A SIMPLE ALGORITHM
 FOR DECIDING PRIMES IN $K[[x, y]]$

TZEE-CHAR KUO

Abstract

The well-known Tschirnhausen transformation, $x \rightarrow x-\frac{a}{n}$, eliminates the second term of the polynomial $x^{n}+a x^{n-1}+\cdots$. By a mere repeated application of this transformation, one can decide whether a given element of $K[[x, y]]$ is prime (irreducible) or not. Here K is an algebraically closed field of characteristic 0 .

A generalised version of Hensel's Lemma is developed for the proofs. The entire paper can be understood by undergraduate students.

1. Basics.

Semigroups. In this paper, by a semigroup we always mean an additive subsemigroup of the positive rationals, \mathbb{Q}^{+}. Also, we assume they are finitely generated. Thus, a semigroup, S, has a minimal set of generators, $\omega_{0}, \ldots, \omega_{N}$, and we write

$$
S=S\left(\omega_{0}, \ldots, \omega_{N}\right)
$$

where $0<\omega_{0}<\cdots<\omega_{N}$, and

$$
\omega_{i} \notin S\left(\omega_{0}, \ldots, \omega_{i-1}\right), \quad i \geq 1
$$

A (finitely generated) semigroup is isomorphic to one whose generators are integers. Let $d_{0}=1$ and let d_{i} denote the smallest integer such that

$$
d_{i} \omega_{i} \in S\left(\omega_{0}, \ldots, \omega_{i-1}\right), \quad i \geq 1
$$

We may call $d_{N} \omega_{N}$ the last merging point of S.
Let $S_{N}=S\left(\omega_{0}, \ldots, \omega_{N}\right)$ be given. We write

$$
\boldsymbol{\omega}=\left(\omega_{0}, \ldots, \omega_{N}\right) ;
$$

a typical element of S_{N} can then be written as an "inner product"

$$
\begin{equation*}
M \cdot \boldsymbol{\omega}=\sum_{i=0}^{N} m_{i} \omega_{i} \tag{1}
\end{equation*}
$$

where $M=\left(m_{0}, \ldots, m_{N}\right)$ in an $(N+1)$-tuple of non-negative integers.
We call M admissible if $0 \leq m_{i}<d_{i}$ for $1 \leq i \leq N$. (Note that $m_{0} \geq 0$ can be any integer.)

Received by the editors December 27, 1993.
AMS subject classification: 13, 14, 32, 68 .
(c) Canadian Mathematical Society 1995.

Definition. We say S_{N} is a Newton-Puiseux semigroup if $\omega_{i}>d_{i-1} \omega_{i-1}$ for all $i \geq 1$.

An element of a Newton-Puiseux semigroup S_{N} admits a unique expression (1), with M admissible. This is the Corollary to Lemma 2 in Section 6.

All semigroups arising in this paper are Newton-Puiseux.
Associated weight. Let S_{N} be given. Take indeterminants Y_{0}, \ldots, Y_{N}, and write

$$
\mathbf{Y}=\left(Y_{0}, \ldots, Y_{N}\right), \quad \mathbf{Y}^{M}=Y_{0}^{m_{0}} \cdots Y_{N}^{m_{N}},
$$

so that an element of the formal power series ring $K[[\mathbf{Y}]]$ is expressed as

$$
f(\mathbf{Y})=\sum_{M} a_{M} \mathbf{Y}^{M}, \quad a_{M} \in K .
$$

Define a weight function on $K[[\mathbf{Y}]]$,

$$
v_{N}: K[[\mathbf{Y}]] \rightarrow \mathbb{Q}^{+} \cup\{\infty\}
$$

by

$$
v_{N}(f)= \begin{cases}\min \left\{M \cdot \boldsymbol{\omega} \mid a_{M} \neq 0\right\}, & \text { if } f \neq 0, \\ \infty, & \text { if } f=0\end{cases}
$$

Note that $v_{N}\left(Y_{i}\right)=\omega_{i}$.
We call $v_{N}(f)$ the weighted order of f associated to S_{N}.
Associated Newton polygon. Let S_{N}, v_{N} be as above.
Take an element in $K[[\mathbf{Y}, X]]$,

$$
P(X ; \mathbf{Y})=\sum a_{M, d} \mathbf{Y}^{M} X^{d}, \quad a_{M, d} \in K .
$$

In a coordinate plane, \mathbb{R}^{2}, let us plot a dot at the point $(d, M \cdot \boldsymbol{\omega})$ for each monomial term $a_{M, d} \mathbf{Y}^{M} X^{d}, a_{M, d} \neq 0$, of P. Note that the second component $M \cdot \boldsymbol{\omega}$ is an element of S_{N}. We call this dot a Newton dot.

When all M are admissible, there is at most one dot at a given point.
Definition. The Newton polygon of $P(X ; \mathbf{Y})$ associated to S_{N} is the boundary of the convex hull spanned by the set

$$
\{(u, v) \mid \exists \mathrm{a} \text { Newton } \operatorname{dot}(d, M \cdot \boldsymbol{\omega}) \text { such that } u \geq d, v \geq M \cdot \boldsymbol{\omega}\} .
$$

Suppose $P(X ; \mathbf{Y})$ is regular in X, say of order k; that is,

$$
P(X ; 0)=X^{k}+\text { higher order terms } .
$$

Then, of course, $(k, 0)$ is a vertex of the Newton polygon. We call it the first vertex.
Let E denote the non-horizontal edge of the polygon at the first vertex, and θ the angle it makes with the negative horizontal direction, as indicated in the following example. We call E the first edge, and θ the first angle, of the Newton polygon of P, or simply of P.

EXAMPLE. $P(X, Y)=X^{3}+X Y^{2}+Y^{4}$

G-adic bases. We follow Abhyankar-Moh ([1], [3]), who defined the notion.
Consider, as in [2], a sequence

$$
\Gamma_{N}=\left\{G_{0}(x, y), \ldots, G_{N}(x, y), G_{N+1}(x, y)\right\}, \quad N \geq 0
$$

where $G_{0}=y$, and for each $i \geq 1, G_{i}(x, y)$ is an element of $K[[y]][x]$, monic in x, say of degree D_{i}, such that each D_{i} properly divides D_{i+1} :

$$
D_{i+1}=d_{i} D_{i}, \quad d_{i}>1,1 \leq i \leq N
$$

Example. $\quad \Gamma_{1}=\left\{y, x, x^{2}-y^{3}\right\}, \Gamma_{2}=\left\{y, x, x^{2}-y^{3},\left(x^{2}-y^{3}\right)^{2}-x y^{5}\right\}$.
A repeated application of the Euclidean Division Algorithm shows that Γ_{N} is a G-adic base in the sense of Abhyankar-Moh ([1]): Given $F(x, y)$, there is a unique expression

$$
\begin{equation*}
F(x, y)=\sum a_{M, d} \mathbf{G}_{N}^{M} G_{N+1}^{d} \tag{2}
\end{equation*}
$$

where $M=\left(m_{0}, \ldots, m_{N}\right)$ are admissible exponents, and \mathbf{G}_{N}^{M} is a shorthand for $G_{\mathbf{0}}^{m_{0}} \cdots G_{N}^{m_{N}}$.

Let Γ_{N} be given a G-adic base. We define the associated linear injection

$$
\ell_{N}: K[[x, y]] \rightarrow K[[\mathbf{Y}, X]]
$$

via (2) by:

$$
\begin{equation*}
\ell_{N}(F(x, y))=\sum a_{M, d} \mathbf{Y}^{M} X^{d} \tag{3}
\end{equation*}
$$

Note that ℓ_{N} may not preserve multiplication. All exponents M in (3) are admissible. There is also an associated substitution map, which is a left inverse of ℓ_{N},

$$
\sigma_{N}: K[[\mathbf{Y}, X]] \rightarrow K[[x, y]]
$$

defined by

$$
\sigma_{N}\left(Y_{i}\right)=G_{i}(x, y), \quad \sigma_{N}(X)=G_{N+1}(x, y)
$$

preserving both the linear and multiplicative structures.
Remark. When ℓ_{N} is given. A weighted order v_{N} is induced on $K[[x, y]]$ such that

$$
v_{N}(F(x, y))=v_{n}\left(\ell_{N}(F(x, y))\right) .
$$

Definition ([2]). When each G_{i} is a prime in $K[[x, y]]$, we say Γ_{N} is a Γ-adic base. All G-adic bases used in this paper are Γ-adic.

The Tschirnhausen transform. Let S_{N}, Γ_{N} and $P(X ; \mathbf{Y})$ be given. Suppose P is in the image of ℓ_{N}, regular in X, of order k.

Suppose $\tan \theta \in S_{N}$, where θ is the first angle. We can write, as in (1),

$$
\tan \theta=M \cdot \boldsymbol{\omega}, \quad M \text { admissible }
$$

The Tschirnhausen transform of the pair $\left(P, \Gamma_{N}\right)$ is defined as follows.
Consider the point $(k-1, M \cdot \boldsymbol{\omega})$, which lies on the first edge, E, next to the first vertex $(k, 0)$. There is a Newton dot at this point if, and only if, P has a monomial term $a \mathbf{Y}^{M} X^{k-1}, a \neq 0$.

This dot can be eliminated by a Tschirnhausen transformation. Namely, we replace X by $X-\frac{a}{k} \mathbf{Y}^{M}$ in P to give

$$
P^{\prime}(X ; \mathbf{Y})=P\left(X-\frac{a}{k} \mathbf{Y}^{M} ; \mathbf{Y}\right)
$$

which no longer has a Newton dot at this point.
In the mean time, we replace G_{N+1} by

$$
\begin{equation*}
G_{N+1}^{(1)}(x, y)=G_{N+1}(x, y)+\frac{a}{k} \mathbf{G}_{N}^{M} \tag{4}
\end{equation*}
$$

Then, we define

$$
\Gamma_{N}^{(1)} \equiv\left\{G_{0}, \ldots, G_{N}, G_{N+1}^{(1)}\right\}
$$

and

$$
P^{(1)}(X ; \mathbf{Y})=\ell_{N} \circ \sigma_{N}\left(P^{\prime}(X ; \mathbf{Y})\right)
$$

The pair $\left\{P^{(1)}, \Gamma_{N}^{(1)}\right\}$ is called the Tschirnhausen transform of $\left\{P, \Gamma_{N}\right\}$.
Observe that $(k, 0)$ remains the first vertex of $P^{(1)}$; and also, clearly, $\theta^{(1)} \geq \theta$. (We use $\theta^{(1)}$ to denote the first angle of $P^{(1)}$.)

When $a=0$, the Tschirnhausen transformation is the identity transformation. We say it is stationary.

The following example shows that both cases $\theta^{(1)}>\theta$ and $\theta^{(1)}=\theta$ can happen. In either cases, however, there is no Newton dot at $(k-1, M \cdot \boldsymbol{\omega})$.

EXAMPLE. Take $\Gamma_{0}=\{y, x\}$. For $X^{2}+2 X Y+Y^{2}, \theta=\frac{\pi}{4}, \theta^{(1)}=\frac{\pi}{2}$. For $X^{2}+2 X Y+2 Y^{2}$, $\theta^{(1)}=\theta=\frac{\pi}{4}$.

When $\tan \theta \notin S_{N}$, we say the transformation is not applicable. (Example: $\Gamma_{0}=\{y, x\}$, $P=x^{2}-y^{3}$.)
2. The algorithm. The Assertions in this section will be proved in later sections.

Take a non-zero element of $K[[x, y]]$,

$$
F(x, y)=H_{k}(x, y)+H_{k+1}(x, y)+\cdots,
$$

where H_{k} is the initial (homogeneous) form.
By applying a suitable linear transformation, if necessary, we can assume $H_{k}(1,0)=$ 1. An application of a Tschirnhausen transformation will then reduce H_{k} to

$$
\begin{equation*}
H_{k}(x, y)=x^{k}+a_{2} x^{k-2} y^{2}+\cdots+a_{k} y^{k} \tag{5}
\end{equation*}
$$

Let us describe the initial stage of the algorithm, assuming (5).
Take any $\omega_{0} \in \mathbb{Q}^{+}$. (Indeed, we can take $\omega_{0}=1$.) Let $S_{0}=S\left(\omega_{0}\right)$, and let v_{0} be defined by $v_{0}\left(Y_{0}\right)=\omega_{0}$. Take the first Γ-adic base to be

$$
\Gamma_{0}=\left\{G_{0}=y, G_{1}=x\right\} .
$$

The associated maps ℓ_{0}, σ_{0} are defined accordingly. Finally, let

$$
P_{0}\left(X ; Y_{0}\right)=\ell_{0}(F(x, y)),
$$

which is regular in X, of order $k_{0}=k$.
Now assume, inductively, that we are at stage $N, N \geq 0$, having defined a NewtonPuiseux semigroup, $S_{N}=S\left(\omega_{0}, \ldots, \omega_{N}\right)$, a Γ-adic base Γ_{N}, together with $v_{N}, \ell_{N}, \sigma_{N}$, and

$$
P_{N}(X ; \mathbf{Y})=\ell_{N}(F(x, y)), \quad \mathbf{Y}=\left(Y_{0}, \ldots, Y_{N}\right)
$$

where P_{N} is regular in X, say, of order k_{N}.
ASSERTION 1. If $k_{N}=1$, then $F(x, y)$ is prime.
In case $k_{N}>1$, we apply the Tschirnhausen transformation recursively to the pair $\left\{P_{N}, \Gamma_{N}\right\}$, as long as it is applicable. This yields a sequence $\left\{P_{N}^{(s)}, \Gamma_{N}^{(s)}\right\}$, where $P_{N}^{(0)}=P_{N}$, $\Gamma_{N}^{(0)}=\Gamma_{N}$, and $\left\{P_{N}^{(s)}, \Gamma_{N}^{(s)}\right\}$ is the Tschirnhausen transform of $\left\{P_{N}^{(s-1)}, \Gamma_{N}^{(s-1)}\right\}$, for all s. Four cases may arise:

CASE 1. The transformation is always applicable, yielding an infinite sequence $\left\{P_{N}^{(s)}, \Gamma_{N}^{(s)}\right\}$.

CASE 2. We arrive at $\left\{P_{N}^{(s)}, \Gamma_{N}^{(s)}\right\}$, and find $\tan \theta_{N}^{(s)}=\infty$. (Here, $\theta_{N}^{(s)}$ denotes the first angle of $P_{N}^{(s)}$.)

CASE 3. Or, here we find that the Tschirnhausen transformation is stationary, with

$$
\tan \theta_{N}^{(s)} \in S_{N}, \quad\left(\tan \theta_{N}^{(s)}<\infty\right) .
$$

CASE 4. Or, we have, $\tan \theta_{N}^{(s)} \notin S_{N}$, (so that it is no longer applicable).
ASSERTION 2. $\quad \Gamma_{N}^{(s)}$ are Γ-adic bases.

ASSERTION 3. In Cases 1 and $2,\left(k_{N}>1\right), F(x, y)$ is the k-th power of a prime, hence reducible.

ASSERTION 4. In Case 3, $F(x, y)$ is reducible.
When Case 4 happens, we move on to define the $(N+1)$-st stage. Let $w_{N+1}=\tan \theta_{N}^{(s)}$, $S_{N+1}=S\left(w_{0}, \ldots, w_{N+1}\right)$, and let d_{N+1} be the smallest integer such that

$$
d_{N+1} \omega_{N+1} \in S_{N}, \quad\left(d_{N+1}>1\right)
$$

We shall see, in Section 4, that S_{N+1} is Newton-Puiseux.
When k_{N} is divisible by d_{N+1}, we define k_{N+1} and an admissible exponent $\boldsymbol{\alpha}=$ $\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ by

$$
k_{N}=k_{N+1} d_{N+1}, \quad \boldsymbol{\alpha} \cdot \boldsymbol{\omega}=d_{N+1} \omega_{N+1} .
$$

ASSERTION 6. Consider the monomial term, $a \mathbf{Y}^{\alpha} X^{k_{N}-d_{N+1}}$ of $P_{N}^{(s)}$. If $a=0$, then $F(x, y)$ is reducible.

Now, suppose $a \neq 0$. We define

$$
\begin{gather*}
G_{N+2}=G_{N+1}^{(s)}+\frac{a}{k_{N+1}} \mathbf{G}_{N}^{\alpha}, \tag{6}\\
\Gamma_{N+1}=\left\{G_{0}, \ldots, G_{N+1}^{(s)}, G_{N+2}\right\},
\end{gather*}
$$

and

$$
P_{N+1}\left(X ; \mathbf{Y}_{N+1}\right)=\ell_{N}(F(x, y))
$$

which is regular in X, of order k_{N+1}, where

$$
\ell_{N+1}\left(G_{N+1}\right)=Y_{N+1}, \quad \mathbf{Y}_{N+1}=\left(Y_{0}, \ldots, Y_{N+1}\right) .
$$

ASSERTION 7. $\quad G_{N+1}$ is prime, whence Γ_{N+1} is a Γ-adic base.
This completes the description of the algorithm.
Since $\left\{k_{N}\right\}$ is a strictly decreasing sequence of positive integers, Case 4 can not happen infinitely many times. The algorithm terminates in finitely many steps.

Attention. Since G_{N+1} has been replaced by $G_{N+1}^{(s)}$ when G_{N+2} is defined, Γ_{N} is not necessarily a subset of Γ_{N+1}. However, note that

$$
G_{N+1}^{(s)}=G_{N+1}+\text { terms of higher weight. }
$$

CONVENTION. When Γ_{N+1} has been defined. We shall use Γ_{N} to denote $\Gamma_{N}^{(s)}$, abusing notations, and then forget about the original Γ_{N}. In this new system of notations, Γ_{N} is a subset of Γ_{N+1}, for all N.
3. Illustrative examples. A simple example for Case 1 is:

$$
x^{2}+2 x y^{2}+2 x y^{3}+y^{4}+2 x y^{4}+2 y^{5}+\cdots=\left(x+y^{2}+y^{3}+y^{4}+\cdots\right)^{2} .
$$

For Case 2, we can take

$$
\left(x^{2}+2 x y+y^{2}\right)+\left(x y^{2}+y^{3}\right)+\frac{1}{4} y^{4}=\left[(x+y)+\frac{1}{2} y^{2}\right]^{2}
$$

For Case 3, consider

$$
F=\left(x^{2}-y^{3}\right)^{2}-y^{7} .
$$

Here, we find

$$
\begin{gathered}
v(x)=v\left(G_{1}\right)=3 / 2, \\
S_{1}=S(1,3 / 2), \\
G_{2}=x^{2}-y^{3}, \\
P_{1}=X^{2}-Y^{7}, \\
\tan \theta_{1}=7 / 2 \in S_{1} .
\end{gathered}
$$

The Tschirnhausen transformation is stationary, F is reducible by Assertion 4. (The term $G_{1} Y^{2}$ is missing from P_{1}.) A factorization is given at the end of Section 8 .

For Case 4, our first example is $F=x^{3}-x y^{3}+y^{5}$. Here we have,

$$
\begin{gathered}
N=0, \\
P_{0}=X^{3}-X Y^{3}, \\
k_{0}=3, \\
d_{1}=2 .
\end{gathered}
$$

Since k_{0} is not divisible by d_{1}, F is reducible (Assertion 5).
Next, consider

$$
F=\left(x^{2}-y^{3}\right)^{4}+y^{13} .
$$

Here, we find

$$
\begin{gathered}
N=1, \\
G_{1}=x, \\
G_{2}=x^{2}-y^{3}, \\
P_{1}=X^{4}+Y^{13} \\
\tan \theta_{1}=3 \frac{1}{4}, \\
d_{1}=2 .
\end{gathered}
$$

By Assertion 6, F is reducible. (The term $G_{1} Y^{5}$ is missing from P_{1}.)

Now let us consider

$$
F=\left(x^{2}-y^{3}\right)^{4}+2 x y^{5}\left(x^{2}-y^{3}\right)^{2}+2 y^{13}+\cdots
$$

Here,

$$
P_{1}=X^{4}+2 G_{1} Y^{5} X^{2}+2 Y^{13} .
$$

Following the algorithm, we define

$$
G_{3}=\left(x^{2}-y^{3}\right)^{2}+x y^{5}
$$

which, by Assertion 7, is prime.
Finally, let us consider

$$
\left(x^{2}-y^{3}\right)^{4}+2 x y^{5}\left(x^{2}-y^{3}\right)^{2}+y^{13}+\text { higher weighted terms. }
$$

This time,

$$
\begin{aligned}
P_{1} & =X^{4}+2 G_{1} Y^{5} X^{2}+Y^{13} \\
& =\left(X^{2}+G_{1} Y^{5}\right)^{2}+\cdots,
\end{aligned}
$$

so that we move on to the next stage of the algorithm.
4. Induction hypothesis. We make two induction hypothesis at Stage N; they will be proved for $N+1$ at the end of Section 9 .
$\left(H_{P}\right)$ For the first angle θ_{N} of P_{N}, we have

$$
\tan \theta_{N} \geq d_{N} \omega_{N}
$$

and if equality holds then there is no Newton dot at $\left(k_{N}-1, \tan \theta_{N}\right)$.
$\left(H_{G}\right)$ For $N \geq 1, G_{N+1}(x, y)$ has the form

$$
G_{N+1}=G_{N}^{d_{N}}+c \mathbf{G}_{N-1}^{\mathbf{\alpha}_{N-1}}, \quad c \neq 0
$$

where $\boldsymbol{\alpha}_{N-1}=\left(\alpha_{0}, \ldots, \alpha_{N-1}\right)$ is an admissible exponent such that

$$
\sum_{i=0}^{N-1} \alpha_{i} \omega_{i}=d_{N} \omega_{N}
$$

When $N=0,\left(H_{P}\right)$ follows from (5); $\left(H_{G}\right)$ says nothing, hence true.
5. Stage $N=0$. We can assume $\omega_{0}=1$.

If $k=k_{0}=1, F(x, y)$ is obviously prime. So let us suppose $k>1$.
In Case 1, where the Tschirnhausen transformation is always applicable, we find an infinite series $\sum C_{n} y^{n}$ such that

$$
F(x, y)=\left(x-\sum C_{n} y^{n}\right)^{k} \cdot \text { unit. }
$$

In Case 2, there is a finite series with the same property.

Therefore Assertions 2 and 3 are true when $N=0$.
For Assertion 4, let us first assume $\tan \theta_{0}=1$. By (5), the initial form of $P_{0}(X ; Y)$ has the form

$$
I(X, Y)=X^{k}+a_{2} X^{k-2} Y^{2}+\cdots+a_{k} Y^{k}
$$

Since at least one $a_{i} \neq 0, I(X, 1)=0$ has at least two distinct roots, and so $I(X, Y)$ factors:

$$
I(X, Y)=H_{p}(X, Y) \cdot K_{q}(X, Y), \quad p+q=k
$$

H_{p}, K_{q} are relatively prime (homogeneous) forms of degree p, q respectively, both monic in X.

Lemma 1. Every $(p+q-1)$-form $L_{p+q-1}(X, Y)$ is in the ideal generated by H_{p} and K_{q}. That is, there exist forms A_{p-1}, B_{q-1} such that

$$
\begin{equation*}
L_{p+q-1}(X, Y)=B_{q-1}(X, Y) H_{p}(X, Y)+A_{p-1}(X, Y) K_{q}(X, Y) \tag{7}
\end{equation*}
$$

Consequently, every r-form, $r \geq p+q-1$, is in this ideal.
The proof is well-known. Since H_{p}, K_{q} are relatively prime, polynomials A_{p-1}, B_{q-1}, of degree $p-1, q-1$, respectively, can be found such that

$$
L_{p+q-1}(X, 1)=B_{q-1}(X) H_{p}(X, 1)+A_{p-1}(X) K_{q}(X, 1) .
$$

Then (7) follows by homogenizing this expression.
Now, consider any power series $P(X, Y)$, such as $P_{0}(X, Y)$, whose initial form is $I(X, Y)$. By a repeated application of Lemma 1 , we can recursively find forms A_{i}, B_{i} such that

$$
P(X, Y)=\left[H_{p}+A_{p+1}+A_{p+2}+\cdots\right]\left[K_{q}+B_{q+1}+B_{q+2}+\cdots\right] .
$$

An application of σ_{0} to $P_{0}(X, Y)$ then yields a factorization of $F(x, y)$.
Now, suppose $\tan \theta_{0}>1$ in Case 3. Let us define weights by

$$
v(X)=\tan \theta_{0}, \quad v(Y)=1 .
$$

Since there is no Newton dot at $\left(k-1, \tan \theta_{0}\right)$, the weighted initial form of $P_{0}(X, Y)$ factors into two relatively prime weighted forms. The same reasoning as before will then lead to a factorization of P_{0}.

This is known as the weighted Hensel Lemma.
We shall consider stage $N=0$ of Case 4 with the general case.
6. More on Newton-Puiseux semigroups. Consider a (finitely generated) semigroup S_{N}. The abelian group generated by S_{N} is generated by a single element, say g. There is a smallest integer r such that $(r+i) g \in S_{N}$ for all $i \geq 0$. Call $r g$ the conductor of S_{N}.

When a semigroup is generated by two positive integers p, q, the conductor is $\left(p^{\prime}-1\right)\left(q^{\prime}-1\right) D$, where

$$
D=\text { G.C.D. }(p, q), \quad p=p^{\prime} D, \quad q=q^{\prime} D .
$$

When there are more than two generators, there is no simple formula for calculating the conductor. However, by an easy induction on N we can prove the following

Lemma 2. In a Newton-Puiseux semigroup S_{N}, the conductor is $\leq d_{N} \omega_{N}$. (Thus, beyond the last merging point, S_{N} coincides with the abelian group it generates).

Corollary. Everyelement in S_{N} admits a unique expression (1) with Madmissible.
Proof. Suppose M, M^{\prime} are admissible and $M \cdot \boldsymbol{\omega}=M^{\prime} \cdot \boldsymbol{\omega}, m_{N}>m_{N}^{\prime}$. Then ($m_{N}-m_{N}^{\prime}$) ω_{N} belongs to the abelian group generated by S_{N-1}, hence to S_{N-1} itself. This is absurd, hence $m_{N}=m_{N}^{\prime}$. Similarly, $m_{i}=m_{i}^{\prime}$ for all other i.
7. Construction of primes. We are in stage N, having defined S_{N}, Γ_{N}, etc. The induction hypothesis H_{P} and H_{G} are also at our disposal.

Take any rational number $\omega_{N+1} \geq d_{N} \omega_{N}$. Let d_{N+1} denote the smallest integer such that

$$
d_{N+1} \omega_{N+1} \in S_{N}, \quad\left(d_{N+1}=1 \text { if } \omega_{N+1} \in S_{N}\right)
$$

Let $\boldsymbol{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ be the admissible exponent such that

$$
\begin{equation*}
\boldsymbol{\alpha} \cdot \boldsymbol{\omega}=d_{N+1} \omega_{N+1} \tag{8}
\end{equation*}
$$

Take an integer $r \geq 2$. Note that $r \boldsymbol{\alpha}=\left(r \alpha_{0}, \ldots, r \alpha_{N}\right)$ may not be admissible. When this happens, we like to investigate the expansion (3) for $\mathbf{G}_{N}^{\gamma \boldsymbol{\alpha}}$.

For this purpose, it is convenient to define a weight on X and G_{N+1} :

$$
\begin{equation*}
v(X)=v\left(G_{N+1}\right)=\omega_{N+1} \tag{9}
\end{equation*}
$$

Lemma 3. Let $E=\left(e_{0}, \ldots, e_{n}\right)$ be a given exponent.
(i) Suppose $\omega_{N+1}>d_{N} \omega_{N}$. Then the weighted initial form of $\ell_{N}\left(\mathbf{G}_{N}^{E}\right)$ consists of only one monomial term $a \mathbf{Y}^{\beta}$, where $a \neq 0, \boldsymbol{\beta}$ is admissible, and

$$
\boldsymbol{\beta} \cdot \boldsymbol{\omega}=E \cdot \boldsymbol{\omega} .
$$

(ii) Suppose $\omega_{N+1}=d_{N} \omega_{N}$, and suppose $e_{N}<d_{N}$. Then the same is true.
(iii) Suppose $\omega_{N+1}=d_{N} \omega_{N}$. Then $\alpha_{N}=0$. Hence if $E=r \mathbf{\alpha}$, again the same is true.

Example. Consider $\Gamma_{1}=\left\{y, x, x^{2}-2 y^{3}\right\}$. Here $\omega_{1}=3 / 2$.
Let us compute the expansion of $(y x)^{2}$:

$$
(y x)^{2}=y^{2}\left[\left(x^{2}-2 y^{3}\right)+2 y^{3}\right]=2 y^{5}+y^{2}\left(x^{2}-2 y^{3}\right) .
$$

In case we take $\omega_{2}>d_{1} \omega_{1}=3,2 y^{5}$ has the lowest weight,

$$
v\left(2 y^{5}\right)=5<v\left(y^{2}\left(x^{2}-2 y^{3}\right)\right)
$$

confirming (i).
However, if we take $\omega_{2}=3$, then both terms have weight 5 ; this explains why we assume $e_{N}<d_{N}$ in (ii).

Proof. For an admissible exponent, E, there is nothing to prove.

Define an ordering of the exponents as follows:

$$
\left(e_{0}^{\prime}, \ldots, e_{N}^{\prime}\right)<\left(e_{0}, \ldots, e_{N}\right)
$$

if $\exists j, e_{j}^{\prime}<e_{j}$ and $e_{i}^{\prime}=e_{i} \forall i>j$.
Now, suppose E is not admissible. Let $j>0$ be the largest integer such that $e_{j} \geq d_{j}$. By $\left(H_{G}\right)$, we can write

$$
\begin{equation*}
G_{j}^{d_{j}}=-c \mathbf{G}_{j-1}^{\alpha_{j-1}}+G_{j+1} . \tag{10}
\end{equation*}
$$

Note that the first two terms both have weight $d_{j} \omega_{j}$; the third term, G_{j+1}, has higher weight for all $j, 1 \leq j \leq N$, in case (i). In case (ii), this is true for all $j, 1 \leq j \leq N-1$.

By a repeated application of (10), it follows that there is an exponent $E^{\prime}<E$, such that

$$
\mathbf{G}_{N}^{E}=C^{*} \mathbf{G}_{N}^{E^{\prime}}+\text { higher weighted terms },
$$

where $C^{*} \neq 0, E \cdot \boldsymbol{\omega}=E^{\prime} \cdot \boldsymbol{\omega}$.
Take an E^{\prime} with this property which is minimal in the ordering. This E^{\prime} must be admissible.

The proof of (iii) is easy. Since $d_{N} \omega_{N} \in S_{N-1}$, and $\boldsymbol{\alpha}$ is admissible, we must have $\alpha_{N}=0$.

We introduce a terminology. Let g be the generator of the abelian group generated by S_{N}. Given an integer m, let $\mathcal{M}_{m g}$ denote the ideal in $K[[\mathbf{Y}, X]]$ of elements with weighted order $\geq m g$.

Given $P(X ; \mathbf{Y}), P^{\prime}(X ; \mathbf{Y})$ in $\mathcal{M}_{m g}$, we say they are congruent modulo higher weighted terms, if

$$
\ell_{N} \circ \sigma_{N}\left(P-P^{\prime}\right) \in \mathscr{M}_{(m+1) g} .
$$

When $\mathscr{M}_{m g}$ is understood, we simply write

$$
P(X ; \mathbf{Y}) \equiv P^{\prime}(X ; \mathbf{Y}) \text { m. h. w. t. }
$$

Let $f(x, y)=\sigma_{N}(P), f^{\prime}(x, y)=\sigma_{N}\left(P^{\prime}\right)$; we also write

$$
f(x, y) \equiv f^{\prime}(x, y) \text { m. h. w.t. }
$$

Recall that ℓ_{N} may not preserve multiplication. However, we shall show it preserves the weighted initial form modulo higher weighted terms in the following sense.

Again, let us take any $\omega_{N+1} \geq d_{N} \omega_{N}$, and defined weights as in (9). Then the weighted initial form of a given $P(X ; \mathbf{Y})$ is defined.

Let $F_{i}(x, y), i=1,2,3$, be given with

$$
F_{3}(x, y)=F_{1}(x, y) F_{2}(x, y) .
$$

Lemma 4. Let $W_{i}(X ; \mathbf{Y})$ denote the weighted initial form of $\ell_{N}\left(F_{i}\right)$. Then

$$
W_{1}(X ; \mathbf{Y}) W_{2}(X ; \mathbf{Y}) \equiv W_{3}(X ; \mathbf{Y}) \text { m. h. w.t. }
$$

Proof. Recall that σ_{N} preserves multiplication. Hence

$$
\begin{equation*}
\ell_{N} \circ \sigma_{N}\left(\ell_{N}\left(F_{1}\right) \ell_{N}\left(F_{2}\right)\right)=\ell_{N}\left(F_{3}\right) . \tag{11}
\end{equation*}
$$

Consider a typical term in $\ell_{N}\left(F_{1}\right) \ell_{N}\left(F_{2}\right)$,

$$
\xi \equiv C_{1} C_{2} \mathbf{Y}^{E_{1}+E_{2}} X^{d_{1}+d_{2}},
$$

where $C_{1} \mathbf{Y}^{E_{i}} X^{d_{i}}$ is a monomial term in $\ell_{N}\left(F_{i}\right)$.
By Lemma 3, $\ell_{N} \circ \sigma_{N}(\xi)$ has the same weighted order as ξ.
Now, comparing terms of minimal weighted order on both sides of (11), we find

$$
\ell_{N} \circ \sigma_{N}\left(W_{1} \cdot W_{2}\right) \equiv W_{3} \text { m.h.w.t. }
$$

Several important consequences can be derived from this lemma. First, let us take $\omega_{N+1}=d_{N} \omega_{N}$. Let $H\left(G_{0}, \ldots, G_{N+1}\right)$ be any series with weighted order $>\omega_{N+1}$.

LEMMA 5. $\quad G_{N+1}+H\left(G_{0}, \ldots, G_{N+1}\right)$ is prime.
This is clear: $\ell_{N}\left(G_{N+1}+H\right)$ has weighted initial form X, which is irreducible.
Example. Consider $\Gamma_{1}=\left\{y, x, x^{2}-y^{3}\right\}$. Here, $G_{2}+y^{3}=x^{2}$ is not prime. Note that $v\left(y^{3}\right)=\omega_{2}$, and hence Lemma 5 does not apply.

Using the inductive hypothesis $\left(H_{P}\right)$, we see that $G_{N+1}^{(i)}, i \geq 0$, are all primes.
Assertion 1 follows. Indeed, when $k_{N}=1$, there is a finite, or infinite, series H, such that

$$
F(x, y)=\left(G_{N+1}+H\right) \cdot \text { unit. }
$$

Assertions 2 and 3 are immediate consequences too.
Now, let us take $\omega_{N+1} \notin S_{N}, \omega_{N+1}>d_{N} \omega_{N}$, and $\boldsymbol{\alpha}$ satisfying (8). Take a constant $c \neq 0$.

LEmmA 6. Let $H\left(G_{0}, \ldots, G_{N+1}\right)$ be a series with weighted order $>d_{N+1} \omega_{N+1}$. Then

$$
G_{N+1}^{d_{N+1}}-c \mathbf{G}_{N}^{\mathbf{\alpha}}+H\left(G_{0}, \ldots, G_{N+1}\right)
$$

is a prime.
The corresponding weighted initial form is $X^{d_{N+1}}-c \mathbf{Y}^{\boldsymbol{\alpha}}$, having weight $d_{N+1} \omega_{N+1}$. It has to be irreducible, since any weighted form of lower weighted form of lower weight consists of at most one monomial, and the product of two such is a single monomial term.
8. Proof of Assertion $4(N \geq 1)$. We are at stage N, having defined P_{N}, θ_{N}, etc. and then, being in Case 3 , arrived at $P_{N}^{(s)}, \theta_{N}^{(s)}$. We shall write $P_{N}^{(s)}, \theta_{N}^{(s)}$ as P_{N}, θ_{N}, for simplicity of notation.

Let $\boldsymbol{\alpha}$ denote the admissible exponent such that $\boldsymbol{\alpha} \cdot \boldsymbol{\omega}=\tan \theta_{N}(=v(X))$. Take a Newton dot on the first edge, representing a term of P_{N} of the form

$$
a_{r} \mathbf{Y}^{E} X^{k_{N}-r}, \quad a_{r} \neq 0
$$

Then Lemma 3 can be applied to $r \boldsymbol{\alpha}$, giving a constant $c_{r} \neq 0$ such that

$$
a_{r} \mathbf{Y}^{E} \equiv c_{r} \mathbf{Y}^{r \boldsymbol{\alpha}} \text { m.h.w.t. }
$$

These c_{r} can be used to define a homogeneous form in two variables

$$
W(X, Y)=X^{k_{N}}+c_{2} X^{k_{N}-2} Y^{2}+\cdots
$$

Attention should be paid to the absence of c_{1}; this is because we are in Case 3 , there is no Newton dot at the corresponding point.

Observe that

$$
W\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right) \equiv P_{N}(X ; \mathbf{Y}) \text { m.h.w.t. }
$$

Hence we can consider $W\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right)$, as the weighted initial form of P_{N}.
Since at least one $c_{r} \neq 0,(r>1), W(X, Y)$ factors:

$$
\begin{equation*}
W(X, Y)=H_{p}(X, Y) K_{q}(X, Y), \quad p+q=k_{N} \tag{12}
\end{equation*}
$$

where H_{p}, K_{q} are relatively prime homogeneous forms, monic in X.
Take any monomial $\mathbf{Y}^{E} X^{d}$ with weight

$$
E \cdot \boldsymbol{\omega}+d \tan \theta_{N}>k_{N} \tan \theta_{N}
$$

Choose an integer $j \geq 0$ and a rational number t such that

$$
E \cdot \boldsymbol{\omega}=j \tan \theta_{N}+t, \quad 0 \leq t<\tan \theta_{N} .
$$

By Lemma 2, there is an admissible exponent J such that

$$
\tan \theta_{N}+t=J \cdot \boldsymbol{\omega}
$$

Let us first consider the case

$$
E \cdot \boldsymbol{\omega} \geq \tan \theta_{N} \quad(\text { hence } j \geq 1)
$$

By Lemma 3, there exists a constant $C^{*} \neq 0$ such that

$$
\mathbf{Y}^{E} \equiv C^{*} \mathbf{Y}^{J} \mathbf{Y}^{(j-1) \boldsymbol{\alpha}} \text { m. h. w. t. }
$$

Since $d+j=k_{N}$, Lemma 1 can be applied to $Y^{Y^{j-1}} X^{d}$, for (12), giving

$$
Y^{j-1} X^{d}=B_{s-p}(X, Y) H_{p}(X, Y)+A_{s-q}(X, Y) K_{q}(X, Y)
$$

where $s=d+j-1$.
On substituting Y by $\mathbf{Y}^{\boldsymbol{\alpha}}$, we find that $\mathbf{Y}^{E} X^{d}$ is in the ideal generated by $H_{p}\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right)$, $K_{q}\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right)$, modulo higher weighted terms.

Now, consider the case

$$
E \cdot \boldsymbol{\omega}<\tan \theta_{N} .
$$

In this case, $j=0$ and hence $d \geq 1$. Lemma 1 applies to X^{d-1}. Again, $\mathbf{Y}^{E} X^{d}$ is in the ideal generated by $H_{p}\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right), K_{q}\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right)$.

The rest of the argument is standard for Hensel's Lemma. We can recursively find weighted forms $A^{\prime}, B^{\prime}, A^{\prime \prime}, B^{\prime \prime}$, etc. with increasing weights, such that

$$
\left[H_{p}+A^{\prime}+A^{\prime \prime}+\cdots\right]\left[K_{q}+B^{\prime}+B^{\prime \prime}+\cdots\right]
$$

has $F(x, y)$ as its image under σ_{N}. Thus $F(x, y)$ is reducible, proving Assertion 4.
Example.

$$
\begin{aligned}
&\left(x^{2}-y^{3}\right)^{2}-y^{7}=\left[\left(x^{2}-y^{3}+x y^{2}\right)+\frac{1}{2} y^{4}+\frac{1}{4} x y^{3}+\cdots\right] \\
& \cdot\left[\left(x^{2}-y^{3}-x y^{2}\right)+\frac{1}{2} y^{4}-\frac{1}{4} x y^{3}+\cdots\right] .
\end{aligned}
$$

9. Proofs of Assertions 5 to 7. We are in Case 4. Define $v(X)=\omega_{N+1}$ and let $\boldsymbol{\alpha}$ be an admissible exponent satisfying (8).

By an argument similar to that in Section 8, we can define

$$
W(X, Y)=X^{k_{N}}+C_{1} X^{k_{N}-d_{N+1}} Y+C_{2} X^{k_{N}-2 d_{N+1}} Y^{2}+\cdots
$$

such that

$$
W\left(X, \mathbf{Y}^{\boldsymbol{\alpha}}\right) \equiv P_{N}(X ; \mathbf{Y}) \text { m. h. w. t. }
$$

Now, suppose k_{N} is not divisible by d_{N+1}. Let k_{N} be divided by d_{N+1} :

$$
\begin{equation*}
k_{N}=Q d_{N+1}+R, \quad 0<R<d_{N+1}, \tag{13}
\end{equation*}
$$

so that

$$
W(X, Y)=X^{R} H(\xi, \eta),
$$

where

$$
\xi \equiv X^{d_{N+1}}, \quad \eta \equiv Y
$$

and $H(\xi, \eta)$ is a homogeneous Q-form, monic in ξ. The equation $H(\xi, 1)=0$ may, or may not, have $\xi=0$ as a root. Let $\mu \geq 0$ denote the multiplicity.

First, assume $\mu=0$.
Let $I(\xi, H(\xi, \eta))$ denote the ideal generated by ξ and $H(\xi, \eta)$. Then, clearly.

$$
\begin{equation*}
\eta^{Q} \in I(\xi, H(\xi, \eta)) \tag{14}
\end{equation*}
$$

Take a monomial $\mathbf{Y}^{E} X^{d}$ such that

$$
\begin{equation*}
E \cdot \boldsymbol{\omega}+d \omega_{N+1}>k_{N} \omega_{N+1} \tag{15}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\mathbf{Y}^{E} X^{d} \in I\left(X^{R}, H\left(X^{d_{N+1}}, \mathbf{Y}^{\boldsymbol{\alpha}}\right)\right) . \tag{16}
\end{equation*}
$$

This is obvious if $d \geq R$. In case $d<R$, it suffices to show that \mathbf{Y}^{E} is divisible by $\mathbf{Y}^{Q \boldsymbol{\alpha}}$. Then (16) follows from (14).

By (13),

$$
E \cdot \boldsymbol{\omega}-Q d_{N+1} \omega_{N+1}>(R-d) \omega_{N+1} \geq d_{N} \omega_{N} .
$$

Hence the left-hand side, being an element of the abelian group generated by S_{N}, is actually in S_{N}, by Lemma 2 . There is an exponent E^{*} such that

$$
E \cdot \boldsymbol{\omega}=E^{*} \cdot \omega+Q d_{N+1} \omega_{N+1},
$$

whence

$$
\mathbf{Y}^{E}=\mathbf{Y}^{E^{*}}\left(\mathbf{Y}^{\mathbf{\alpha}}\right)^{Q} .
$$

Now, suppose $\mu \geq 1$. Let us write

$$
H(\xi, \eta)=\xi^{\mu} K(\xi, \eta), \quad K(0,1) \neq 0 .
$$

Lemma 1 is applicable to the pair $\xi^{\mu}, K(\xi, \eta)$, so that

$$
\begin{equation*}
\xi^{i-1} \eta^{Q-i} \in I\left(\xi^{\mu}, K(\xi, \eta)\right), \quad 1 \leq i \leq Q . \tag{17}
\end{equation*}
$$

Take a monomial $\mathbf{Y}^{E} X^{d}$ with property (15). We claim that

$$
\begin{equation*}
\mathbf{Y}^{E} X^{d} \in I\left(X^{u d_{N+1}+R}, K\left(X^{d_{N+1}}, \mathbf{Y}^{\boldsymbol{\alpha}}\right)\right) . \tag{18}
\end{equation*}
$$

In case $d \geq \mu d_{N+1}+R$, this is obvious. Otherwise, let μ^{\prime} denote the largest integer such that

$$
\left(\mu^{\prime}-1\right) d_{N+1}+R \leq d<\mu^{\prime} d_{N+1}+R
$$

Then, by a similar argument, we can show that $\mathbf{Y}^{E} X^{d}$ is divisible by

$$
X^{\left(\mu^{\prime}-1\right) d_{N+1}+R} \mathbf{Y}^{\left(Q-\mu^{\prime}\right) \boldsymbol{\alpha}} .
$$

Hence (18) follows from (17).
Both for $\mu=0$ and for $\mu>0$, we can now use an argument similar to that for Assertion 4 to conclude that $F(x, y)$ is reducible, proving Assertion 5.

Finally, let us assume k_{N} is divisible by d_{N+1}, so that $R=0$ in (13).
Coefficient C_{1}, C_{2}, \ldots, can be determined so that

$$
W(\xi, Y)=\xi^{Q}+C_{1} \xi^{Q-1} Y+\cdots+C_{Q} Y^{Q}
$$

has the property that

$$
W\left(X^{d_{N+1}}, \mathbf{Y}^{\mathbf{\alpha}}\right) \equiv P_{N}(X ; \mathbf{Y}) \text { m. h. w. t. }
$$

Suppose $C_{1}=0$. Since at least one other $C_{i} \neq 0, W(\xi, Y)$ factors into two relatively prime factors, monic in ξ. Let us consider

$$
\left\{G_{0}, \ldots, G_{N+1}, G_{N+2}\right\}, \quad G_{N+2}=G_{N+1}^{d_{N+1}} .
$$

This is G-adic base, but not a Γ-adic base. Consider the expansion (3) of $F(x, y)$ with respect to this base. Since $W(\xi, Y)$ factors, by repeating the argument for Assertion 4, we come to the conclusion that $F(x, y)$ is reducible. This completes the proof of Assertion 6.

Now assume $C_{1} \neq 0$. Define

$$
G_{N+2}=G_{N+1}^{d_{N+1}}+\frac{C_{1}}{Q} \mathbf{G}_{N}^{\mathbf{\alpha}},
$$

which, by Lemma 6, is prime, proving Assertion 7.
Note that the induction hypothesis $\left(H_{G}\right)$ has also been proved for $N+1$.
As for $\left(H_{P}\right)$, using $\Gamma_{N+1}=\left\{G_{0}, \ldots, G_{N+2}\right\}$ as the Γ-adic base, $P_{N+1}\left(X ; Y_{0}, \ldots, Y_{N+1}\right)$ is defined, having first vertex at $\left(k_{N+1}, 0\right)$.

In case

$$
\begin{equation*}
W(\xi, 1)=\left(\xi+\frac{C_{1}}{Q}\right)^{Q} \tag{19}
\end{equation*}
$$

we clearly have

$$
\tan \theta_{N+1}>d_{N+1} \omega_{N+1} .
$$

In case (19) does not hold, we will have

$$
\tan \theta_{N+1}=d_{N+1} \omega_{N+1},
$$

but there will be no Newton dot at $\left(k_{N+1}-1, \tan \theta_{N+1}\right)$.
Acknowledgment. The author would like to thank his son, Dean, and Scot McCullum, for many valuable communications related to the Computer Science aspects of this result.

References

1. S. Abhyankar and T. T. Moh, Newton-Puiseux expansion and generalised Tschirnhausen transformation I, II, J. Reine Angew. Math. 260(1973), 47-83; ibid. 261(1973), 29-54.
2. T.-C. Kuo, Generalised Newton-Puiseux theory and Hensel's lemma in $C[[x, y]]$, Canad. J. Math. (6) XLI(1989), 1101-1116.
3. T. T. Moh, On the approximate roots of a polynomial, Crelle 278(1974), 301-306.

School of Mathematics and Statistics
University of Sydney
New South Wales 2006
Australia

