
BULL. AUSTRAL. MATH. SOC. 26A39

VOL. 34 (1986) 233-251

A WIDE PERRON INTEGRAL

D.N. SARKHEL

In terms of an arbitrary limit process T , defined abstractly for

real functions, we define in a novel way a T-continuous integral of

Perron type, admitting mean value theorems, integration by parts and

the analogue of the Marcinkiewicz theorem for the ordinary Perron

integral. The integral is shown to include, as particular cases, the

various known continuous, approximately continuous, Cesaro-continuous,

mean-continuous and proximally Cesaro-continuous integrals of Perron

and Denjoy types. An interesting generalisation of the classical

Lebesgue decomposition theorem is also obtained.

1. Introduction

Bullen and Lee [4] gave a method of unifying various integrals of

Perron type, by introducing the abstract notion of a 'derivate system1.

In an endeavour to find a simpler but more revealing and more concrete

unifying method leading to desirable generalisations, recently in [23] we

introduced the T-continuous Perron integral, (TP) , defined in terms of

the notion of proximal variation and in terms of the limit process T

induced by an orderly connected topology on the real l ine. This marks a

major modification of the Perron method inasmuch as the difference of a

major (upper) function and a minor (lower) function need no longer be

nondecreasing. However, the (TP)-integral was shown to admit of mean

value theorems, an integration by parts formula and the analogue of the

important Marcinkiewicz theorem for the ordinary Perron integral ( [ /6] ,

(3.13), p . 253). Besides, i t was shown to include, as particular cases,
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234 D.N. S a r k h e l

various known continuous and approximately continuous integrals ( [6 ] ) ,

[12], [13], [27]). Further, T could also be taken to be the proximal

l imi t process introduced in [22], which is more general than the

approximate l imit process.

But, the (TP)-integral could not unify the mean type continuous

i n t e g r a l s , such as the Cesaro-Perron in tegra ls , C P , of Burkill [7,8] ,

the C D and V D in tegrals of Sargent [17,18], the mean-continuous

i n t e g r a l s , GM , of E l l i s [10], and the recently introduced proximally

Cesaro-continuous in tegra l , (PCD) , of Nath and Bose [14]. The failure

i s due to the fact that mean type continuity i s essential ly nontopological

in nature [2 / ] .

The purpose of th is paper i s to show (section 4) tha t , with new

methods of proofs, the ent i re theory of the (TP)-integral remains valid

in fact for any limit process T , defined abstractly (section 3) by

assuming only the bare necess i t ies . Quite pleasingly, with appropriate

choice of T , the (TP)-integral now includes (section 5) also each of the

mean type continuous in tegrals mentioned above. Besides, the (TP)-integral

leads us to an in teres t ing generalisation (Corollary 4.9.1) of the c lass ic

resu l t tha t the derivative of a function of bounded variation, VB , i s

always Lebesgue integrable, which in turn leads to an extensive

generalisat ion (Corollary 4.9.2) of the classical Lebesgue decomposition

theorem {[16], p . 120). Convergence theorems for the (TP)-integral can be

deduced, as usual, from those for the Lebesgue in tegral , and will be

omitted. The (TP)-integral also admits of a simple Denjoy type constructive

def in i t ion , which wil l be given elsewhere.

We remark in passing tha t , no single integral can exist which would

include a l l the integrals mentioned above, because the two integrals

[6,7] of Burkill are not compatible, as shown by El l is [11].

2. Preliminaries

Throughout this paper, R will denote the real line, |£"| the outer

Lebesgue measure of a subset E C R , and E its interior. By

f 2. E -*• R [/ ~ E •+ R] we shall mean that f is an extended real valued

function defined and finite at least for all [almost all] points of the
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A wide Perron integral 235

set E , and then / „ wi l l denote the function defined on R by

f^ix) = fix) i f x G (dom f) n E and / p (x ) = 0 otherwise. Also, we

denote by ess-sup^/ [ess-inf_f] the infimum [supremum] of the numbers r

such that

|{x G E\f(x) > r } | = 0 [|{x G E\f(x) < r}\ = 0] .

The function / i s said to sa t i s fy the condition (N) of Lusin ([16],

p . 224) on E , i f \f(H)\ = 0 for every H C E with |ff| = 0 . For the

notions of approximate continuity and derivat ive and of functions VB and

AC we refer to [16].

A f in i t e family (possibly void) of pairwise d i s jo in t open in te rva l s

with end points on a set E C if i s called a subdivision of E . A

sequence {E }• of se ts whose union i s E i s called an ff-form with par ts

E ; i f , moreover, each par t E i s closed in E , then the E-form i s

said to be closed. An expanding S-form i s called an E-chain ([23],

Definition 2 .1 ) .

Given / 3 S + R and r > 0 , we denote by V(f,E;r) the supremum

o f t h e s u m s £ | f ( £ . ) - f i a . ) \ f o r a l l s u b d i v i s i o n s { ( a . , b . ) } o f E

with l(b.-a.) < r . We define V(f,E) = sup ̂ nVif,E-,r) and

V(f,E;O) = in£r>QV (f,E;r) .

We note tha t f i s VB [AC] on E i f and only i f Vif,E) < »

[Vif,E;O) = 0 ] . If f i s VB [AC] on each par t of a closed E-form,

then f i s called (VBG) [(ACG)] on E . The infimum of sup Vif,E ;0)

for a l l E-chains {E } , denoted PV(f,E) , i s called the proximal

variat ion of / on E . If PVif.E) < » [PVif,E) = 0] then / i s called

(PVB) [(PAC)] on E . For d e t a i l s about these notions we refer to [23],

section 3, but summarize below some of the r e su l t s obtained therein for

ready reference.

(2 .1) . For a l l p,q G R and a l l f,g 2 E •* R we have

PVipf+qg,E) < \p\-PVif,E) + \q\ -PVig.E) .

(2 .2) . If PVig.E) = 0 , then PVif+g,E) = PVif,E) .
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(2.3). If / and g are both (PVB) [ (PAC)) on E , then pf + qg
i s also (PVB) I (PAC)] on E for a l l p , i j £R .

(2.4). If |£"| = 0 , then \f(E)\ < PV(f,E) . In particular, if f
i s (PAC) on E , then / satisfies Lusin's condition (N) on E .

(2.5). If f is (PVB) on E , then / is (VBG) on £ ; if,
further, the set E is measurable, then /|E" is measurable and f has a
f ini te approximate derivative, (ap)f'(x) , at almost al l points x of E .

(2.6). If / is (PAC) on each part of a closed ff-form, then /
i s necessarily (PAC) on E .

(2.7). If / and g are both (PAC) on E , so is fg .

(2.8). If / is (PVB) on £ , then PV(f,E^I) j . s an additive
continuous function of intervals J Q. R .

(2.9). If f is (ACG) on E , then / is necessarily (PAC) on
£• ; the converse is true if E is closed and f\E is continuous.

(2.10). Let {p } and {q } denote two sequences in R such that

£|p | < « and q. f q . for i f 3 , and let F:R + R be defined by

*•<*> = [ P . or Fix) = I p .

Then F i s (P4C) on R and, further, F' = 0 a .e . on R.

The following lemma great ly extends Lemma 5.1 in [23]. I t i s , in fac t ,

more powerful than we sha l l actually need in the sequel.

LEMMA 2.1. Let f 2 I = [a,b] +R Je such that
(i) PV(f,I) < «° , that is, f is (PVB) on I ,

(ii) if f is VB on every closed subinterval of an open interval
(x,y) c j and if f(x+) and f(y-) exist (finitely or
infinitely), then f(x) < f(x+) and f(y-) < f(y) , and

(Hi) there is a subset B c I with | s | = 0 such that, if x G i\B
and f is continuous at x, then D f(x) > 0 .

Then, for every set A D B , the function g(x) = f(x) + PV(f,A n [a,x])
is nondecreasing on I .
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Proof. We f i r s t asser t t ha t , i f / i s VB on an open in terval

J C J , then g i s nondecreasing on J .

Suppose, for a contradict ion, t ha t g(d) < g(c) for some [c,d] C J .

Choose e > 0 so small that g(d) < g(c) - z(d-a) . Then, using (2 .8) ,

we h a v e PV{f,A n [a,d]) = PV(f,A n [a,d]) - PV(f,A n [a,c]) = g-(d) - / ( d )

- ff(c) + / (e) < F(e) - F(d) , where

F(x) = /(a:) + ex for a l l x G J .

But, since |B n [ e , d ] | = 0 and F - f i s AC on [c,d] , by (2.4) and

(2.2) we have \F(B n [e ,d ] ) | < P7(F,S n [c,d]) = PV{f,B n [e,d]) <

PK(/,4 n [e,cf]) because S C ^ . Hence i t follows tha t

0 < |F(S n [o,d))\ < F(e) - F(d) . Then, se lec t any r € (F(d),F(c)) with

r ? F(B n [e,d]) , and se t

t = sup{a; G (o,d) \F(x) > r) .

Now, by (ii) , for al l x S J we have F(x-) = f(x-) + ex < /(x) + ex

= F(x) and F(x+) = /(x+) + ex > fix) + ex = F(x) . In particular,

F(cH-) > F(e) > r and F(d-) < F{d) < r , so that t is well defined and

o < t < d . Then recalling the definition of t , we have F(t) < F(t+) < r

and, hence, further r < F(t-) < F(t) . Therefore F is continuous at t ,

F(t) = r ? F(B n [c,d]) but t e (e,d) , and D+F(t) < 0 since

F(x) < r = F(t) for al l x € (t,d) . So, / is continuous at t ,

t G 1° \ B and D+f(t) = D+F(t) - e < 0 . This is contrary to ( i i i ) , and

our assertion is proved.

Now, let E denote the set of points of I having no neighbourhood

in J on which g is nondecreasing. Then E is closed. Clearly g is

nondecreasing on any component (P/<?) of J \ E . Since, further,

PV(f,A n [a,x]) is nondecreasing and bounded on J , clearly / is VB

on every closed subinterval of (p,q) and both f(p+) and f(q-) exist.

Therefore, by (ii) , /(p) < f(p+) and f(q-) < f(q) , whence we readily

obtain that g(p) < g(p+) and g(q-) < g{q) . So, g is in fact

nondecreasing on [p,q] . In particular, therefore, E is perfect, and g

is nondecreasing on I if E = <jl .

Suppose E f 0 . Since / is (PVB) on J , by (2.5) i t is (VBG)

on J . So, by the Baire category theorem ([76], p . 54), there is an open

interval J C J intersecting E such that f is VB on E r> J .
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Clearly then g is VB on E n J . since, further, by above g is

nondecreasing on the closure of each component of J \ E , it follows that

g is VB on J . Therefore f is VB on J . So, by the initial

assertion, g is nondecreasing on J . This contradicts the condition

E n J ̂  0 , and the proof is complete.

REMARK. The lemma remains valid if in (iii) we replace D fix) by

D fix) . The initial assertion in the proof can then be verified by

setting t = inf{a; G (o,d) \F(x) < r) .

3. Abstract l imit process

DEFINITION 3.1. Let R(+) denote the set of ordered pairs {f,x)

such that x S R and / 2 ix,y) -»• R for some y > x . A right-hand limit

process in R is a real valued operator T with dom T C R( + ) such that

(i) if / 2 (a;,i/) -»• R is (VBG) on (x,t/) and if the ordinary

limit f(x+) exists finitely, then (f,x) G dom T ,

(i i) i f (f.x) G dom T and if (g,x) S R(+) is such that g(t) = f(t)

for a l l t e (a;,y) for some y > x , then (<y,x) G dom T and,

further, T(ff,x) = T(f,x) ,

( i i i ) i f if,x) , ig,x) S dom T and p,c? S R , then (pf+qg,x) G dom 2"

and, further, T(pf+qg,x) = p-T(f.x) + q-T(g,x) , and

(iv) lim inf /(£) < T(f,x) < lim sup f(t) for all (f,rc) e dom 21.
t-*x+

A left-hand limit process in R is defined similarly. By a limit

process T in R we shall mean a pair of a right-hand limit process T

and a left-hand limit process T in R , and we shall write Tf(x+) for

T+(f,x) and Tf(x-) for T~ (f,x) . If Tf(x+), Tf(x-) and fix) all

exist and are equal to one another, we say that f is T-continuous at x .

Conventionally, speaking about T-continuity of f on a closed

interval [a,b] , we shall always exempt Tf(a-) and Tf(b+) .

DEFINITION 3.2. A limit process T in R is said to be Darboux, if

every function which is f-continuous on a closed interval is Darboux (has

the intermediate value property) on the interval.

Every orderly connected topology on R induces a Darboux limit

process ([23], section 4); in particular, the ordinary, the approximate
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and the proximal l imi t processes are Darboux. The notions of

C -cont inui ty [&}, M -cont inui ty [70] and PC-continuity [74] are

defined d i r ec t ly in terms of cer ta in types of l i m i t s . The reader can

eas i ly frame the immediate formal def in i t ions of the corresponding l imi t

processes, in agreement with the above de f in i t ion . Sargent [79] has shown

tha t the C - and M - l imi t processes are Darboux. Again, by de f in i t ion ,

a PC-continuous function on an in te rva l i s necessar i ly a f i n i t e proximal

der iva t ive . Hence by a r e su l t of Sinharoy ([25] , Theorem 4, p . 322), the

PC-limit process i s also Darboux.

Limit processes can also be defined in a natura l way in terms of

' s e l ec t i ons ' [75] and ' b i l a t e r a l systems of pa ths ' [2] , and, more generally,

in terms of any topology on R which i s such tha t every point of every

open se t i s an ordinary b i l a t e r a l l imi t point of the s e t . A se lec t ive

l imi t process i s necessari ly Darboux ( [75] , Theorem B, p . 85), but the

others need not be. However, we have the following useful r e s u l t , which

extends Theorem 5.3 in ( [2 ] , p . 111).

LEMMA 3.1 . Let T be any limit process in R . If f-.[a,b] -+ R is

Baire 1 and T-continuous on [a,b]} then f is Darboux on [a,b] .

Proof. By T-continuity, f l i e s between i t s ordinary upper and lower

uni la tera l l imits on e i ther side in [a,b] , and this i s precisely the

condition for a Baire 1 function to be Darboux [24] (see, a lso, [7] ,

Theorem 6 .1 , p. 103).

4. The {TP)-integral

Throughout t h i s sect ion, we sha l l deal with an a rb i t ra ry but fixed

l imi t process T in R , and with a rb i t r a ry functions f,g ~ I = [a,b] •* R.

DEFINITION 4 . 1 . A function u 2 ^ + R i s cal led a (TP)-upper

function of / o n J , in symbols u G U(f;I) , i f

(i) u(a) = 0 ,

(ii) Tu(x+) exists and u(x) < Tu(x+) for all x 6 [a,b) ,

(iii) Tu{x-) exists and Tu(x-) < u(x) tor all x e (a,b] ,

(iv) u is (PVB) on J , and

(v) (ap)u' > f a.e. on I .

(By (2.5), (ap)u' exists finitely a.e. on J .)
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A function H 3 I + R i s called a (TP)-lower function of / on I ,

in symbols I G L(f;I) , if -I G U(-f-.I) .

DEFINITION 4 .2 . For every e > 0 we define

y£(/;J) = {u e U(f;I)\PV(u,I) < e} ,

£e(/;^) = U e nf;l)\PVU,l) < e} ,

) = inf{u(fc)|uG £M/;J)} ,

) = sup{l(b)\l G L£(f,-J)} .

If the two monotone limits

f(I) = lim +f"(I;e) and £(I) = lim +£(!"; E)
e-K)+ e-K)+

have a common f i n i t e value, then the function f i s said to be (TP) -

integvdble on J , in symbol / G (TP) (I) , and the common f in i t e l imi t ,

denoted f*I , i s cal led the definite (TP)-integral of f on I .

REMARK. By def in i t ion , inf $ = °° and sup 0f = -°> . Therefore, i f

U (f;I) = 0 for some e > 0 then f(I) = °° , and i f L (f;I) = pf for

some e > 0 then f_(I) = -<*> .

THEOREM 4 . 1 . Let u G V(f-.I) and I G L(f;I) . Then there is a

subset B C I with \B\ = 0 such that, for every 4 3 J ,

u(x) - i (x) + PV(u-l, A n [a,a;]) i s nondecreasing and nonnegative on I .

P r o o f . By ( 2 . 3 ) , u - l i s (PVB) on I . A l s o , f o r a l l x G [a,i>)

we have u(x) - l(x) < Tu(x+) + T(-l)(x+) = 2"(w-Jl) (x+) , and for a l l

y G (a,b] we have T(u-i) (j/-) = 2^(i/-) + 2"(-4)(!/-) < M(y) - «.(j/) .

F ina l l y , we have (ap)u' > f a . e . on I and (ap) (-£) ' > -f a . e . on J .

So, there i s a subset B C J with \B\ = 0 such that (ap) (u-SL) ' (x) > 0

for a l l x G J \ B . Hence Lemma 2.1 cer ta in ly applies to u - I , and

the required r e s u l t follows.

COROLLARY 4 . 1 . 1 . Let u G U(f-J) and I G L(f-.I) . Then

(i) u - i. is VB on I 3

(ii) u(b) - l(b) + PV(u-l,I) > 0 , and

(iii) u(b) + PV(u,I) > Z(b) - PV(l,I) .

Proof. By Theorem 4.1 with A = I , the function H(x) = u(x) - l(x)

+ PV(u-l, la,x]) i s nondecreasing on I . Since, fur ther , PV(u-l, [a,x])
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is nondecreasing on J , i t follows at once that u - Z is VB on J .

Also, we have u(b) - Kb) + PV(u-l,I) = B(b) > H(a) = 0 ; whence again

u(b) + PV(u,I) > Kb) - PV(H,I) , since PV(u-Z,I) < PV(u,I) + PV(SL,I) by

(2.1).

From Corollary 4.1.1(ii i) we readily obtain:

COROLLARY 4 . 1 . 2 . We have

(i) f(I) > l(b) - PV(l,I) for all I G L{f;I) ,
(ii) £(I) < u{b) + PV(u,I) for all u G U(f,I) , and

(Hi) f (J) > £11) .

Using Theorem 4.1 and i t s corollaries and, of course, the properties
of T and PV , the reader can now easily prove:

THEOREM 4 . 2 .

(i) f e (TP) (I) if and only if there exist, for every e > 0 , at
least one u G U (/,-J) and at least one I s £ (f;I) such

that \u(b) - l(b) \ < e .
(ii) If ft (TP)(D then Kb) - PV{l,I) < f*I < u(b) + PV(u,I)

for all I G L(f;I) and all u e U(f-.I) .

(Hi) If f G (TP) (J) and if g = f a.e. on I , then g e {TP) (I)

and, further, g*I = f*I .

(iv) If f,g e (TP) (I) , then (pf+qg) G (TP) {I) for all p,q G R

and, further, (pf+ qg) *I = p-(f*I) + q-(g*I) .

(v) If J = [a,c] and K = [c,b] where a e 1° , then / G (TP) (I)

if and only if f e (TP) (J) n (TP) (K) , and then f*I = f*J + f*K

We see that when / G (TP) (I) then / G (TP) ( [a,x] ) for a l l x G J° .

We sha l l write F = (TP) (/:!) to mean tha t f G (2P) (J) and tha t F i s

t?ze indefinite (TP)-integral of f on I , defined on the entire real

line by F(x) = f*[a,x] for a < x < b , F(x) = 0 for x < a and

F(x) = F(b) for x > b .

THEOREM 4 . 3 . Let F = (TP)(f:I) . Then

(i) u(x) - F(x) + PV(u,[a,x]) is nondecreasing on I and

V(u-F,I) < u(b) - F(b) + 2PV(u,I) for all u G U(f;I) , and

(ii) F(x) - SL(x) + PV(l, [a,x]) is nondecreasing on I and

V(F-i,I) < F(b) -Kb) + 2PV(i,I) for all I 6 L(f-.I) .

(In particular, both u - F and F - I are VB on I . )
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Proof. Similar t o the proof of Theorem 5.3 in [23].

The following theorem provides an in te res t ing descript ive def ini t ion

of the (TP)-integral, s imi lar to those of the Denjoy in tegra l s ( [ J6 ] ,

p . 241).

THEOREM 4 . 4 . Let F:R ->• R be such that F(x) = 0 for x < a and

F(x) = F(b) for x > b . Then F = (TP) (f-.I) if and only if F is

T-continuous and (PAC) on I and (ap)F' = f a.e. on I (that is,

F e u (f,I) n L (f-.I) for every e > 0 ) .

Proof. The ' i f part is obvious. To prove the 'only i f part ,

suppose F = (TP)(f:I) .

Consider any a S [a,b) . Given e > 0 , we can find u £ U (f;I)

and I e L (f-,I) such that u(b) - F(b) < e and F(b) - l(b) < e . Then

by Theorem 4.3, for a l l x G I we have -e < u(x) - F(x) < 2e and

-e < F(x) - l(x) < 2e ; also, U - F and F - I being VB on I possess

f ini te ordinary right-hand limits at a . Since, further, by definition

Tu(c+) and TSL(c+) exist and satisfy u(o) < Tu(c+) and Tl(c+) < l(c) ,

i t follows from the definition of T that TF(c+) exists and, further,

that

F(c) - 3e < u(c) - 2z < Tu(c+) - 2e

= T(u-F) (c+) +TF(a+) - 2e < TF(c+) < TF(c+) - T(F-i) (a+) + '2e

= TZ(c+) + 2e < i(c) + 2e < F(o) + 3e .

Thus \TF(c+) - F(<J) | < 3E . Since E > 0 is arbitrary, we have
TF(c+) = F(c) . Similarly, TF(c-) = F(a) for e G (a,b] . Hence F is
T-continuous on J .

The remaining parts of the proof are exactly similar to those for

Theorem 5.4 in [23].

COROLLARY 4 . 4 . 1 . If F = (TP) (f-.I) , then F is Darboux on I .

Proof. Since F i s (PAC) on J , by (2.5) i t i s (VBG) on I . So

F i s Baire 1 on I . Since, further, F i s T-continuous on J , by

Lemma 3.1 i t i s Darboux on I .

Referring to (2.6) and to Corollaries 5 . 4 . 1 , 5.4.2 in [23] and to the

https://doi.org/10.1017/S0004972700010108 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010108


A wide Perron i n t e g r a l 2 4 3

remarks preceding them, we omit the simple proofs of the following

corollaries.

COROLLARY 4 . 4 . 2 .

(i) If f 6 (TP)([a,x]) for all x G J° and if TF{b-) exists,
where F(x) = f*la,x] , then f e (TP) (I) and f*I = TF(b-) .

(ii) If f G (TP)([x,b]) for all x e j ° and if TG(a+) exists,
where G(x) = f*lx,b) , then f £ (2P) (J) and f*J = TG(a+) .

(Hi) If f e (IP) (J) j ifeerc / | J i s measurable and the (TP)-upper
and lower functions of f on I are T-continuous n.e.
(that is, except at a countable number of points) on I.

COROLLARY 4.4.3. If f is Lebesgue (L-) integrable on I , then it
is (TP)-integrable on I . Conversely, if f is (TP)-integrable on I
and if g is L-integrable on I and either f < g a.e. on I or g < f
a.e. on I , then f is L-integrable on I to the value f*I .

THEOREM 4.5 (Integration by p a r t s ) . Let F = (TP) (f-.I) where F is

bounded, and let G = L(g-.I) . Then fG e (TP) (I) and (fG) *I = F(b)G(b)

- (Fg)*I .

Proof. Since G i s the indef in i te L-integral of g on J , i t i s

AC on I . Also, by Theorem 4 .4 , F i s (PAC) on I . So, by (2 .7) ,

FG i s (PAC) on J . Also, FG i s T-continuous on J . For, given

c S I 3 F'(G-G(c)) i s (VBG) on J by (2 .5) , and i t has an ordinary l imit

0 at c , since F i s bounded and G i s continuous at e . Since,

fur ther , F i s T-continuous at c by Theorem 4.4 , i t follows from the

defini t ion of T tha t FG = F-(G-G(c)) + F'G(a) i s T-continuous at c .

Therefore, by Theorem 4.4 we have FG = (TP)((ap)(FG)':J) . But Fg

i s L-integrable on J , since g i s and F i s bounded and measurable

by (2 .5) . Hence, reca l l ing Corollary 4 . 4 . 3 , the required r e su l t s follow

at once by noting that (ap)(FG)' = fG + Fg a . e . on I .

THEOREM 4.6 (F i r s t mean value theorem). Let H = (TP)(fg-.l) ,

G = (TP) (g-.I) , G(b) f 0 , and either e s s - i n f ^ > 0 or e s s - s u p ^ < 0 .

Set p = H(b)/G(b) and E = {x G l\g(x) ? 0} . Then either

(i) ess-infjf < p < ess-supj./ or (ii) f = p a.e. on E , \E\ > 0 ,

and p has one of the values ess-inf_f or ess-sup_/ . (G(b) = 0

implies H(b) = 0 .)
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Proof. S i m i l a r t o t h e proof of Theorem 5.6 in [23 ] .

THEOREM 4.7 (Second mean value theorem). Let F = (TP) (f-.I) where

F is bounded, and let G = (TP) (g-.I) , G(b) f 0 , and either

ess-inf-g > 0 or ess-sup^ < 0 . Then fG £ TP(I) and there is a point

c e I such that (fG)*I = G(b) (F(b) - F(c)) and such that either

(i) infjF < F(c) < sup^F or (ii) F = F(c) a.e. on E = {x G l\g(x) ? 0},

12?| > 0 j and F(a) has one of the values inf^-F or

P r o o f . S i m i l a r t o t h e p r o o f o f Theorem 5 . 7 i n [ 2 3 ] .

THEOREM 4.8. Let {J = [a ,b ]} be a sequence of nonoverlapping

closed subintervals of I and G = UI . Suppose F = (TP) {f-.I ) and

£ \F (b ) | < "> . Defining S(x) - \ F {x) , suppose further that both
n ' n n n

TS(x-) and TS(x+) exist for all x and that

(*) I i\O(S,r-) | + \O(S,r+)|} < » ,
rSR

where

O(S.r-) = TS(r-) - S(r) , O(S,r+) = Sir) - TS(r+) .

Then we have F = (TP) (fG-I) where F is defined on R by

F(x) = S(x) + I O(S,r-) + I O(S,r+) .
r<x r<x

Proof . The c o n d i t i o n 1\F (b ) | < » i m p l i e s t h a t £ F (x) i s

absolutely convergent for a l l x , and so S i s well defined. Also, the

condition (*) implies that 5 is T-continuous n.e. and that F is well

defined.

Now, noting that TS(x-) and TS(x+) exist for al l x and that the

second and third parts in the expression for F are VB on R , it

follows from the definition of T that both TF(x-) and TF(x+) exist

for a l l x and, further,

TF(x-) = TS(x-) + I O(S.r-) + \ O(S,r+)
r<x r<x

= S(x) + I O(S,r-) + I O(S,r+) = F(x)
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and

TF{x+) = TS{x+) + I 0{S,r-) + I 0{S,iH-)

= S{x) + I O(S,r-) + I 0{S,r+) = F{x) .
x<x r<x

Again, since Fix) = F(a ) + F (x) for al l x G J , i t follows from

Theorem 4.4 that, for each n , F is (PAC) on In and (ap)F' = (ap)F^

= f a.e. on I . On the other hand, for al l X G J \ G we have

I y , J l I
b <x n n r<x r<x

n

which by (2.10) implies that F i s {PAC) on I \ G and tha t {(Zp)F' = 0

a . e . on J \ G , since G has density 0 a .e . on I \ G .

Summing up, we see that F i s ^-continuous on I , i t i s {PAC) on

I by (2.6) , and (ap)F' = / _ a . e . on J ; which by Theorem 4.4 completes

the proof, since evidently F(x) = 0 for x < a and F(x) = F(b) for

x > b .

We are now ready t o prove t he much coveted analogue of the

Marcinkiewicz theorem for the o r d i n a r y Perron i n t e g r a l {[16], ( 3 . 1 3 ) ,

p . 253; 128], p . 648; [ 20 ] ) . Skvorcov [26] ob ta ined a s i m i l a r r e s u l t fo r

t h e C P - i n t e g r a l of B u r k i l l .

THEOREM 4.9. If there exist at least one u e £/(/;!) and at least
one I e L(f;l) j and if f\l is measurable, then f e {TP) {I) .

Proof. Let E denote the set of points x G J such that / £ {TP)

(I n J) for a l l closed intervals J with x G J . clearly E is

closed, and i t is enough to derive a contradiction by assuming that E ? $ .

We firs t show that, if [p,q] i s the closure of a component of I \ E ,

then f e {TP){[p,q]) . Evidently f e {TP){J) for every closed interval
J £. (P»<7> • F i x ° € <P»<7) / and set F(x) = f*[c,x] for x G {o,q) and
F(x) = 0 for x< c . Clearly u = u - u{c) G U{f;[o,b]) and

£ = I - l{c) G L{f;[e,b]) . Therefore Theorem 4.3 implies that the
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function h(x) = u (x) - F(x) + PV(u , [e,x]) i s nondecreasing on (c,q) .

Since, fur ther , by Corollary 4 .1 .1( i ) and Theorem 4 .2 ( i i ) we have

h{x) = iu^x) - l±(x)} + H1(.x) - F(x)} + PV(u1,[c,x]) < Kd^-J^, [c,b]) +

PV{11, [c,x]) + PV(uir[c,x]) < V(u-i,I) + PV(l,I) + PV(u,I) < « , i t follows

t h a t the monotone l imi t h(q-) i s f i n i t e . Since, further , Tu (q-)

e x i s t s and PV(u , [e,x]) = PV(u,[c,x]) i s nondecreasing and bounded on

(c,q) , i t follows from the defini t ion of T t ha t TF(q-) e x i s t s . Hence

/ e (IP) ([<?,<?]) by Corollary 4.4.2 (i) . Similarly / G (TP)([p,o]) .

Hence / S (TP) ([p,q)) . In pa r t i cu l a r , therefore , E. i s per fec t .

Now, by (2.5) both u and Z are (VBG) on J . So, using Baire

theorem we can find an in t e rva l J = [a,d] with a,d G E , such that

£• n cT ^ (2T and such tha t both u and I are TO on £ = E n J . Let

{J = [p ,<7 ]} denote the sequence of closures of the components of J \ E,

and l e t u and SLQ denote respectively the functions obtained by

extending u\E and l\E l i nea r ly on each of the in te rva ls J . Then

both u and I are VB on J . Evidently (ap)u' = u' and

(ap)Jl' = I' , a . e . on fi1 . Since, fur ther , (ap)u' > f> (ap)l' a . e . on

E and since f\E i s measurable, i t follows tha t / „ i s L-integrable.

In p a r t i c u l a r /W G (TP)(J) (and, hence, E i s nondense).

We shal l now verify the hypotheses of Theorem 4.8 on J . As already

shown, / S (TP) (J ) for each n . Writing F^ = (TP) (f:J ) , Theorem

4.2(i i) implies that KqJ - KpJ - PV(l,Jn) < F^qJ < u(q^) - u(pn) +

PV(u,J ) for a l l n . Therefore \\F (q ) \ < °> , since both u and I

are VB on E and (PVB) on I . Hence the function S (x) = >F (X) i s

well defined. We fur ther define

H(x) = u(x) - S(x) + PV(u,[c,x]) , x G J .

Now, for a l l x £ J-, = tp^/fli.] w e c lear ly have

https://doi.org/10.1017/S0004972700010108 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010108


A wide Perron i n t e g r a l 247

H(x) + I *•„%> " PV(u,[c,pk]) = u(x) - Fk(x)

which is nondecreasing on J, by Theorem 4.3. Therefore H is

nondecreasing on J, for each k . Further, since for all x G E we

have

H(x) = uQ{x) - SQ(x) + PV(u,[o,x]) , SQ(x) = I Fn(qn) ,
qn<x

clearly H is VB on E . Hence fl is in fact VB on J . Clearly

then u - S is TO on J . Since, further, Tu(x+) and Tw(j/-) exist

for all x G [c,d) and y e (e,<i] , it follows from the definition of T

that both TS(x+) and TS(y-) exist.

Now, let r € E be a limit point of E on the right. Then, since

u - S is VB on J and w - 5 = u - S on E , we clearly have

u (r+) - S (r) . Therefore,

SQ(r) - TS(r+) = uQ ir+) - Tu(r+) .

Similarly, showing that S - SL i s VB on J , we get

SQ(r) - TS(r+) = X

But, since r £ E , we have 5 (r) = S(r>) , Tu(iM-) > u(r) = "0<^) and

Tl(r+) < i.(r) - lQ(r) • I t follows therefore tha t I (r+) - £„<*") <

- TS(r+) < u (T+) - u (r) , whence

(1) |O(S,rf) | < |wo(r+) - wQ(r) 0 Q

Again, since S(x) = S{pv) + F, (a;) for x G J, , for a l l x G \][p ,q )
K K. K y, Tl Ti

we clearly have TS(x+) = S(x) . So (1) holds in fact for all r G [c,d) .

Similarly, for all r G (e,d] we have

(2)

Since u and £ are VB on J , and since 5(x) = 0 for x < e
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and S(x)=S(d) for x > d , i t follows from (1) and (2) that \ \O(S,r+)\ < ~

and Y \O(S,r-) | < °° . Hence by Theorem 4 .8 , fr 6 (IP) (J) where G = \) J
n

Since, moreover, /„ € (TP) (J) and fj=fw + ^G ' i t f o l l o w s t n a t

/ G (TP) (J) . This contradicts the condition En J ? 0 , and the

proof is complete.

COROLLARY 4 . 9 . 1 . Suppose F-.I •*• R is (PVB) on I . Defining

F(x) = F(a) for x < a and F(x) = F(b) for x > b , suppose further

that both TF(x-) and TF(x+) exist for all x e J , and that

I \O(.F,r-)\ < ~ and I \O(F,r+)\ < •» . Then (ap)F' e (TP) (I) .

Proof. By (2.5), (ap)F' exists finitely a.e. on J and it is

measurable ([9], Lemma 3, p. 349). Then the proof follows by verifying

(which, by now, must be easy to the reader) that the functions

u(x) E l(x) = F(x) - F(a) + I O(F.r-) + I O(F,r+)
r<x

satisfy the hypotheses of Theorem 4.9 with f = (ap)F' .

COROLLARY 4 . 9 . 2 . Let F be as in Corollary 4.9.1. Then F can be

represented as F = G + H } where G is T-continuous and (PAC) on I

and H is (PVB) on I and (ap)H' = 0 a.e. on I . Also, this

representation is uniqwz up to an additive constant.

Proof. By Corollary 4 . 9 . 1 , (ap)F' G (TP)(I)' . Then i t i s enough to

take G = (TP) ((ap)F' :I) and H = F - G .

5. Relation with other integrals

From (2.9) and Theorem 4.4 it follows that, for the ordinary limit

process T our (TP) -integral is equivalent to the Den joy integral in the

wide sense ([J6], p. 241). When T is the approximate limit process, it

has been shown in ([23], p. 352) that the (TP)-integral is substantially

more general than the various known approximately continuous integrals

([6], [JZ], [13], [27]).

Again, it is known [10] that the GM -integral includes the C P-

integral, which is equivalent to the CD- and V D-integrals ([18], [29]).
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Also, i f F = GM (f:I) then- by de f in i t i on F i s A^-continuous and (ACG)

on I and (ap)F' = f a . e . on I . Since, by (2 .9 ) , (ACG) implies

(PAC) , i t follows tha t C^P = C^D = V^D C (TP) when T = C^ and t h a t

GM C (W) when T = M . The nth order Perron i n t e g r a l , P" , of

Bullen [3] i s equivalent t o tha t of Bullen and Mukhopadhyay ( [ 5 ] , Theorem

27, p . 56) , and i t i s c lose ly r e l a t ed t o the ^n_i P - i n t e g r a l . In

p a r t i c u l a r P ^ - i n t e g r a b i l i t y i s equivalent to £,_! P - i n t e g r a b i l i t y ( [3 ] ,

Theorem 16, p . 228). Hence, P ^ - i n t e g r a b i l i t y implies (TP)-integrability

with T = C . F ina l ly , i f F = (PCD)(f:I) then by de f in i t i on ( [14] ,

p . 102) F i s PC-continuous and (ACG) on I and (ap)F' = f a . e . on

I . Therefore (PCD) C (TP) when T = PC .
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