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1. Introduction. Let A be a closed subset of a topological space X and / a continuous
mapping of A into X with the following two properties :

1.1. /{ FT (A)} and/{ Int (A)} are disjoint.

1.2. The mapping/* = / | Fr (A) is 1-1.

It is proved in [5], that if X is the euclidean w-sphere Sn = {x ; x e Rn+1 and || x \\ = 1}, then

1.3. f{¥r(A)}=¥v{f(A)}.
[Hence /{Lit (A)} =Lit {f(A)}].

The purpose of the present paper is to prove (Theorem 4.4.) that 1.3 is true when X is a
real convex topological vector space with a Hausdorff topology and / satisfies the additional
requirement of being a completely continuous movement. The proof of this theorem makes
use of the degree of completely continuous movements.

The writer is indebted to Dr A. P. Robertson and Dr Wendy Robertson for their valuable
advice.

2. Notation. We shall assume henceforth that E denotes a real convex topological
vector space with a Hausdorff topology. °U is the collection of all convex symmetrical open
neighbourhoods of the origin. In the usual way, a mapping / of a subset A of E into E is
denned to be completely continuous on A if it is continuous and there exists a compact subset
K of E with f(A)^K. Following Nagumo [6], we define a completely continuous movement
of a subset A of E to be a mapping / of A into E, such that the function

is completely continuous on A. Set complementation is denoted by ~ ; i.e., if BQA, then
A~B denotes the complement of B in A.

3. The degree of a completely continuous movement.
3.1. We first of all observe that completely continuous movements have the following

properties. These are proved in [6].
3.1.1. If A is a closed subset of E and/ is a completely continuous movement of A, then

f(A) is closed.
3.1.2. If/, g are completely continuous movements of A, f(A), respectively, then gf is a

completely continuous movement of A.
3.1.3. If/is a 1-1 completely continuous movement of A and A is closed, then/-1 is a

completely continuous movement of f(A).
3.2. Consider the triple (/, A, b), where A is a subset of E, f is a completely continuous

movement of Fr (.4) and b is a point of E~f {Fr (A)}. With each such triple there is associated
an integer

d(f,A,b)
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called its degree.f This degree has the following properties.
3.2.1. If / is the identity mapping of Fr (A), then

d(/, A, x) = 1 when x e Int (A),
— 0 when x e E^A.

3.2.2. If/ is a completely continuous movement of A and b 4f{A), then

d(f,A,b)=O.
3.2.3. Let 'S be a collection of mutually disjoint open subsets of Int (A). Put

U= U 6.
Ge<3

If/ is a completely continuous movement of A~U and b e E~f(A—U), then d(f, G, b) =0
for all but a finite number of G e & and

d(f,A,b)= Zd(f,G,b).
Gt<g

3.2.4. If/ is a completely continuous movement of Fr (A) and blt b2 are points of the
same component of 2J~/{Fr (̂ 4)}, then

3.2.5. If / is a completely continuous movement of Fr (A), b e 2?.~/{Fr (A)}, U e °U and
U is such that b + V does not intersect/{Fr (A)} and if fy is a completely continuous movement
of Fr (A) such that

f(x) -Mx) e U
for all a; c Fr (A), then

d(f,A,b)=d(f1,A,b).
3.2.6. Let B be a second subset of E, f and g be completely continuous movements of A

and B such that / ( I ) C B, and 6 be a point of E~g [Fr (JB) ̂ /{Fr (.4)}] such that d(/, .4, y)
is constant for y e gr~1(6). Then

<%/, 4 , 6) =d(g, B, b). d{f, A, g-*(b)} if r\b)*0,
= 0 Hg-1(b)=0.

[Here d{f, A, gr~1(6)} denotes the constant value of d(f, A, y) for y e y-1(6)].
Further properties of the degree are given by Theorems 3.2.7 and 3.2.9, which appear

below. Theorem 3.2.9 is not new (it is used by Leray in [3], for example), but since the
proof does not appear to be readily available in the literature, the theorem is proved here.

3.2.7. THEOREM. Let A be a subset of E,f be a completely continuous movement of Fr (̂ 4)
and b e E~f{Fr (A)}. Let Kbe a compact subset of E such that

f(x) -xeK

for all x e Fr (A). If F is a linear manifold of E which contains b and K, then

d(f,A,b)=d{f,Fr>A,b)inF.

Proof. Choose U e% such that b + U does not intersect /{Fr (A)}. K is evidently
compacting; hence, by Theorem 2 of [6], there exist a finite dimensional linear manifold G
of F containing b, and a continuous mapping <j> of K into G such that

(j) (x) - x e U,

f For the definition and properties of the degree, see [3] and [6]. Actually, in [3] and [6] the degree
is defined for open A. However, it can easily be defined for arbitrary A by putting

d(f, A, b)=d{f, Tut (A), b}.
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for allxcK. Put

-*}+*, (1)A(
for all xe Fr (̂ 4). Since

f1(x)-x

and <j>(K) is compact, f^x) is a completely continuous movement of Fr (A). Also

/(*) -/i(«) = " [*{/(*) -*} " {/(*) -*}] J
hence

f(x) -h{x) c U, (2)

for all x e Fr (A). Furthermore, it follows from (1) that

fi(x)-xeQ (3)

forallseFr (4). Now, by (2) and 3.2.5,
d(f,A,b)=d(fvA,b),

and, by 3.2.3, this is
d{fu Interior of A in E, b),

which, by (3) and [3], equals

{dfv Grs (Interior of A in E), 6} =d{f1, Fr\ (Interior of A in E), b) ;

hence, by 3.2.3,

d(f,A,b)=d(f1,Fr^A,b),

and, since (Frontier of (Fr\A) in F) C (Frontier of A in E)r^F, we have, by (2) and 3.2.5,

3.2.8. LEMMA. / / F is a linear manifold of E and K is a compact subset of F which spans
F, then the relative topology of F is normal.

Proof. The relative topology of F is regular and Lemma 1 on p. 113 of [1] shows that
a regular Lindelof space is normal. Hence we have only to prove that F is a Lindelof space,
i.e. that each covering of F by open sets of F has a countable subcovering.

To this end, let "V be an open covering of F. For each positive integer n, let Kn be the
set of all points

of F, where a,̂ , ..., xn e K and Xv ..., Xn are real numbers such that | X1 |<«, ..., | An \^n.
If Jn denotes the closed interval [-n, n], then Kn is a continuous image of the compact
space Jnx ... x JnxK x ... xK (2n factors) ; hence Kn is compact. Evidently

F = U Kn.

For each n we can choose a finite subcollection i^'n of "/" which covers Kn. Let
OO

y = u y'
n=l

y is countable, ir> C -f" and V covers F. This completes the proof.

3.2.9. THEOREM. / / A and B are subsets of E with Int (B) # 0, / is a completely con-
tinuous movement of A into B such that J'{Fr (^4)}^Fr (B), g is a completely continuous move-
ment of Fr (B), b e E~g{Fr (B)} and d{f, A, y) is constant for y e Int (B), then

d(gf, A, b) =d(g. B, b). d{f, A, Int (B)}.
K G.M.A.
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Proof. Let K and L be compact subsets of E such that

f(x)-xeK
for all x e A and

g(x)-xeL

for all x e FT (B). Let bx e Int (B) and F be the linear manifold spanned by the compact set
K^L^{b, 6J. By 3.2.7, "

d{f, A, Int (B)} =d{f, Fr>A, Frslnt {B)} (4)
and

d(g,B,b)=d(g,FrsB,b) (5)

But, since K + LQF, K+L is compact and, for all x e Fr {A), we have

it also follows from 3.2.7 that

d(gf,A,b)=d(gf,F^A,b) (6)

Thus, it will be sufficient to prove that

d(gf, FrsA, b) =d(g, FrsB, b). d{f, Fr,A, FrJxti (B)} (7)
By 3.1.1, g{F/-\Fr (B)} is closed in F ; hence there exists an open, convex, symmetrical

neighbourhood U of the origin in F such that
(b + U)ng{Fr<Fr{B)} = 0 (8)

By Theorem 2 of [6], we can find a finite dimensional linear manifold Fm of F and a con-
tinuous mapping 6 of L into Fm such that

6(x)-xeU
for all x e L. Put

for all x e Fr^Fr (B). Now 6(L) is a compact subset of Fm, Fr^Fi (B) is closed in F, ̂  is
a continuous mapping of Fr^Fr (B) into d(L) and, by Lemma 3.2.8, F is normal. Hence
one can apply Tietze's Extension Theorem ([2], p. 28) to extend ^ to a continuous mapping
of Fr^B into a compact subset Lx of Fm. Put

gx(x)=ijix{x)+x

for all a; e FrsB. Then gx is a completely continuous movement of Fr\B into F and for all
x e Fr^Fr (B) we have g(x) -gi(x) ={g{x) -x}- 6{g(x) -x}, and hence

g(x) -9l(x) e U (9)

for all a; e Fr\Fr (B). Since the frontier of Fr\B in F is contained in Fr^Fv(B), it follows
from (8), (9) and 3.2.5 that

d(g,Fr,B,b)=d(gvF^B,b) (10)

Since f{Fr^Fi (A)}QFrsFr {B), we obtain from (9)

for all x e Fr^Fr (A); hence

d(gf, FrsA, b) =d(gj, Fr,A, b) (11)

Now it follows from (8) and (9) that gx\b)QFr<h& {B); hence, by (4), d(f, Fr^A, y) is
constant for y e gT1(^)- Therefore, by 3.2.6,

d(gJ,Fr,A,b)=d(gx,F^B,b).d{f,F^A,F^hit(B)} (12)

Equation (7) now follows immediately from (10), (11) and (12), and the proof is complete.
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4. The main result. In this section we prove the theorem that was discussed in § 1.
Throughout the section A denotes a closed subset of E and / a completely continuous move-
ment of A with the properties 1.1 and 1.2. As in 1.2, /„, =/1 Fr (A).

4.1. LEMMA. / / Q is a component of i?~/{Fr (A)} ivhich intersects f{A) and if P =f~1(Q),
then

(i) Q does not intersect f {FT (P)}, and

d(f,P,y)*O
for ally eQ ;

(ii) Fr (Q) C/{Fr {A)}, fi^Fr (Q)} does not intersect P or # ~ P and

d(fi\Q,x)+0 forxeP, _
= 0 forxeE~P.

Proof. P and Q are evidently open sets of E and

Fr(<2)C/{Fr {A)} (13)

If a is an arbitrary point of Fr (P), then f(a)eQ and f{a)4Q', for /(a) € Q would imply a e P.
Hence f(a) e Fr (Q). Thus

/{Fr (P)}£Fr (Q) (14)
Hence

Also

for, if a ' eP , then/(a')eQ. Hence/(a') *Fr (Q) • i.e., a ' ^ { F r (Q)}. Now

Fr (P)CFr {A) (15)

For otherwise there would exist a point p e Fr (P) with p e Int (A) ; then, by 1.1,

f(p) 4f{Fv (A)},
which contradicts (13) and (14). By (14), 3.2.4 and Theorem 3.2.9,

d(f?f, P, x) =d(fi\ Q, x) . d(f, P, y) (16)
for aUxc E~fi1{Fr (Q)} and all y e Q. Therefore by (15), 1.1 and 3.2.1,

d(fi\Q,x).d(f,P,y) = l, iovxeP,

= 0, for x c E~[Pvf?{Fr (Q)}] (17)

for all y e Q ; consequently, since P is not empty,

d{f,P,y)+0 (18)

for all y e Q. It now follows from (18) and 3.2.2 that QQf(P); hence, since f(P) is closed,

Q£ / (P ) ; therefore

(E~P)^fil{Fr(Q)}=0 (19)

For, if c efi^Fr (Q)}, then f(c) e Q,f(c) ef(P), and, since, by (13), 1.1 and 1.2, c is the only point
in /^{/(c)}, we have ce P. Since Q is not empty, it now follows from (17), (18) and (19)
that

d(fi\ Q,x)±0, forxeP, _

= 0, fora;e.E~P.
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4.2. LEMMA. Fr {f(A)}Qf{¥r (A)}.
Proof. Suppose that the lemma is not true ; i.e., that there exists a point b e Fr {f(A)}

with b 4f{Fr (̂ 4)}. Let Q be the component of E~f{Fr (̂ 4)} containing b and put P =f~1(Q)-
By Lemma 4.1, d(f, P, y) ¥=0 for all y e Q. But, since Q is open and b e Fr {/(^4)}, Q must
contain a point y' of E~f{A) ; hence y' 4f(P) and, by 3.2.2, d(f, P, y') =0. This is a con-
tradiction.

4.3. LEMMA. d{fi\f(A), x}*0, for xelnt (A),
= 0, forxeE~A.

Proof. Let x e Er-JFr (A). Denote by J2 the collection consisting of all those com-
ponents of 2J~/{Fr (A)} that are contained in f(A). By Lemma 4.2,

f(A)~f{Fv(A)}= U Q (20)

Hence, by 3.2.3,
d{fi\f(A),x}= Z d(fi\Q,x) (21)

(Empty sums are regarded as zero.)
Suppose that x e Int (A). By 1.1 and (20), there is exactly one Q e 2,, say Q', such that

x ef~1(Q). Therefore, by Lemma 4.1,

= 0,
Hence by (21), d{fi\f(A), x}±0.

lixe E~A, there is no Q e St with x ef^iQ), so that, by (21), d{f^,f(A), x} =0.
4.4. THEOREM. /{Fr (^4)}=Fr {f(A)}.
Proof. Because of Lemma 4.2, we have only to prove that

Suppose that this inequality is not true ; i.e., that there exists a point b e/{Fr (A)} with
b 4 Fr {f{A)}. Put a=f^(b). Then aeYr(A) and b e Int {f(A)}.

(i) Let ae ln t (A). Let C be the component of i ^ / j ' f F r {f(A)}] which contains a.
Then O is open and therefore contains a point a' of Int (̂ 4) and a point a" of E~A. By
3.2.4,

d{f;\f(A),a'}=d{fi\f(A),a"},
and this contradicts Lemma 4.3.

(ii) Let a 4 Int {A). We have b 4f{lM (A)}. Since b e Int {f(A)}, there exists a U e °U
with b + U contained in f(A) but not intersecting /{Int (A)}. Then b + UQf{Fr (A)} and
Z*11 b + U is a 1-1 completely continuous movement. Therefore, by Lemma 4.2,

so that a 4 Fr {f^(b + V)}, and hence a e Int {f*l(b + U)}QInt (A). This is a contradiction.
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ON CERTAIN RELATIONS BETWEEN PRODUCTS OP
BILATERAL HYPERGEOMETRIC SERIES

by HARISHANKER SHUKLA
(Received 12th April, 1957)

1. Introduction. Darling [3] in 1932 and Bailey [2] in 1933 gave certain theorems on
products of hypergeometric series. Again in 1948 Sears [4] used the relation which expresses
the M®M-I(X) series in terms of M other series of the same type to derive transformations
between products of both basic and ordinary hypergeometric series. In this paper I give
certain general theorems on products of bilateral hypergeometric series together with some of
tlieir interesting special cases.

The following notation is used throughout the paper :

(a; n) = (l-a)(l-aq) ... (1-aq"-1), (a; 0) = l,
(a; -»)=(-i)Y" | n + 1 |W#; n)> k l< i .

- l ) , (a)0 = l , (a)_n = ( -1)»/(1 -a)n,

Taj, a2,... , ar ; z"l » K ; n)(a2; n)... (ar; n)

)n ••• («r)n „

) ( 6 )
Vax,

L
x, og, ... , or") " ( l - o ^ H l - f f l t g " ) . . . ( l -a f g

n )
&X, 68... , 6r J B =o( l -6 1 g")( l -6 2 ? n ) - ( l -M n ) '

ro!, «2,..., ari_rK)rK)...rK)
Ui, 62, - , KJ ribjribj ... r{bn)'

and idem (a ; 6) means that the preceding expression is repeated with a and b interchanged.
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