrary to x (£_ H. Thus 
M o . We have b Q x — h C. X. Thus using the last corollary J O {b} = {a}. 
Hence X D {a,H} and X = {a,H\. Since {a,H} 9* H, by definition {a,H} 
covers H. 

It is well known that a Euclidean sphere is convertible into a projective 
geometry by defining "point" as a pair of opposite points of the sphere, and 
"line" as the set of "points" contained in a great circle. The following theo­
rem which we shall not prove is, in essence, a generalization of this and implies 
that spherical geometries are related to projective geometries in essentially 
the same way. 
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THEOREM 19. Let P be the set of subgroups of G of the form {a}, a ^ o. 
Then P becomes a projective geometry if we define "point" to be element of P and 
"line" to be the set of "points" contained in a subgroup of G of the form {a,&}, 
where {a} ^ {b}.2Z 

The Covering Postulate implies that G has marked homogeneity of structure. 
THEOREM 20. If a,b ^ o then {a} ^ {b}. 

Proof. Suppose {a} 9e {&}, since otherwise the result is trivial. Suppose 
0 T^ c C a + b. Then {c} 9e {a} for otherwise {a} D c — a 3 b and by the 
corollary to the Covering Postulate {a} = {b}. We have {a} C{#,c} C{a,^} 
so that {a,c} = {a,b} by Theorem 18. By symmetry {byc\ = {a,b\ so that 
\a,c\ = \b,c}. We have, using the Isomorphism Theorem 

M/{c} = { {a},{c} }/{c} ~ {a}/({a}.{c}) = {a}/o = {a}. 

By symmetry {&,c}/{c} =={&}. Thus {a,c} = {b,c\ implies {a} = {b}. 

COROLLARY. If A covers B, A' covers B' then A/B ^ A' /B'. 
In choosing a set of generators for a group we naturally want to exclude 

redundant elements. This suggests the following definition of linear inde­
pendence. 

DEFINITION 13. M an arbitrary (not necessarily non-void) subset of G 
is linearly independent or independent if24 {M — x} ~2) x for each x (Z M. In 
the contrary case we say M is dependent. Observe that 0 is independent 
but o is dependent. 

If I f is dependent then the corollary to Theorem 14 implies that some finite 
subset of M is likewise dependent. The converse is obvious. Thus we may 
state 

THEOREM 21. M is independent if and only if its finite subsets are indepen­
dent.™ 

We now derive a criterion for independence of a finite set very similar to 
the familiar algebraic one for independence of elements of a linear vector 
space or an abelian group. 

THEOREM 22. Suppose ai, . . . , an are distinct and ai 9e o, 1 ^ i S n. Then 
they constitute an independent set if and only if 

Pi+ . . . + Pn D o, pi C {a<}, (1 ^ i ^ n) 
always implies pi— . . . = pn = o. 

Proof. Suppose aly . . . , an distinct and form an independent set, pid{di\, 
1 g i :g n, pi+ . . . + pn 3 o, but one of the p's, say pn 9e o. Then p%+ . . . 
+ pn-i D — Pn 9e- o and using the corollary to the Covering Postulate we 
have 

{au • • • , an_i} 3 { — pn} = {an} D a<n, 
23Compare Carmichael [5, Chap. XI] where finite projective geometries are represented by 

systems of subgroups of a certain type of finite abelian group. 
24We use the symbol — to denote set theoretic subtraction. 
^Compare [12, Theorem 2], [13, Theorem 2.3]. 
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contrary to supposition. Conversely suppose aly . . . , an satisfy the given 
condition, each distinct from o, but they do not form an independent set. I t 
is not restrictive to assume {ai, . . . , an-i} 3 an. Then by Theorem 15, 
dn C {01} + . . . + {an_i} so that there exist pi C {#4, 1 S i Ik n — 1, 
satisfying an C pi+ . . . + pn-i. Adding — an to both members of this rela­
tion we obtain o C p\ + . . • + Pm where pn = — an ^ o, contrary to sup­
position and the proof is complete. 

In view of the corollary to the Covering Postulate, if M ~jb o it is indepen­
dent if and only if [M — x\ . {%} = o for x C M. This property is now 
strengthened. 

THEOREM 23. Suppose M ~jb o. Then M is independent if and only if Mu 

M2 C M and Mi.M2 = 0 always imply {MI}.{M2} = o.26 

Proof. Supose M independent, Mu M2 C M and MX.M2 = 0 but 
{Afi}.{Jkf2} ^ o. Then o ^ p C [MI}.{M2} for some p. Thus Mx ^ 0 
and by the corollary to Theorem 14 there exist a* C Mi, 1 ^ i ^ w, such that 
£ C {#i, . . • , an}. We may assume that in this relation redundant a's have 
been deleted. Thus ani p (£ {au . . • , a„_i}.27 Hence by Theorem 18, 

{ai, . . . , an} covers {ai, . . . , aw__i} and 28 

awC{ai, . . . ,a„} ={ai, . . . , an-i, p\ C{«i, . • • , an-i , M 2 } c { - M - a n } , 
contrary to supposition and the necessity of the condition is proved. Its suf­
ficiency is immediate if M t) o, since it implies \M — x}.{x} = o for x C M. 

The theory of dimension for subgroups of G is covered by the theory of 
exchange lattices of MacLane [12] since Theorems 16, 18 imply the subgroups 
of G form a modular exchange lattice. We have the following results. Each 
subgroup A of G has a basis, that is an independent set of generators. Any 
two bases of A have the same cardinal number, which we call the dimension or 
rank of subgroup A, denoted functionally d(A).29 If B also is a subgroup of G, 
A Z) B implies d(A) ^ d(B). For each subgroup A there exists a complement, 
A', that is a subgroup of G such that {^4,A'\ = G, A.A' = o. For subgroups 
4 , 5 of finite dimension we have the dimension formula 

d({A,B}) + d{A.B) = d(A) + d(B). 
Furthermore if A Z) B, the relation A covers B is equivalent to d(A) = d{B) 
+ 1. For finite n, a set of n independent elements is contained in a unique 
subgroup of G of dimension n. Finally, if d{A) = n is finite, any independent 
set of n elements of A is a basis of A. 

Now we consider applications of the theory developed in this section. It 
certainly applies to the associated multigroup of a spherical geometry since in 

26Compare [13, Definition 2.1]. 
27If n — 1 this expression stands for {a^'eO} = o. 
28If n — 1 we naturally take the expression {ai, . . . , a n _i , p\ to be \p}. 
29In applying MacLane's theory [12, Theorem 6] d(A) would be defined as the cardinal 

number of a basis of A in the lattice of subgroups of G. Using Theorem 23 this can be shown 
equivalent to our definition of d(A). 
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this case {a} consists of ay — a,o and the Covering Postulate obviously applies. 
Thus the results of the last paragraph yield a theory of linear independence 
and dimension for spherical geometries in general and, in view of the discussion 
in sec. 5 of the geometrical significance of subgroups, cover the theory of align­
ment and intersection of linear subspaces of a Euclidean spherical geometry.30 

Next we naturally enquire which classical abelian groups G satisfy the 
theory, that is to which does the Covering Postulate apply. Suppose then 
that G is a classical abelian group satisfying the Covering Postulate. Clearly 
the cyclic subgroups {a} of G, where a 9^ o, must have prime order, and by 
Theorem 20 all must have the same order p. The existence of a basis M ol G 
implies that G is a direct sum of cyclic groups of order p. In fact G is the 
direct sum [2] of the system of cyclic subgroups {%}, x C M. For in the first 
place G = {M} = { { C M\, that is G is generated by this system of 
groups. Secondly the intersection of each group of the system with the group 
generated by the remaining groups of the system is o, since {a}.{ {x} ; x C M 
— a} — \a\.\M — a\ = o by Theorem 23. Conversely any direct sum of 
(classical) cyclic groups of prime order p satisfies the Covering Postulate since 
each of its cyclic subgroups, other than the identity, has order p. Thus the 
theory of multigroups developed so far relates Euclidean spheres and direct 
sums of (classical) cyclic groups of fixed prime order, which agree in the more 
general group theoretic properties of the preceding section as well as in the 
dimensional properties of this section.31 

7. Separation and factor groups. In this final section we derive conditions 
that the familiar type of separation theory, which holds for the linear spaces 
of a Euclidean spherical geometry, be valid in a regular multigroup, and show 
in effect (Theorem 24, Corollary 4) that this theory holds for any spherical 
geometry. 

In this section G will denote an arbitrary regular multigroup, all other 
restrictions on G will be stated explicitly. We begin with the precise sense in 
which the term separation will be used in G. 

DEFINITION 14. Let A,B be subgroups of G and let X, Y exist such that 
(1) A = B U X \J F, B.X = X.Y = B.Y = 0, X,Y 5* 0 and (2) 
xi,x2 C X, yuy2 C Y imply xx + x2 C X, yi + y2 C Y, (xi + yx).B ^ 0. 
Then we say B separates A. 

The theory of separation based on this definition is independent of the 
dimension of the subgroups involved, which may be finite or infinite. We 
begin with a basic criterion for separation in terms of factor group. 

30If G is the associated multigroup of a Euclidean spherical geometry 5 and A is the subgroup 
of G associated to linear subspace T of 5, then d(A) exceeds by unity the dimension of T as 
ordinarily denned. 

31This is related in view of Theorem 19 to results of Carmichael [5] on the representation 
of finite projective geometries by systems of subgroups of finite groups of the type mentioned. 
For deep analogies between projective geometries and classical abelian groups see Baer [3], 
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THEOREM 24. B separates A if and only if A/B is isomorphic to the group 
G% of order 3 whose addition table is the following :32 

o p —p 

o o p —p 
P P P o,p,—p 

— p I — p o,p,—p —p 

Proof. Suppose B separates A, and that X, F satisfy the conditions of 
Definition 14. We show 
(1) A = BU X\J Y 

is the coset decomposition of A determined by its subgroup B. First we sup­
pose a C X and show X = a + B. We have — a C F. For — a Q X implies 
o C # + (—a) C X contrary t o o C ^ ; and —a(ZB implies a Q B contrary 
toa (Z X. Hence for arbitrary x C ^ w e have x + ( — a) D b for some b Q B. 
Thus xQa + bCa + B. Conversely for arbitrary x C. a + B we have 
x C a + b for some b C B. If x C Y then bQx — a = x + ( — a) Q Y 
contrary to b C B ; if x C B then a C x — b C B contrary to a C X. Hence 
x (Z X and X = a + B. By symmetry since — a C F we have F = (—a) +B. 
Thus (1) becomes 

A=BUa + BKJ(-a)+B, 
and A/B is composed of the cosets (a)Bl (—a)B, (o)B. We determine the ad­
dition table of A/B. We have (a)B © (a)B = (a + a)#. Since a + a C ^ 
= (a)5 , we have (a + a)s = (a)B so that (a)j3 © (a)B = (a)#. Likewise 
( — a)a © (—à)B = {~a)B. Since (a)B © (—a)5 3 (o)B, we have adding (a)B 

to both members, (a)B © {—a)B D (a)B. Similarly (a)B 0 ( —a)B 3 (—a)B. 
Thus since (a)B, ( —a)B, (o)B are distinct, -4 /5 is easily seen to be isomorphic 
to G3. 

Conversely suppose A/B isomorphic to Gz. Let A— BKJX\JYbe the 
coset decomposition of A determined by B. Then B . X = X . Y = B. Y — 0 
and Z , F ^ 0. Since ^ /J3 ^ G3 we have in A/B, X®X = X, Y®Y = F, 
X 0 F D 5 . Thus if xux2 C ^ we have X ®X = (xt)B © (#2)25 = (xi+x2)B 

= X, so that Xi + x2 C X. Similarly yuy2 C F imply yx + y2 C F. Finally 
X © F = (xi)j3 © (yi)^ = (xi + yds D J5 so that Xi + yx D 6 for some bCB. 
Thus 5 separates 4̂ by definition. 

COROLLARY 1. B separates A implies A covers B. 
Proof. The hypothesis implies A/B Ç^ G3. Since G3 covers its identity, 

A/B has the same property and the conclusion follows easily.33 

The typical separation property of linear subspaces of a Euclidean spherical 
geometry (or of a Euclidean space for that matter) suggests the converse of 
the corollary, namely: A covers B implies B separates A.u We seek conditions 

320bserve that Gz is {p\ if p 9e o is an element of the associated multigroup of any spherical 
geometry. 

33For classical groups compare [1, p. 134, Theorem 14]. 
^A similar property holds in descriptive geometries [15, p. 372, Theorem 6]. 
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that this hold in G. In view of Theorem 24, the desired property is equivalent 
to : A covers B implies A/B^Gz. Suppose G satisfies the Covering Postulate and 
to exclude trivial cases suppose G ^ o . Then by the corollary to Theorem 20 
all factor groups A/B, where A covers B, are isomorphic; thus all are isomor­
phic to Gz if (and only if) one is. This one may be chosen arbitrarily. Taking 
it to be {#}/o = {a}, where a ^ o, we have 

COROLLARY 2. Let G^o satisfy the Covering Postulate. Then A covers B 
implies B separates A, and if and only if G has a subgroup isomorphic to Gz. 

Suppose G satisfies the Covering Postulate and has a subgroup isomorphic 
to Gz. This subgroup must be of the form {a}, a ^ o, so that by Theorem 20 
all subgroups of this form are isomorphic to Gz. But the latter condition 
implies the Covering Postulate. Thus we may reformulate the sufficiency in 
Corollary 2 as 

COROLLARY 3. Suppose all subgroups of G of the form {a\,a ?£ o, are 
isomorphic to Gz. Then A covers B implies B separates A. 

Finally we observe that {a} is isomorphic to Gz if and only if a has order 3 
and a + a = a (see the derivation of (1) in the proof of Theorem 13). Thus 
we have 

COROLLARY 4. Suppose G satisfies the idempotent law and each of its 
elements, with the exception of o, has order 3. Then A covers B implies B 
separates A. 

In view of Theorem 12 this result yields a separation theory for spherical 
geometries. 
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