
Can. J. Math. Vol. 47 (4), 1995 pp. 801-816 

A SIMPLE ALGORITHM 
FOR DECIDING PRIMES IN K[[x,y]] 

TZEE-CHARKUO 

ABSTRACT. The well-known Tschirnhausen transformation, x —* x — jj[, eliminates 
the second term of the polynomial x" + ax"~l + • • •. By a mere repeated application 
of this transformation, one can decide whether a given element of £[[*,)>]] is prime 
(irreducible) or not. Here K is an algebraically closed field of characteristic 0. 

A generalised version of Hensel's Lemma is developed for the proofs. The entire 
paper can be understood by undergraduate students. 

1. Basics. 
Semigroups. In this paper, by a semigroup we always mean an additive subsemigroup of 
the positive rationals, Q+. Also, we assume they are finitely generated. Thus, a semigroup, 
S, has a minimal set of generators, uo,..., UN, and we write 

S = S(UJ0,...,UJN), 

where 0 < UQ < • • • < LJN, and 

ujt £S(vo,...9u)i-\)9 / > 1. 

A (finitely generated) semigroup is isomorphic to one whose generators are integers. 
Let do = 1 and let dt denote the smallest integer such that 

dtUJi G S{UJQ9 . . . , Ui-\)9 i > 1. 

We may call dj^UN the last merging point oîS. 
Let SM = S(LJO, . . . , (JJN) be given. We write 

co = (a;o,...,a;tf); 

a typical element of SN can then be written as an "inner product" 

N 

(1) Af • co = £/H/o;,-

where M = (m0 , . . . , m^) in an (N + l)-tuple of non-negative integers. 
We call M admissible if 0 < mt < dt for 1 < / < N. (Note that mo > 0 can be any 

integer.) 
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802 TZEE-CHARKUO 

DEFINITION. We say SN is a Newton-Puiseux semigroup if ujt > di-\Ui-\ for all 

i> 1. 
An element of a Newton-Puiseux semigroup SN admits a unique expression (1), with 

M admissible. This is the Corollary to Lemma 2 in Section 6. 
All semigroups arising in this paper are Newton-Puiseux. 

Associated weight. Let SN be given. Take indeterminants Yo,...,YN, and write 

Y = (Y0,...,YN\ YM=Y%°--Y%N, 

so that an element of the formal power series ring #[[Y]] is expressed as 

/ (Y) = I>MY M , aMeK. 
M 

Define a weight function on ^[[Y]], 

wK[ [Y] ] -*Q + U{oo} 

by 
W A - I minW' <*> I aM ± 0}, if/ ^ 0, 
VN{J)~ \ 00, if/ = 0. 

Note that v^(y}) = ut. 
We call v#(/) the weighted order of/ associated to SN-

Associated Newton polygon. Let SN, VN be as above. 
Take an element in ^[[Y,X|], 

P(X;Y) = J2aM,dY
MXd, aM4 G K. 

In a coordinate plane, IR2, let us plot a dot at the point (d,M • <o) for each monomial 
term aM,dYMXd, aM,d 7̂  0, of P. Note that the second component M • to is an element of 
SN- We call this dot a Newton dot. 

When all M are admissible, there is at most one dot at a given point. 

DEFINITION. The Newton polygon of P(X; Y) associated to SN is the boundary of 
the convex hull spanned by the set 

{(u, v) I 3 a Newton dot (d, M • co) such that u > d, v > M • co}. 

Suppose P(X; Y) is regular in X, say of order &; that is, 

P(X; 0) = X* + higher order terms. 

Then, of course, (&, 0) is a vertex of the Newton polygon. We call it the first vertex. 
Let E denote the non-horizontal edge of the polygon at the first vertex, and 6 the angle 

it makes with the negative horizontal direction, as indicated in the following example. 
We call E the first edge, and 9 the first angle, of the Newton polygon of P, or simply of P. 
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EXAMPLE. P(X9Y) = X2,+XY2 + YA 

0s) 

G-adic bases. We follow Abhyankar-Moh ([1], [3]), who defined the notion. 
Consider, as in [2], a sequence 

TN = {G0(x9y)9..., GN(x9y)9 GN+l(x9y)}9 N>0. 

where Go = y, and for each / > 1, Gt{x9y) is an element of AT[[y]][x], monic in x, say of 
degree Di9 such that each £>,- properly divides A+i • 

Di+l =diDh dt> 1, \<i<N. 

EXAMPLE, T\ = {y,x,x2 - y 3 } , r 2 = {y9x9x
2 -y*,(x2 - j 3 ) 2 -xy5}. 

A repeated application of the Euclidean Division Algorithm shows that TN is a G-adic 
base in the sense of Abhyankar-Moh ([1]): Given F(x, y)9 there is a unique expression 

(2) F(x,y) = Y,aM,dG%Gd
N+l 

where M — (mo,...,WAr) are admissible exponents, and G^ is a shorthand for 
G™°-G™». 

Let TAT be given a G-adic base. We define the associated linear injection 

tN:K[[x,y]]^K[[Y,X]] 

via (2) by: 

(3) EN(F(x,y)) = Za^YMXd. 

Note that IN may not preserve multiplication. All exponents M in (3) are admissible. 
There is also an associated substitution map, which is a left inverse of IN, 

aN:K[[Y,X]]^K[[x,y]] 

defined by 
<TN(Yi) = Gi(x,y\ aN(X) = GN+\{x9y)9 

preserving both the linear and multiplicative structures. 

REMARK. When IN is given. A weighted order v# is induced on ^[[JC,^]] such that 

vN(F(x9yj) = v„(lN(F(x9y))y 
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DEFINITION ([2]). When each G, is a prime in ^[[x,x|], we say TN is a T-adic base. 

All G-adic bases used in this paper are T-adic. 

The Tschirnhausen transform. Let SN, TN and P(X; Y) be given. Suppose P is in the 
image of IN, regular inX, of order k. 

Suppose tan0 G SN, where 0 is the first angle. We can write, as in (1), 

tan 0 = M • €t>, M admissible. 

The Tschirnhausen transform of the pair (P, TN) is defined as follows. 

Consider the point (k — 1,M • <x>), which lies on the first edge, E, next to the first 
vertex (&, 0). There is a Newton dot at this point if, and only if, P has a monomial term 
aYMX*-\a^0. 

This dot can be eliminated by a Tschirnhausen transformation. Namely, we replace X 
b y X - | Y M i n P t o g i v e 

P\X\ Y) = P(x- jYM; Y ) , 

which no longer has a Newton dot at this point. 

In the mean time, we replace GN+\ by 

(4) GVl(x,y) = GN+1(x,y) + fâ. 

Then, we define 

T^ = {Go,...,GN,G^ 

and 

I*l\X;Y)=lNoaN(P'(X;Y)). 

The pair {F*l\ T ^ } is called the Tschirnhausen transform of {P, TN}. 

Observe that (k, 0) remains the first vertex of i*^; and also, clearly, 0(1) > 0. (We use 
0(1) to denote the first angle of F*l\) 

When a = 0, the Tschirnhausen transformation is the identity transformation. We say 
it is stationary. 

The following example shows that both cases 0(1) > 0 and 0 ^ = 0 can happen. In 
either cases, however, there is no Newton dot at (k — 1, M • tt>). 

EXAMPLE. Taker0 = {y,jc}.ForX2+2AT+72,0 = f,0O) = f .ForX2+2\T+2r2 , 
0^ = 0 = f. 

When tan 0 ^ SN, we say the transformation is not applicable. (Example: r 0 = {y, x}, 
p = x 2_ > ; 3 . ) 
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2. The algorithm. The Assertions in this section will be proved in later sections. 
Take a non-zero element of A [̂[JC, j>]], 

F(x9y) = Hk(x9y) + HM(x9y) + • • •, 

where Hk is the initial (homogeneous) form. 
By applying a suitable linear transformation, if necessary, we can assume 74(1,0) = 

1. An application of a Tschirnhausen transformation will then reduce Hk to 

(5) Hk(x9y) = xk + a2x
k-y + • • • + aky

k. 

Let us describe the initial stage of the algorithm, assuming (5). 
Take any UQ G Q+. (Indeed, we can take LJQ = 1.) Let So = S(LJO), and let vo be 

defined by vo(To) = UJQ. Take the first T-adic base to be 

To = {Go =y,G\ =x}. 

The associated maps £0, &o are defined accordingly. Finally, let 

Po(X;Y0) = lo(F(x9yj)9 

which is regular in X, of order ko = k. 
Now assume, inductively, that we are at stage N, N > 0, having defined a Newton-

Puiseux semigroup, SN = S(uo9... ,a;#), a T-adic base TN, together with vN, lN, a^, 
and 

PN(X; Y) - tN(F(pc9y))9 Y = (Y0,...9 YN). 

where PN is regular in X, say, of order fa. 

ASSERTION 1. If fa = 1, then F(x9y) is prime. 
In case fa > 1, we apply the Tschirnhausen transformation recursively to the pair 

{PN9 TM}, as long as it is applicable. This yields a sequence {P$, T^} , where P$ = PN, 
r^} = TAT, and {P^\lf} is the Tschirnhausen transform of {P^~l)

9T^~l)}9 for all s. 
Four cases may arise: 

CASE 1. The transformation is always applicable, yielding an infinite sequence 

CASE 2. We arrive at {P§\ T$}9 and find tan0JJ} = oo. (Here, 6$ denotes the first 
angle of /*>.) 

CASE 3. Or, here we find that the Tschirnhausen transformation is stationary, with 

tan < oo). 

CASE 4. Or, we have, tan B$ £ SN, (so that it is no longer applicable). 

ASSERTION 2. Tty are T-adic bases. 
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ASSERTION 3. In Cases 1 and 2, (£# > 1), F(x,y) is the A>th power of a prime, hence 

reducible. 

ASSERTION 4. In Case 3, F(x,y) is reducible. 

When Case 4 happens, we move on to define the (N+ l)-st stage. Let wN+\ = tan 6$, 

SN+l — S(wo,..., WN+\), and let du+\ be the smallest integer such that 

dN+\^N+\ £ SN, {dN+\ > 1). 

We shall see, in Section 4, that S^+i is Newton-Puiseux. 

When fa is divisible by CIN+\9 we define kx+\ and an admissible exponent a = 

k^ — k^f+id^+i, ot • co = d^+iujjsf+i. 

ASSERTION 6. Consider the monomial term, a\
a^N~dN+x of P^\ If a = 0, then 

F(x,j>) is reducible. 

Now, suppose a ^ 0. We define 

(6) GW+2 = G$+\ + 7 G ^ ' 

rv+i = {Go, • . •, G%.\9GN+2}, 

and 

PN+\ (X;YN+l) = lN(F(x,y)) 

which is regular in X, of order fc#+i, where 

£N+\(GN+\) = Fyv+l, YAT+I = (YO,...,YN+\). 

ASSERTION 7. G#+i is prime, whence r#+i is a T-adic base. 

This completes the description of the algorithm. 

Since {&#} is a strictly decreasing sequence of positive integers, Case 4 can not happen 
infinitely many times. The algorithm terminates in finitely many steps. 

ATTENTION. Since GN+\ has been replaced by G$+l when GN+I is defined, F M is not 
necessarily a subset of r#+i. However, note that 

G$+l — Gw+i + terms of higher weight. 

CONVENTION. When TN+i has been defined. We shall use TN to denote r j j \ abusing 
notations, and then forget about the original r# . In this new system of notations, r # is a 
subset of r#+i, for all N. 
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3. Illustrative examples. A simple example for Case 1 is: 

x2 + 2xy2 + 2xy3 + / + 2xy4 + 2y5 + • • • = (JC + y2 + y> + / + .. .)2. 

For Case 2, we can take 

(x2+2xy+y2) + (xy2+y3)+-y4=[(x+y) + -y2} . 

For Case 3, consider 
F=(x

2-y3)2-y\ 

Here, we find 

v(x) = v(Gl) = 3/2, 

5 i = 5(1,3/2), 

G2=J -y3, 

Px =X2-Y\ 

tan6>i = 7/2 e Si. 

The Tschirnhausen transformation is stationary, F is reducible by Assertion 4. (The 
term G\ Y2 is missing from Pi.) A factorization is given at the end of Section 8. 

For Case 4, our first example is F — x3 — xy3 +y5. Here we have, 

N=0, 

P0=X3-XY3, 

k0 = 3, 

</i=2. 

Since ko is not divisible by d\, F is reducible (Assertion 5). 
Next, consider 

Here, we find 

F=(x2-y3)4+y13. 

G\ =x, 

G2=x2-y3
9 

P 1 = ^ + 713, 

tan^i = 3 - , 

£ / ,=2 . 

By Assertion 6, F is reducible. (The term G\ Y5 is missing from P\.) 
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Now let us consider 

F = (x2 - y 3 ) 4 + 2 x y V - j ; 3 ) 2 + 2y13 + • • •. 

Here, 
P! = X4 + 2GlY

5X2 + 2Y{\ 

Following the algorithm, we define 

G^tf-y'f+xy5 

which, by Assertion 7, is prime. 
Finally, let us consider 

(JC2 - y3)4 + 2xy5(x2 - y3)2 + y13 + higher weighted terms. 

This time, 
Pi =X4 + 2G{Y

5X2 + YU 

= (X2 + Gi75)2 + . . . , 

so that we move on to the next stage of the algorithm. 

4. Induction hypothesis. We make two induction hypothesis at Stage N; they will 
be proved for N + 1 at the end of Section 9. 

(HP) For the first angle ON of P#, we have 

tan ON > CIN^N, 

and if equality holds then there is no Newton dot at (£# — 1, tan0#). 
(HG) For N>\, GN+\(x,y) has the form 

GN+i=Gd
N"+cGZ-{, c ^ O , 

where GLN-\ — («o,.. •, o^v-i) is an admissible exponent such that 

Y, octUi = dNuN. 
i=0 

When N = 0, (HP) follows from (5); (//G) says nothing, hence true. 

5. Stage N = 0. We can assume UJQ = 1. 
If £ = &o = l,F(x,y) is obviously prime. So let us suppose k > 1. 
In Case 1, where the Tschirnhausen transformation is always applicable, we find an 

infinite series £ Cy such that 

F(x,y)= (x-YCny
n)h -unil 

In Case 2, there is a finite series with the same property. 
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Therefore Assertions 2 and 3 are true when N = 0. 
For Assertion 4, let us first assume tan 0O = 1 • By (5), the initial form of Po(X; Y) has 

the form 
I(X, Y) = Xk + a2X

k~2Y2 + • • • + akY
k. 

Since at least one a, ^ 0,1(X, 1) = 0 has at least two distinct roots, and so I{Xy Y) 
factors: 

I(X,Y)=Hp(X,Y)Kq(X,n P + q = K 

Hp, Kq are relatively prime (homogeneous) forms of degree p, q respectively, both monic 
inX 

LEMMA 1. Every (p + q — \)-form Lp+q-\(X, Y) is in the ideal generated by Hp and 
Kq. That is, there exist forms Ap-\, Bq-\ such that 

(7) W i ( * > *) = V i K YWpUC Y) + Ar-i(X9 Y)Kq(X, Y). 

Consequently, every r-form, r>p + q— 1, is in this ideal. 

The proof is well-known. Since Hp, Kq are relatively prime, polynomials Ap-1, Bq- \, 
of degree p — l9q—l, respectively, can be found such that 

V,_i (X, 1) = Bq_x(X)Hp{X, 1) + V i W ( * 1). 

Then (7) follows by homogenizing this expression. 
Now, consider any power series P(X, Y), such as Po(X, Y), whose initial form is I(X, Y). 

By a repeated application of Lemma 1, we can recursively find forms Ai9 Bf such that 

P(X, Y) = [Hp +Ap+X +Aj»2 + • • -][Kç +Bq+X +Bq+2 + • • • ] . 

An application of ao to Po(X, Y) then yields a factorization of F(x,y). 
Now, suppose tan ̂ o > 1 in Case 3. Let us define weights by 

v(X) = tan0o, v ( y ) = l . 

Since there is no Newton dot at (k — 1, tan#o), the weighted initial form of Po(X, Y) 
factors into two relatively prime weighted forms. The same reasoning as before will then 
lead to a factorization of Po-

This is known as the weighted Hensel Lemma. 
We shall consider stage N = 0 of Case 4 with the general case. 

6. More on Newton-Puiseux semigroups. Consider a (finitely generated) semi
group *SJV- The abelian group generated by SN is generated by a single element, say g. 
There is a smallest integer r such that (r + i)g G SN for all / > 0. Call rg the conductor 
ofSN. 

When a semigroup is generated by two positive integers p, q, the conductor is 
ip' -\){q' -\)D, where 

D = G. C. D.(p, q\ p = p'D, q = q'D. 

When there are more than two generators, there is no simple formula for calculating 
the conductor. However, by an easy induction on N we can prove the following 

https://doi.org/10.4153/CJM-1995-041-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-041-9


810 TZEE-CHAR KUO 

LEMMA 2. In a Newton-Puiseux semigroup SN, the conductor is < du^N- (Thus, 
beyond the last merging point, SN coincides with the abelian group it generates). 

COROLLARY. Every element in SN admits a unique expression (I) with M admissible. 

PROOF. Suppose M, M' are admissible and M • CO = M' • CO, m^ > mf
N. Then 

(mN — m'N)ujN belongs to the abelian group generated by SN-\9 hence to SN-\ itself. This 
is absurd, hence mN = m'N. Similarly, mi — m't for all other /. 

7. Construction of primes. We are in stage N, having defined SN, TN, etc. The 
induction hypothesis Hp and HQ are also at our disposal. 

Take any rational number UJN+\ > d^N- Let d^x denote the smallest integer such 
that 

dN+i^N+i £ SN, (dN+\ = 1 if WN+\ G SN). 

Let a = (ao, . . . , ##) be the admissible exponent such that 

(8) a - co = dN+i^N+i 

Take an integer r > 2. Note that rot = (rao, . . . , raN) may not be admissible. When 
this happens, we like to investigate the expansion (3) for G™. 

For this purpose, it is convenient to define a weight on X and GN+\ : 

(9) v(X) = v(GN+\) = UN+I • 

LEMMA 3. Let E = (eo,..., en) be a given exponent. 
(i) Suppose CJN+\ > dNU)N- Then the weighted initial form o/7#(Gjy) consists of only 

one monomial term a\^, where a ^ 0, P is admissible, and 

p co = E co. 

(ii) Suppose LON+I — d^WN* and suppose eN < du- Then the same is true. 
(Hi) Suppose UJN+I = dN^N- Then OLN = 0. Hence ifE = roL, again the same is true. 

EXAMPLE. Consider T\ = {y,x,x2 - 2y*}. Here u\ = 3/2. 
Let us compute the expansion of (yx)2: 

(yxf = f[(x2 - 2y3) + 2y3] = 2y5 +y2(x2 - 2y3). 

In case we take 0J2 > d\uj\ = 3 , 2y5 has the lowest weight, 

v(2y5) = 5<v(y2(x2-2y3)), 

confirming (i). 
However, if we take U2 = 3, then both terms have weight 5; this explains why we 

assume eN < d^ in (ii). 

PROOF. For an admissible exponent, E, there is nothing to prove. 
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Define an ordering of the exponents as follows: 

(e'09...9e'N) <(eo,...,eN) 

if 3/, e'j < ej and e\ = et V/ >j. 
Now, suppose E is not admissible. Let y > 0 be the largest integer such that e7 > dj. 

By (HG), we can write 

(10) GjJ = -cGjr;+Gj+l. 

Note that the first two terms both have weight djUj\ the third term, Gy+i, has higher 
weight for ally, 1 <j < N, in case (i). In case (ii), this is true for all j , 1 <j < N — 1. 

By a repeated application of (10), it follows that there is an exponent E' < E, such 
that 

G^ = C*G# + higher weighted terms, 

where C* ^ 0, E • co = Ë • o>. 
Take an E' with this property which is minimal in the ordering. This E' must be ad

missible. 
The proof of (iii) is easy. Since d^ujN G SV-i, and a is admissible, we must have 

«AT = 0 . 

We introduce a terminology. Let g be the generator of the abelian group generated by 
SN. Given an integer m, let fyQg denote the ideal in AT[[Y,X|] of elements with weighted 
order > mg. 

Given P(X; Y), Pf(X; Y) in #Cg> we say they are congruent modulo higher weighted 
terms, if 

When Mmg is understood, we simply write 

P(X; Y) = P'(X; Y) m. h. w. t. 

Let f(x,y) = aN(P),f(x,y) = VN(P')\ we also write 

f(x,y)=f'(x,y)m.h.w.t 

Recall that £# may not preserve multiplication. However, we shall show it preserves 
the weighted initial form modulo higher weighted terms in the following sense. 

Again, let us take any U)M+\ > d^uju, and defined weights as in (9). Then the weighted 
initial form of a given P(X; Y) is defined. 

Let Fj(x,y), i — 1,2,3, be given with 

F3(x,y) = Fi(x,y)F2(x,y). 

LEMMA 4. Let Wt(X; Y) denote the weighted initial form ofixiFi). Then 

Wx(X; Y)W2(X\ Y) = W3(X; Y) m. h. w. t. 
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PROOF. Recall that a^ preserves multiplication. Hence 

(11) IN O (JN{LN{FX)IN{F2)) = MF 3 ) . 

Consider a typical term in IN(F\)£N(F2\ 

i = CxC1Y
Ex+ElXdx+d\ 

where C\YEiXdi is a monomial term in £#(F/). 

By Lemma 3, IN O OJV(0 has the same weighted order as £. 

Now, comparing terms of minimal weighted order on both sides of (11), we find 

lN o aN(Wi • ̂ 2 ) = ^3 m. h. w. t. 

Several important consequences can be derived from this lemma. First, let us take 

U)N+\ — d^ooN' Let / /(Go,. . . , GN+I) be any series with weighted order > UN+\. 

LEMMA 5. GN+\ + //(Go,. . . , G#+i) is prime. 

This is clear: £N(GN+\ + //) has weighted initial formX, which is irreducible. 

EXAMPLE. Consider T\ = {y, JC,x2 —y3}. Here, G2 + j 3 = x2 is not prime. Note that 
v(y3) = CJ2, and hence Lemma 5 does not apply. 

Using the inductive hypothesis (//p), we see that G$+l, i > 0, are all primes. 

Assertion 1 follows. Indeed, when ku = 1, there is a finite, or infinite, series //, such 
that 

F(x9y) = (GN+i + H) - unit. 

Assertions 2 and 3 are immediate consequences too. 

Now, let us take OJN+\ £ *SV, OJN+\ > d^N, and a satisfying (8). Take a constant 
c ^ O . 

LEMMA 6. Le/ / /(Go,. . . , G^+i) Z?e « senes with weighted order > t/^+iUN+\. Then 

Gfc{-cG% + H(G0,...,GN+i) 

is a prime. 

The corresponding weighted initial form is A^+1 — cYa, having weight dN+\UN+\- It 
has to be irreducible, since any weighted form of lower weighted form of lower weight 
consists of at most one monomial, and the product of two such is a single monomial term. 
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8. Proof of Assertion 4 (N > 1). We are at stage N, having defined P^9 0N, etc. and 
then, being in Case 3, arrived at P§\ 6$>We shaH w r i t e ^ <$ a s pN> 0N> f o r simplicity 
of notation. 

Let a denote the admissible exponent such that a • co = tan0#(= v(X)). Take a 
Newton dot on the first edge, representing a term of PN of the form 

arY
EX*»-r, ar ^ 0. 

Then Lemma 3 can be applied to ra, giving a constant cr ^ 0 such that 

0rY
£ = c rY

r am.h.w.t 

These cr can be used to define a homogeneous form in two variables 

W(X, Y)=XkN+c2X
kN-2Y2 + • • •. 

Attention should be paid to the absence of c\ ; this is because we are in Case 3, there 
is no Newton dot at the corresponding point. 

Observe that 
W(X, Y") = PN(X; Y) m. h. w. t. 

Hence we can consider W{X, Ya), as the weighted initial form of P^. 
Since at least one cr ^ 0, (r > 1), W(X, Y) factors: 

(12) W(X,Y) = Hp(X,Y)Kq(X,Y), p + q = kN, 

where Hp, Kq are relatively prime homogeneous forms, monic in X. 
Take any monomial YEXd with weight 

E • <A> + d tan 0# > &# tan ##• 

Choose an integer y > 0 and a rational number t such that 

E-O)=jtm0N + t, 0 < t<t3xi6N. 

By Lemma 2, there is an admissible exponent/ such that 

tan0N + t = J'(O. 

Let us first consider the case 

E - CO > tan#w (hencey* > 1). 

By Lemma 3, there exists a constant C* ^ 0 such that 

Y£ = C*YJY(/"-1)am.h.w.t. 

Since J +7 = £#, Lemma 1 can be applied to lP~xXd\ for (12), giving 

V-'X* = BS-P(X, Y)HP(X, Y) +As.q(X, Y)Kq(X, Y) 
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where s = d+j — 1. 
On substituting Y by Ya , we find that YEXd is in the ideal generated by Hp(X, Ya), 

Kq(X, Ya), modulo higher weighted terms. 
Now, consider the case 

E- co< tann

in this case,y = 0 and hence d > 1. Lemma 1 applies to Xd~x. Again, YEXd is in the 
ideal generated by HP(X, Ya), Kq(X, Ya). 

The rest of the argument is standard for Hensel's Lemma. We can recursively find 
weighted forms A', B\ A", B"', etc. with increasing weights, such that 

[Hp +A' +A" + • • -}[Kq+B' + B" + • • •] 

has F(x,y) as its image under aN. Thus F(x,y) is reducible, proving Assertion 4. 

EXAMPLE. 

{x2 _yif _yi = [(x2 _ y 3 + x j 2 ) + l y 4 +
 l_xy3 + .. 

(x2-/-V)+-/--V + --

9. Proofs of Assertions 5 to 7. We are in Case 4. Define v(JQ — <JJN+\ and let ot be 
an admissible exponent satisfying (8). 

By an argument similar to that in Section 8, we can define 

W(X, Y)=XkN + Cx)^N~dN+x Y + c2X
kN~2dN+l Y2 + • • • 

such that 
W(X, Ya) = PN(X; Y) m. h. w. t. 

Now, suppose ku is not divisible by d^+\. Let k^ be divided by d^+\ : 

(13) kN=QdN+{+R, 0<R<dN+u 

so that 
JT(jr,y)=A*7/(€,Ty), 

where 

andH(£,r]) is a homogeneous g-form, monic in £. The equation //(£, 1) = 0 may, or 
may not, have £ = 0 as a root. Let /i > 0 denote the multiplicity. 

First, assume /i = 0. 
Let /(£, //(£, r/)) denote the ideal generated by £ and //(£, r/). Then, clearly. 

(14) TJG G/(£#(£,*/)). 
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Take a monomial YEXd such that 

(15) E • co + duûN+\ > kNUJN+\. 

We claim that 

(16) YEXd G iÇ^Mi^1, Ya)). 

This is obvious if d > R. In case d < R, it suffices to show that YE is divisible by 
Y ^ . Then (16) follows from (14). 

By (13), 
E • co — Qd^+i^N+i > (R — d)ujN+\ > dNOJN. 

Hence the left-hand side, being an element of the abelian group generated by SM, is 
actually in SN, by Lemma 2. There is an exponent E* such that 

E • CO = E* • u + Qdpj+i OJN+\ J 

whence 
y£ — Y^VY**)̂ . 

Now, suppose \i > 1. Let us write 

#«,*/) = £"*(£, t/), ^ ( 0 , 1 ) ^ 0 . 

Lemma 1 is applicable to the pair £**, AT(£, 77), so that 

(17) r 1 ^ e l(t",K(C9ri))9 1 < / < Q. 

Take a monomial Y£J^ with property (15). We claim that 

(18) YEX* G / ( ^ + 1 + ^ ( J ^ Y")). 

In case d > [idu+i + i?, this is obvious. Otherwise, let \i' denote the largest integer 
such that 

{li' - \)dN+x +R<d< n'dN+i + R. 

Then, by a similar argument, we can show that YEXd is divisible by 

j^'-i)4H+^Y(W)tt ( 

Hence (18) follows from (17). 
Both for n = 0 and for fi > 0, we can now use an argument similar to that for 

Assertion 4 to conclude that F(x,y) is reducible, proving Assertion 5. 
Finally, let us assume k^ is divisible by d^+i, so that R = 0 in (13). 
Coefficient C\, C2,. . . , can be determined so that 

W{Z, y) = £0 + C i ^ _ 1 F+ ' • ' + CQY*2 

https://doi.org/10.4153/CJM-1995-041-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-041-9


816 TZEE-CHARKUO 

has the property that 
W{XdN+", Ya) = PN(X; Y) m. h. w. t. 

Suppose C\ = 0. Since at least one other Q ^ 0, JF(£, Y) factors into two relatively 
prime factors, monic in £. Let us consider 

{Go,..., GM+\ , GW+2}, GM+2 = G^+l -

This is G-adic base, but not a T-adic base. Consider the expansion (3) of F(x,y) with 
respect to this base. Since W(^, Y) factors, by repeating the argument for Assertion 4, we 
come to the conclusion that F(x,y) is reducible. This completes the proof of Assertion 6. 

Now assume C\ ^ 0. Define 

GN+2 = G%;\ + ^ G £ , 

which, by Lemma 6, is prime, proving Assertion 7. 
Note that the induction hypothesis (He) has also been proved for N + 1. 
As for (HP), using r^+i = {G0 , . . . , GN+2} as the T-adic base, PN+\{X\ YO,..., YN+\) 

is defined, having first vertex at (k^+i, 0). 
In case 

(i9) w(i,\)=(i+^)Q 

we clearly have 
tan 0N+\ > dtf+\ LON+\ • 

In case (19) does not hold, we will have 

tan 0N+\ = dx+iuiN+i, 

but there will be no Newton dot at (fc#+i — 1, tan 0N+\). 
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