A SIMPLE ALGORITHM FOR DECIDING PRIMES IN K[[x, y]]

TZEE-CHAR KUO

ABSTRACT. The well-known Tschirnhausen transformation, $x \to x - \frac{a}{n}$, eliminates the second term of the polynomial $x^n + ax^{n-1} + \cdots$. By a mere repeated application of this transformation, one can decide whether a given element of K[[x,y]] is prime (irreducible) or not. Here K is an algebraically closed field of characteristic 0.

A generalised version of Hensel's Lemma is developed for the proofs. The entire paper can be understood by undergraduate students.

1. Basics.

Semigroups. In this paper, by a semigroup we always mean an additive subsemigroup of the positive rationals, Q^+ . Also, we assume they are finitely generated. Thus, a semigroup, *S*, has a minimal set of generators, $\omega_0, \ldots, \omega_N$, and we write

$$S=S(\omega_0,\ldots,\omega_N),$$

where $0 < \omega_0 < \cdots < \omega_N$, and

$$\omega_i \notin S(\omega_0,\ldots,\omega_{i-1}), \quad i \geq 1.$$

A (finitely generated) semigroup is isomorphic to one whose generators are integers. Let $d_0 = 1$ and let d_i denote the smallest integer such that

$$d_i\omega_i \in S(\omega_0,\ldots,\omega_{i-1}), \quad i \geq 1.$$

We may call $d_N \omega_N$ the *last merging point* of *S*. Let $S_N = S(\omega_0, ..., \omega_N)$ be given. We write

$$\boldsymbol{\omega} = (\omega_0, \ldots, \omega_N);$$

a typical element of S_N can then be written as an "inner product"

(1)
$$M \cdot \boldsymbol{\omega} = \sum_{i=0}^{N} m_i \omega_i$$

where $M = (m_0, \ldots, m_N)$ in an (N + 1)-tuple of non-negative integers.

We call *M* admissible if $0 \le m_i < d_i$ for $1 \le i \le N$. (Note that $m_0 \ge 0$ can be any integer.)

Received by the editors December 27, 1993.

AMS subject classification: 13, 14, 32, 68.

[©] Canadian Mathematical Society 1995.

DEFINITION. We say S_N is a Newton-Puiseux semigroup if $\omega_i > d_{i-1}\omega_{i-1}$ for all $i \ge 1$.

An element of a Newton-Puiseux semigroup S_N admits a unique expression (1), with M admissible. This is the Corollary to Lemma 2 in Section 6.

All semigroups arising in this paper are Newton-Puiseux.

Associated weight. Let S_N be given. Take indeterminants Y_0, \ldots, Y_N , and write

$$\mathbf{Y} = (Y_0, \ldots, Y_N), \quad \mathbf{Y}^M = Y_0^{m_0} \cdots Y_N^{m_N},$$

so that an element of the formal power series ring K[[Y]] is expressed as

$$f(\mathbf{Y}) = \sum_{M} a_M \mathbf{Y}^M, \quad a_M \in K.$$

Define a weight function on *K*[[**Y**]],

$$v_N: K[[\mathbf{Y}]] \to \mathbb{Q}^+ \cup \{\infty\}$$

by

$$v_N(f) = \begin{cases} \min\{M \cdot \mathbf{\omega} \mid a_M \neq 0\}, & \text{if } f \neq 0, \\ \infty, & \text{if } f = 0. \end{cases}$$

Note that $v_N(Y_i) = \omega_i$.

We call $v_N(f)$ the weighted order of f associated to S_N .

Associated Newton polygon. Let S_N , v_N be as above.

Take an element in $K[[\mathbf{Y}, X]]$,

$$P(X;\mathbf{Y}) = \sum a_{M,d} \mathbf{Y}^M X^d, \quad a_{M,d} \in K.$$

In a coordinate plane, \mathbb{R}^2 , let us plot a dot at the point $(d, M \cdot \omega)$ for each monomial term $a_{M,d} \mathbf{Y}^M X^d$, $a_{M,d} \neq 0$, of *P*. Note that the second component $M \cdot \omega$ is an element of S_N . We call this dot a Newton dot.

When all M are admissible, there is at most one dot at a given point.

DEFINITION. The Newton polygon of $P(X; \mathbf{Y})$ associated to S_N is the boundary of the convex hull spanned by the set

 $\{(u, v) \mid \exists a \text{ Newton dot } (d, M \cdot \boldsymbol{\omega}) \text{ such that } u \ge d, v \ge M \cdot \boldsymbol{\omega} \}.$

Suppose $P(X; \mathbf{Y})$ is regular in X, say of order k; that is,

 $P(X;0) = X^{k}$ + higher order terms.

Then, of course, (k, 0) is a vertex of the Newton polygon. We call it the *first vertex*.

Let *E* denote the non-horizontal edge of the polygon at the first vertex, and θ the angle it makes with the negative horizontal direction, as indicated in the following example. We call *E* the *first edge*, and θ the *first angle*, of the Newton polygon of *P*, or simply of *P*.

EXAMPLE. $P(X, Y) = X^3 + XY^2 + Y^4$

G-adic bases. We follow Abhyankar-Moh ([1], [3]), who defined the notion.

Consider, as in [2], a sequence

$$\Gamma_N = \{G_0(x, y), \dots, G_N(x, y), G_{N+1}(x, y)\}, \quad N \ge 0.$$

where $G_0 = y$, and for each $i \ge 1$, $G_i(x, y)$ is an element of K[[y]][x], monic in x, say of degree D_i , such that each D_i properly divides D_{i+1} :

$$D_{i+1} = d_i D_i, \quad d_i > 1, \ 1 \le i \le N.$$

EXAMPLE. $\Gamma_1 = \{y, x, x^2 - y^3\}, \Gamma_2 = \{y, x, x^2 - y^3, (x^2 - y^3)^2 - xy^5\}.$

A repeated application of the Euclidean Division Algorithm shows that Γ_N is a *G*-adic base in the sense of Abhyankar-Moh ([1]): Given F(x, y), there is a unique expression

(2)
$$F(x,y) = \sum a_{M,d} \mathbf{G}_N^M G_{N+1}^d$$

where $M = (m_0, \ldots, m_N)$ are admissible exponents, and \mathbf{G}_N^M is a shorthand for $G_0^{m_0} \cdots G_N^{m_N}$.

Let Γ_N be given a G-adic base. We define the associated linear injection

 $\ell_N: K[[x, y]] \to K[[\mathbf{Y}, X]]$

via (2) by:

(3)
$$\ell_N(F(x,y)) = \sum a_{M,d} \mathbf{Y}^M X^d.$$

Note that ℓ_N may not preserve multiplication. All exponents *M* in (3) are admissible. There is also an *associated substitution* map, which is a left inverse of ℓ_N ,

$$\sigma_N: K[[\mathbf{Y}, X]] \to K[[x, y]]$$

defined by

$$\sigma_N(Y_i) = G_i(x, y), \quad \sigma_N(X) = G_{N+1}(x, y),$$

preserving both the linear and multiplicative structures.

REMARK. When ℓ_N is given. A weighted order v_N is induced on K[[x, y]] such that

$$v_N(F(x,y)) = v_n(\ell_N(F(x,y))).$$

DEFINITION ([2]). When each G_i is a prime in K[[x, y]], we say Γ_N is a Γ -adic base. All *G*-adic bases used in this paper are Γ -adic.

The Tschirnhausen transform. Let S_N , Γ_N and $P(X; \mathbf{Y})$ be given. Suppose P is in the image of ℓ_N , regular in X, of order k.

Suppose $\tan \theta \in S_N$, where θ is the first angle. We can write, as in (1),

 $\tan \theta = M \cdot \omega$, *M* admissible.

The *Tschirnhausen transform* of the pair (P, Γ_N) is defined as follows.

Consider the point $(k - 1, M \cdot \omega)$, which lies on the first edge, *E*, next to the first vertex (k, 0). There is a Newton dot at this point if, and only if, *P* has a monomial term aY^MX^{k-1} , $a \neq 0$.

This dot can be eliminated by a Tschirnhausen transformation. Namely, we replace X by $X - \frac{a}{L} \mathbf{Y}^M$ in P to give

$$P'(X;\mathbf{Y}) = P\left(X - \frac{a}{k}\mathbf{Y}^{M};\mathbf{Y}\right),$$

which no longer has a Newton dot at this point.

In the mean time, we replace G_{N+1} by

(4)
$$G_{N+1}^{(1)}(x,y) = G_{N+1}(x,y) + \frac{a}{k} \mathbf{G}_N^M.$$

Then, we define

$$\Gamma_N^{(1)} \equiv \{G_0,\ldots,G_N,G_{N+1}^{(1)}\},\$$

and

$$P^{(1)}(X;\mathbf{Y}) = \ell_N \circ \sigma_N \big(P'(X;\mathbf{Y}) \big).$$

The pair $\{P^{(1)}, \Gamma_N^{(1)}\}$ is called the *Tschirnhausen transform* of $\{P, \Gamma_N\}$.

Observe that (k, 0) remains the first vertex of $P^{(1)}$; and also, clearly, $\theta^{(1)} \ge \theta$. (We use $\theta^{(1)}$ to denote the first angle of $P^{(1)}$.)

When a = 0, the Tschirnhausen transformation is the identity transformation. We say it is *stationary*.

The following example shows that both cases $\theta^{(1)} > \theta$ and $\theta^{(1)} = \theta$ can happen. In either cases, however, there is no Newton dot at $(k - 1, M \cdot \omega)$.

EXAMPLE. Take $\Gamma_0 = \{y, x\}$. For $X^2 + 2XY + Y^2$, $\theta = \frac{\pi}{4}$, $\theta^{(1)} = \frac{\pi}{2}$. For $X^2 + 2XY + 2Y^2$, $\theta^{(1)} = \theta = \frac{\pi}{4}$.

When $\tan \theta \notin S_N$, we say the transformation is *not applicable*. (Example: $\Gamma_0 = \{y, x\}$, $P = x^2 - y^3$.)

2. The algorithm. The Assertions in this section will be proved in later sections. Take a non-zero element of K[[x, y]],

$$F(x, y) = H_k(x, y) + H_{k+1}(x, y) + \cdots$$

where H_k is the initial (homogeneous) form.

By applying a suitable linear transformation, if necessary, we can assume $H_k(1, 0) =$ 1. An application of a Tschirnhausen transformation will then reduce H_k to

(5)
$$H_k(x,y) = x^k + a_2 x^{k-2} y^2 + \dots + a_k y^k.$$

Let us describe the initial stage of the algorithm, assuming (5).

Take any $\omega_0 \in \mathbb{Q}^+$. (Indeed, we can take $\omega_0 = 1$.) Let $S_0 = S(\omega_0)$, and let ν_0 be defined by $\nu_0(Y_0) = \omega_0$. Take the first Γ -adic base to be

$$\Gamma_0 = \{G_0 = y, G_1 = x\}.$$

The associated maps ℓ_0 , σ_0 are defined accordingly. Finally, let

$$P_0(X; Y_0) = \ell_0(F(x, y)),$$

which is regular in X, of order $k_0 = k$.

Now assume, inductively, that we are at stage $N, N \ge 0$, having defined a Newton-Puiseux semigroup, $S_N = S(\omega_0, \ldots, \omega_N)$, a Γ -adic base Γ_N , together with ν_N , ℓ_N , σ_N , and

$$P_N(X;\mathbf{Y}) = \ell_N(F(x,y)), \quad \mathbf{Y} = (Y_0,\ldots,Y_N).$$

where P_N is regular in X, say, of order k_N .

ASSERTION 1. If $k_N = 1$, then F(x, y) is prime.

In case $k_N > 1$, we apply the Tschirnhausen transformation recursively to the pair $\{P_N, \Gamma_N\}$, as long as it is applicable. This yields a sequence $\{P_N^{(s)}, \Gamma_N^{(s)}\}$, where $P_N^{(0)} = P_N$, $\Gamma_N^{(0)} = \Gamma_N$, and $\{P_N^{(s)}, \Gamma_N^{(s)}\}$ is the Tschirnhausen transform of $\{P_N^{(s-1)}, \Gamma_N^{(s-1)}\}$, for all *s*. Four cases may arise:

CASE 1. The transformation is always applicable, yielding an infinite sequence $\{P_N^{(s)}, \Gamma_N^{(s)}\}$.

CASE 2. We arrive at $\{P_N^{(s)}, \Gamma_N^{(s)}\}$, and find $\tan \theta_N^{(s)} = \infty$. (Here, $\theta_N^{(s)}$ denotes the first angle of $P_N^{(s)}$.)

CASE 3. Or, here we find that the Tschirnhausen transformation is stationary, with

$$\tan \theta_N^{(s)} \in S_N$$
, $(\tan \theta_N^{(s)} < \infty)$.

CASE 4. Or, we have, $\tan \theta_N^{(s)} \notin S_N$, (so that it is no longer applicable).

ASSERTION 2. $\Gamma_N^{(s)}$ are Γ -adic bases.

TZEE-CHAR KUO

ASSERTION 3. In Cases 1 and 2, $(k_N > 1)$, F(x, y) is the *k*-th power of a prime, hence reducible.

ASSERTION 4. In Case 3, F(x, y) is reducible.

When Case 4 happens, we move on to define the (N + 1)-st stage. Let $w_{N+1} = \tan \theta_N^{(s)}$, $S_{N+1} = S(w_0, \dots, w_{N+1})$, and let d_{N+1} be the smallest integer such that

$$d_{N+1}\omega_{N+1} \in S_N, \quad (d_{N+1} > 1).$$

We shall see, in Section 4, that S_{N+1} is Newton-Puiseux.

When k_N is divisible by d_{N+1} , we define k_{N+1} and an admissible exponent $\alpha = (\alpha_0, \ldots, \alpha_N)$ by

$$k_N = k_{N+1}d_{N+1}, \quad \mathbf{\alpha} \cdot \mathbf{\omega} = d_{N+1}\omega_{N+1}.$$

ASSERTION 6. Consider the monomial term, $a\mathbf{Y}^{\alpha}X^{k_N-d_{N+1}}$ of $P_N^{(s)}$. If a = 0, then F(x, y) is reducible.

Now, suppose $a \neq 0$. We define

(6)
$$G_{N+2} = G_{N+1}^{(s)} + \frac{a}{k_{N+1}} \mathbf{G}_{N}^{\alpha},$$
$$\Gamma_{N+1} = \{G_{0}, \dots, G_{N+1}^{(s)}, G_{N+2}\},$$

and

$$P_{N+1}(X; \mathbf{Y}_{N+1}) = \ell_N(F(x, y))$$

which is regular in X, of order k_{N+1} , where

$$\ell_{N+1}(G_{N+1}) = Y_{N+1}, \quad \mathbf{Y}_{N+1} = (Y_0, \dots, Y_{N+1}).$$

ASSERTION 7. G_{N+1} is prime, whence Γ_{N+1} is a Γ -adic base.

This completes the description of the algorithm.

Since $\{k_N\}$ is a strictly decreasing sequence of positive integers, Case 4 can not happen infinitely many times. The algorithm terminates in finitely many steps.

ATTENTION. Since G_{N+1} has been replaced by $G_{N+1}^{(s)}$ when G_{N+2} is defined, Γ_N is not necessarily a subset of Γ_{N+1} . However, note that

$$G_{N+1}^{(s)} = G_{N+1}$$
 + terms of higher weight.

CONVENTION. When Γ_{N+1} has been defined. We shall use Γ_N to denote $\Gamma_N^{(s)}$, abusing notations, and then forget about the original Γ_N . In this new system of notations, Γ_N is a subset of Γ_{N+1} , for all N.

3. Illustrative examples. A simple example for Case 1 is:

$$x^{2} + 2xy^{2} + 2xy^{3} + y^{4} + 2xy^{4} + 2y^{5} + \dots = (x + y^{2} + y^{3} + y^{4} + \dots)^{2}.$$

For Case 2, we can take

$$(x^{2} + 2xy + y^{2}) + (xy^{2} + y^{3}) + \frac{1}{4}y^{4} = \left[(x + y) + \frac{1}{2}y^{2}\right]^{2}.$$

For Case 3, consider

$$F = (x^2 - y^3)^2 - y^7.$$

Here, we find

$$v(x) = v(G_1) = 3/2,$$

$$S_1 = S(1, 3/2),$$

$$G_2 = x^2 - y^3,$$

$$P_1 = X^2 - Y^7,$$

$$\tan \theta_1 = 7/2 \in S_1.$$

The Tschirnhausen transformation is stationary, F is reducible by Assertion 4. (The term G_1Y^2 is missing from P_1 .) A factorization is given at the end of Section 8.

For Case 4, our first example is $F = x^3 - xy^3 + y^5$. Here we have,

$$N = 0,$$

$$P_0 = X^3 - XY^3,$$

$$k_0 = 3,$$

$$d_1 = 2.$$

Since k_0 is not divisible by d_1 , F is reducible (Assertion 5). Next, consider

$$F = (x^2 - y^3)^4 + y^{13}.$$

Here, we find

$$N = 1,$$

$$G_{1} = x,$$

$$G_{2} = x^{2} - y^{3},$$

$$P_{1} = X^{4} + Y^{13},$$

$$\tan \theta_{1} = 3\frac{1}{4},$$

$$d_{1} = 2.$$

By Assertion 6, F is reducible. (The term G_1Y^5 is missing from P_1 .)

Now let us consider

$$F = (x^2 - y^3)^4 + 2xy^5(x^2 - y^3)^2 + 2y^{13} + \cdots$$

Here,

$$P_1 = X^4 + 2G_1 Y^5 X^2 + 2Y^{13}.$$

Following the algorithm, we define

$$G_3 = (x^2 - y^3)^2 + xy^5$$

which, by Assertion 7, is prime.

Finally, let us consider

$$(x^2 - y^3)^4 + 2xy^5(x^2 - y^3)^2 + y^{13}$$
 + higher weighted terms.

This time,

$$P_1 = X^4 + 2G_1 Y^5 X^2 + Y^{13}$$

= $(X^2 + G_1 Y^5)^2 + \cdots,$

so that we move on to the next stage of the algorithm.

4. Induction hypothesis. We make two induction hypothesis at Stage N; they will be proved for N + 1 at the end of Section 9.

 (H_P) For the first angle θ_N of P_N , we have

$$\tan \theta_N \geq d_N \omega_N,$$

and if equality holds then there is no Newton dot at $(k_N - 1, \tan \theta_N)$. (*H_G*) For $N \ge 1$, $G_{N+1}(x, y)$ has the form

$$G_{N+1} = G_N^{d_N} + c \mathbf{G}_{N-1}^{\boldsymbol{\alpha}_{N-1}}, \quad c \neq 0,$$

where $\mathbf{\alpha}_{N-1} = (\alpha_0, \dots, \alpha_{N-1})$ is an admissible exponent such that

$$\sum_{i=0}^{N-1} lpha_i \omega_i = d_N \omega_N.$$

When N = 0, (H_P) follows from (5); (H_G) says nothing, hence true.

5. Stage N = 0. We can assume $\omega_0 = 1$.

If $k = k_0 = 1$, F(x, y) is obviously prime. So let us suppose k > 1.

In Case 1, where the Tschirnhausen transformation is always applicable, we find an infinite series $\sum C_n y^n$ such that

$$F(x,y) = \left(x - \sum C_n y^n\right)^k \cdot \text{unit.}$$

In Case 2, there is a finite series with the same property.

https://doi.org/10.4153/CJM-1995-041-9 Published online by Cambridge University Press

Therefore Assertions 2 and 3 are true when N = 0.

For Assertion 4, let us first assume $\tan \theta_0 = 1$. By (5), the initial form of $P_0(X; Y)$ has the form

$$I(X, Y) = X^{k} + a_{2}X^{k-2}Y^{2} + \dots + a_{k}Y^{k}.$$

Since at least one $a_i \neq 0$, I(X, 1) = 0 has at least two distinct roots, and so I(X, Y) factors:

$$I(X, Y) = H_p(X, Y) \cdot K_q(X, Y), \quad p + q = k,$$

 H_p , K_q are relatively prime (homogeneous) forms of degree p, q respectively, both monic in X.

LEMMA 1. Every (p+q-1)-form $L_{p+q-1}(X, Y)$ is in the ideal generated by H_p and K_q . That is, there exist forms A_{p-1} , B_{q-1} such that

(7)
$$L_{p+q-1}(X,Y) = B_{q-1}(X,Y)H_p(X,Y) + A_{p-1}(X,Y)K_q(X,Y).$$

Consequently, every r-form, $r \ge p + q - 1$, is in this ideal.

The proof is well-known. Since H_p , K_q are relatively prime, polynomials A_{p-1} , B_{q-1} , of degree p - 1, q - 1, respectively, can be found such that

$$L_{p+q-1}(X,1) = B_{q-1}(X)H_p(X,1) + A_{p-1}(X)K_q(X,1).$$

Then (7) follows by homogenizing this expression.

Now, consider any power series P(X, Y), such as $P_0(X, Y)$, whose initial form is I(X, Y). By a repeated application of Lemma 1, we can recursively find forms A_i , B_i such that

$$P(X, Y) = [H_p + A_{p+1} + A_{p+2} + \cdots][K_q + B_{q+1} + B_{q+2} + \cdots]$$

An application of σ_0 to $P_0(X, Y)$ then yields a factorization of F(x, y). Now, suppose $\tan \theta_0 > 1$ in Case 3. Let us define weights by

$$v(X) = \tan \theta_0, \quad v(Y) = 1.$$

Since there is no Newton dot at $(k - 1, \tan \theta_0)$, the weighted initial form of $P_0(X, Y)$ factors into two relatively prime weighted forms. The same reasoning as before will then lead to a factorization of P_0 .

This is known as the weighted Hensel Lemma.

We shall consider stage N = 0 of Case 4 with the general case.

6. More on Newton-Puiseux semigroups. Consider a (finitely generated) semigroup S_N . The abelian group generated by S_N is generated by a single element, say g. There is a smallest integer r such that $(r + i)g \in S_N$ for all $i \ge 0$. Call rg the conductor of S_N .

When a semigroup is generated by two positive integers p, q, the conductor is (p'-1)(q'-1)D, where

$$D = G. C. D.(p,q), \quad p = p'D, \quad q = q'D.$$

When there are more than two generators, there is no simple formula for calculating the conductor. However, by an easy induction on N we can prove the following

LEMMA 2. In a Newton-Puiseux semigroup S_N , the conductor is $\leq d_N \omega_N$. (Thus, beyond the last merging point, S_N coincides with the abelian group it generates).

COROLLARY. Every element in S_N admits a unique expression (1) with M admissible.

PROOF. Suppose M, M' are admissible and $M \cdot \boldsymbol{\omega} = M' \cdot \boldsymbol{\omega}$, $m_N > m'_N$. Then $(m_N - m'_N)\omega_N$ belongs to the abelian group generated by S_{N-1} , hence to S_{N-1} itself. This is absurd, hence $m_N = m'_N$. Similarly, $m_i = m'_i$ for all other *i*.

7. Construction of primes. We are in stage N, having defined S_N , Γ_N , etc. The induction hypothesis H_P and H_G are also at our disposal.

Take any rational number $\omega_{N+1} \geq d_N \omega_N$. Let d_{N+1} denote the smallest integer such that

$$d_{N+1}\omega_{N+1} \in S_N$$
, $(d_{N+1} = 1 \text{ if } \omega_{N+1} \in S_N)$

Let $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_N)$ be the admissible exponent such that

(8)
$$\boldsymbol{\alpha} \cdot \boldsymbol{\omega} = d_{N+1}\omega_{N+1}$$

Take an integer $r \ge 2$. Note that $r\alpha = (r\alpha_0, \dots, r\alpha_N)$ may not be admissible. When this happens, we like to investigate the expansion (3) for $\mathbf{G}_N^{r\alpha}$.

For this purpose, it is convenient to define a weight on X and G_{N+1} :

(9)
$$v(X) = v(G_{N+1}) = \omega_{N+1}.$$

LEMMA 3. Let $E = (e_0, \ldots, e_n)$ be a given exponent.

(i) Suppose $\omega_{N+1} > d_N \omega_N$. Then the weighted initial form of $\ell_N(\mathbf{G}_N^E)$ consists of only one monomial term $\mathbf{a}\mathbf{Y}^\beta$, where $a \neq 0$, $\boldsymbol{\beta}$ is admissible, and

$$\boldsymbol{\beta} \cdot \boldsymbol{\omega} = E \cdot \boldsymbol{\omega}.$$

- (ii) Suppose $\omega_{N+1} = d_N \omega_N$, and suppose $e_N < d_N$. Then the same is true.
- (iii) Suppose $\omega_{N+1} = d_N \omega_N$. Then $\alpha_N = 0$. Hence if $E = r \alpha$, again the same is true.

EXAMPLE. Consider $\Gamma_1 = \{y, x, x^2 - 2y^3\}$. Here $\omega_1 = 3/2$. Let us compute the expansion of $(yx)^2$:

$$(yx)^{2} = y^{2}[(x^{2} - 2y^{3}) + 2y^{3}] = 2y^{5} + y^{2}(x^{2} - 2y^{3}).$$

In case we take $\omega_2 > d_1\omega_1 = 3$, $2y^5$ has the lowest weight,

$$v(2y^5) = 5 < v(y^2(x^2 - 2y^3)),$$

confirming (i).

However, if we take $\omega_2 = 3$, then both terms have weight 5; this explains why we assume $e_N < d_N$ in (ii).

PROOF. For an admissible exponent, *E*, there is nothing to prove.

Define an ordering of the exponents as follows:

$$(e_0',\ldots,e_N')<(e_0,\ldots,e_N)$$

if $\exists j, e'_j < e_j$ and $e'_i = e_i \forall i > j$.

Now, suppose *E* is not admissible. Let j > 0 be the largest integer such that $e_j \ge d_j$. By (H_G) , we can write

(10)
$$G_{j}^{d_{j}} = -c\mathbf{G}_{j-1}^{\alpha_{j-1}} + G_{j+1}.$$

Note that the first two terms both have weight $d_j\omega_j$; the third term, G_{j+1} , has higher weight for all j, $1 \le j \le N$, in case (i). In case (ii), this is true for all j, $1 \le j \le N - 1$.

By a repeated application of (10), it follows that there is an exponent E' < E, such that

$$\mathbf{G}_{N}^{E} = C^{*}\mathbf{G}_{N}^{E'}$$
 + higher weighted terms,

where $C^* \neq 0$, $E \cdot \boldsymbol{\omega} = E' \cdot \boldsymbol{\omega}$.

Take an E' with this property which is minimal in the ordering. This E' must be admissible.

The proof of (iii) is easy. Since $d_N \omega_N \in S_{N-1}$, and α is admissible, we must have $\alpha_N = 0$.

We introduce a terminology. Let g be the generator of the abelian group generated by S_N . Given an integer m, let \mathcal{M}_{mg} denote the ideal in $K[[\mathbf{Y}, X]]$ of elements with weighted order $\geq mg$.

Given $P(X; \mathbf{Y})$, $P'(X; \mathbf{Y})$ in \mathcal{M}_{mg} , we say they are congruent modulo higher weighted terms, if

$$\ell_N \circ \sigma_N(P-P') \in \mathcal{M}_{(m+1)g}.$$

When \mathcal{M}_{mg} is understood, we simply write

$$P(X; \mathbf{Y}) \equiv P'(X; \mathbf{Y}) \text{ m. h. w. t.}$$

Let $f(x, y) = \sigma_N(P), f'(x, y) = \sigma_N(P')$; we also write

$$f(x, y) \equiv f'(x, y)$$
 m. h. w. t.

Recall that ℓ_N may not preserve multiplication. However, we shall show it preserves the weighted initial form modulo higher weighted terms in the following sense.

Again, let us take any $\omega_{N+1} \ge d_N \omega_N$, and defined weights as in (9). Then the weighted initial form of a given $P(X; \mathbf{Y})$ is defined.

Let $F_i(x, y)$, i = 1, 2, 3, be given with

$$F_3(x, y) = F_1(x, y)F_2(x, y).$$

LEMMA 4. Let $W_i(X; \mathbf{Y})$ denote the weighted initial form of $\ell_N(F_i)$. Then

$$W_1(X; \mathbf{Y})W_2(X; \mathbf{Y}) \equiv W_3(X; \mathbf{Y})$$
 m. h. w. t.

PROOF. Recall that σ_N preserves multiplication. Hence

(11)
$$\ell_N \circ \sigma_N \big(\ell_N(F_1) \ell_N(F_2) \big) = \ell_N(F_3).$$

Consider a typical term in $\ell_N(F_1)\ell_N(F_2)$,

$$\xi \equiv C_1 C_2 \mathbf{Y}^{E_1 + E_2} X^{d_1 + d_2},$$

where $C_1 \mathbf{Y}^{E_i} X^{d_i}$ is a monomial term in $\ell_N(F_i)$.

By Lemma 3, $\ell_N \circ \sigma_N(\xi)$ has the same weighted order as ξ .

Now, comparing terms of minimal weighted order on both sides of (11), we find

$$\ell_N \circ \sigma_N(W_1 \cdot W_2) \equiv W_3$$
 m. h. w. t.

Several important consequences can be derived from this lemma. First, let us take $\omega_{N+1} = d_N \omega_N$. Let $H(G_0, \ldots, G_{N+1})$ be any series with weighted order $> \omega_{N+1}$.

LEMMA 5. $G_{N+1} + H(G_0, ..., G_{N+1})$ is prime.

This is clear: $\ell_N(G_{N+1} + H)$ has weighted initial form X, which is irreducible.

EXAMPLE. Consider $\Gamma_1 = \{y, x, x^2 - y^3\}$. Here, $G_2 + y^3 = x^2$ is not prime. Note that $v(y^3) = \omega_2$, and hence Lemma 5 does not apply.

Using the inductive hypothesis (H_P) , we see that $G_{N+1}^{(i)}$, $i \ge 0$, are all primes.

Assertion 1 follows. Indeed, when $k_N = 1$, there is a finite, or infinite, series *H*, such that

$$F(x, y) = (G_{N+1} + H) \cdot \text{unit.}$$

Assertions 2 and 3 are immediate consequences too.

Now, let us take $\omega_{N+1} \notin S_N$, $\omega_{N+1} > d_N \omega_N$, and α satisfying (8). Take a constant $c \neq 0$.

LEMMA 6. Let $H(G_0, \ldots, G_{N+1})$ be a series with weighted order $> d_{N+1}\omega_{N+1}$. Then

$$G_{N+1}^{d_{N+1}}-c\mathbf{G}_N^{\boldsymbol{\alpha}}+H(G_0,\ldots,G_{N+1})$$

is a prime.

The corresponding weighted initial form is $X^{d_{N+1}} - c \mathbf{Y}^{\alpha}$, having weight $d_{N+1}\omega_{N+1}$. It has to be irreducible, since any weighted form of lower weighted form of lower weight consists of at most one monomial, and the product of two such is a single monomial term.

8. **Proof of Assertion 4** $(N \ge 1)$. We are at stage *N*, having defined P_N , θ_N , *etc.* and then, being in Case 3, arrived at $P_N^{(s)}$, $\theta_N^{(s)}$. We shall write $P_N^{(s)}$, $\theta_N^{(s)}$ as P_N , θ_N , for simplicity of notation.

Let α denote the admissible exponent such that $\alpha \cdot \omega = \tan \theta_N (= v(X))$. Take a Newton dot on the first edge, representing a term of P_N of the form

$$a_r \mathbf{Y}^E X^{k_N-r}, \quad a_r \neq 0.$$

Then Lemma 3 can be applied to $r\alpha$, giving a constant $c_r \neq 0$ such that

$$a_r \mathbf{Y}^E \equiv c_r \mathbf{Y}^{r \mathbf{\alpha}}$$
 m. h. w. t.

These c_r can be used to define a homogeneous form in two variables

$$W(X, Y) = X^{k_N} + c_2 X^{k_N-2} Y^2 + \cdots$$

Attention should be paid to the absence of c_1 ; this is because we are in Case 3, there is no Newton dot at the corresponding point.

Observe that

$$W(X, \mathbf{Y}^{\boldsymbol{\alpha}}) \equiv P_N(X; \mathbf{Y})$$
 m. h. w. t.

Hence we can consider $W(X, \mathbf{Y}^{\alpha})$, as the weighted initial form of P_N . Since at least one $c_r \neq 0$, (r > 1), W(X, Y) factors:

(12)
$$W(X, Y) = H_p(X, Y)K_q(X, Y), \quad p+q = k_N,$$

where H_p , K_q are relatively prime homogeneous forms, monic in X. Take any monomial $\mathbf{Y}^E X^d$ with weight

 $E \cdot \boldsymbol{\omega} + d \tan \theta_N > k_N \tan \theta_N$.

Choose an integer $j \ge 0$ and a rational number t such that

$$E \cdot \boldsymbol{\omega} = j \tan \theta_N + t, \quad 0 \leq t < \tan \theta_N.$$

By Lemma 2, there is an admissible exponent J such that

$$\tan \theta_N + t = J \cdot \boldsymbol{\omega}$$

Let us first consider the case

$$E \cdot \boldsymbol{\omega} \geq \tan \theta_N$$
 (hence $j \geq 1$).

By Lemma 3, there exists a constant $C^* \neq 0$ such that

$$\mathbf{Y}^E \equiv C^* \mathbf{Y}^J \mathbf{Y}^{(j-1)\boldsymbol{\alpha}} \text{ m. h. w. t.}$$

Since $d + j = k_N$, Lemma 1 can be applied to $Y^{j-1}X^{d'}$, for (12), giving

$$Y^{j-1}X^d = B_{s-p}(X, Y)H_p(X, Y) + A_{s-q}(X, Y)K_q(X, Y)$$

where s = d + j - 1.

On substituting Y by \mathbf{Y}^{α} , we find that $\mathbf{Y}^{E}X^{d}$ is in the ideal generated by $H_{p}(X, \mathbf{Y}^{\alpha})$, $K_{a}(X, \mathbf{Y}^{\alpha})$, modulo higher weighted terms.

Now, consider the case

$$E \cdot \boldsymbol{\omega} < \tan \theta_N$$
.

In this case, j = 0 and hence $d \ge 1$. Lemma 1 applies to X^{d-1} . Again, $\mathbf{Y}^{E}X^{d}$ is in the ideal generated by $H_{p}(X, \mathbf{Y}^{\alpha})$, $K_{q}(X, \mathbf{Y}^{\alpha})$.

The rest of the argument is standard for Hensel's Lemma. We can recursively find weighted forms A', B', A'', B'', etc. with increasing weights, such that

$$[H_p + A' + A'' + \cdots][K_q + B' + B'' + \cdots]$$

has F(x, y) as its image under σ_N . Thus F(x, y) is reducible, proving Assertion 4.

EXAMPLE.

$$(x^{2} - y^{3})^{2} - y^{7} = \left[(x^{2} - y^{3} + xy^{2}) + \frac{1}{2}y^{4} + \frac{1}{4}xy^{3} + \cdots \right]$$
$$\cdot \left[(x^{2} - y^{3} - xy^{2}) + \frac{1}{2}y^{4} - \frac{1}{4}xy^{3} + \cdots \right].$$

9. Proofs of Assertions 5 to 7. We are in Case 4. Define $v(X) = \omega_{N+1}$ and let α be an admissible exponent satisfying (8).

By an argument similar to that in Section 8, we can define

$$W(X, Y) = X^{k_N} + C_1 X^{k_N - d_{N+1}} Y + C_2 X^{k_N - 2d_{N+1}} Y^2 + \cdots$$

such that

$$W(X, \mathbf{Y}^{\boldsymbol{\alpha}}) \equiv P_N(X; \mathbf{Y}) \text{ m. h. w. t.}$$

Now, suppose k_N is not divisible by d_{N+1} . Let k_N be divided by d_{N+1} :

(13)
$$k_N = Qd_{N+1} + R, \quad 0 < R < d_{N+1},$$

so that

$$W(X,Y) = X^{\kappa} H(\xi,\eta),$$

where

 $\xi \equiv X^{d_{N+1}}, \quad \eta \equiv Y,$

and $H(\xi, \eta)$ is a homogeneous Q-form, monic in ξ . The equation $H(\xi, 1) = 0$ may, or may not, have $\xi = 0$ as a root. Let $\mu \ge 0$ denote the multiplicity.

First, assume $\mu = 0$.

Let $I(\xi, H(\xi, \eta))$ denote the ideal generated by ξ and $H(\xi, \eta)$. Then, clearly.

(14)
$$\eta^{\mathcal{Q}} \in I(\xi, H(\xi, \eta)).$$

Take a monomial $\mathbf{Y}^{E} X^{d}$ such that

(15)
$$E \cdot \boldsymbol{\omega} + d\omega_{N+1} > k_N \omega_{N+1}$$

We claim that

(16)
$$\mathbf{Y}^{E} \mathbf{X}^{d} \in I(\mathbf{X}^{R}, H(\mathbf{X}^{d_{N+1}}, \mathbf{Y}^{\boldsymbol{\alpha}})).$$

This is obvious if $d \ge R$. In case d < R, it suffices to show that \mathbf{Y}^E is divisible by $\mathbf{Y}^{Q\alpha}$. Then (16) follows from (14).

By (13),

$$E \cdot \boldsymbol{\omega} - Qd_{N+1}\omega_{N+1} > (R-d)\omega_{N+1} \ge d_N\omega_N$$

Hence the left-hand side, being an element of the abelian group generated by S_N , is actually in S_N , by Lemma 2. There is an exponent E^* such that

$$E \cdot \mathbf{\omega} = E^* \cdot \omega + Qd_{N+1}\omega_{N+1},$$

whence

$$\mathbf{Y}^E = \mathbf{Y}^{E^*} (\mathbf{Y}^{\boldsymbol{\alpha}})^{\mathcal{Q}}.$$

Now, suppose $\mu \ge 1$. Let us write

$$H(\xi, \eta) = \xi^{\mu} K(\xi, \eta), \quad K(0, 1) \neq 0.$$

Lemma 1 is applicable to the pair ξ^{μ} , $K(\xi, \eta)$, so that

(17)
$$\xi^{i-1}\eta^{Q-i} \in I(\xi^{\mu}, K(\xi, \eta)), \quad 1 \le i \le Q.$$

Take a monomial $\mathbf{Y}^{E} X^{d}$ with property (15). We claim that

(18)
$$\mathbf{Y}^{E} \mathbf{X}^{d} \in I\left(\mathbf{X}^{\mu d_{N+1}+R}, K(\mathbf{X}^{d_{N+1}}, \mathbf{Y}^{\boldsymbol{\alpha}})\right).$$

In case $d \ge \mu d_{N+1} + R$, this is obvious. Otherwise, let μ' denote the largest integer such that

$$(\mu'-1)d_{N+1}+R \le d < \mu'd_{N+1}+R.$$

Then, by a similar argument, we can show that $\mathbf{Y}^{E} X^{d}$ is divisible by

$$X^{(\mu'-1)d_{N+1}+R}\mathbf{Y}^{(Q-\mu')\boldsymbol{\alpha}}.$$

Hence (18) follows from (17).

Both for $\mu = 0$ and for $\mu > 0$, we can now use an argument similar to that for Assertion 4 to conclude that F(x, y) is reducible, proving Assertion 5.

Finally, let us assume k_N is divisible by d_{N+1} , so that R = 0 in (13). Coefficient C_1, C_2, \ldots , can be determined so that

$$W(\xi, Y) = \xi^{\mathcal{Q}} + C_1 \xi^{\mathcal{Q}-1} Y + \dots + C_{\mathcal{Q}} Y^{\mathcal{Q}}$$

has the property that

$$W(X^{d_{N+1}}, \mathbf{Y}^{\boldsymbol{\alpha}}) \equiv P_N(X; \mathbf{Y}) \text{ m. h. w. t.}$$

Suppose $C_1 = 0$. Since at least one other $C_i \neq 0$, $W(\xi, Y)$ factors into two relatively prime factors, monic in ξ . Let us consider

$$\{G_0,\ldots,G_{N+1},G_{N+2}\}, \quad G_{N+2}=G_{N+1}^{d_{N+1}}.$$

This is *G*-adic base, but not a Γ -adic base. Consider the expansion (3) of F(x, y) with respect to this base. Since $W(\xi, Y)$ factors, by repeating the argument for Assertion 4, we come to the conclusion that F(x, y) is reducible. This completes the proof of Assertion 6.

Now assume $C_1 \neq 0$. Define

$$G_{N+2} = G_{N+1}^{d_{N+1}} + \frac{C_1}{Q} \mathbf{G}_N^{\boldsymbol{\alpha}},$$

which, by Lemma 6, is prime, proving Assertion 7.

Note that the induction hypothesis (H_G) has also been proved for N + 1.

As for (H_P) , using $\Gamma_{N+1} = \{G_0, \ldots, G_{N+2}\}$ as the Γ -adic base, $P_{N+1}(X; Y_0, \ldots, Y_{N+1})$ is defined, having first vertex at $(k_{N+1}, 0)$.

In case

(19)
$$W(\xi,1) = \left(\xi + \frac{C_1}{Q}\right)^Q$$

we clearly have

 $\tan \theta_{N+1} > d_{N+1} \omega_{N+1}.$

In case (19) does not hold, we will have

$$\tan \theta_{N+1} = d_{N+1} \omega_{N+1},$$

but there will be no Newton dot at $(k_{N+1} - 1, \tan \theta_{N+1})$.

ACKNOWLEDGMENT. The author would like to thank his son, Dean, and Scot Mc-Cullum, for many valuable communications related to the Computer Science aspects of this result.

REFERENCES

- 1. S. Abhyankar and T. T. Moh, Newton-Puiseux expansion and generalised Tschirnhausen transformation I, II, J. Reine Angew. Math. 260(1973), 47–83; ibid. 261(1973), 29–54.
- **2.** T.-C. Kuo, Generalised Newton-Puiseux theory and Hensel's lemma in C[[x,y]], Canad. J. Math. (6) **XLI**(1989), 1101–1116.
- 3. T. T. Moh, On the approximate roots of a polynomial, Crelle 278(1974), 301–306.

School of Mathematics and Statistics University of Sydney New South Wales 2006 Australia