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The global-scale interior magnetic field Bi needed to account for the Sun’s observed
differential rotation can be effective only if confined below the convection zone in
all latitudes including, most critically, the polar caps. Axisymmetric solutions are
obtained to the nonlinear magnetohydrodynamic equations showing that such polar
confinement can be brought about by a very weak downwelling flow U ∼ 10−5 cm s−1

over each pole. Such downwelling is consistent with the helioseismic evidence. All
three components of the magnetic field B decay exponentially with altitude across
a thin, laminar ‘magnetic confinement layer’ located at the bottom of the tachocline
and permeated by spiralling field lines. With realistic parameter values, the thickness
of the confinement layer ∼ 10−3 of the Sun’s radius, the thickness scale being the
magnetic advection–diffusion scale δ = η/U where the magnetic (ohmic) diffusivity
η ≈ 4.1 × 102 cm2 s−1. Alongside baroclinic effects and stable thermal stratification,
the solutions take into account the stable compositional stratification of the helium
settling layer, if present as in today’s Sun, and the small diffusivity of helium through
hydrogen, χ ≈ 0.9 × 101 cm2 s−1. The small value of χ relative to η produces a
double boundary-layer structure in which a ‘helium sublayer’ of smaller vertical
scale (χ/η)1/2δ is sandwiched between the top of the helium settling layer and the
rest of the confinement layer. Solutions are obtained using both semi-analytical
and purely numerical, finite-difference techniques. The confinement-layer flows are
magnetostrophic to excellent approximation. More precisely, the principal force
balances are between Lorentz, Coriolis, pressure-gradient and buoyancy forces, with
relative accelerations negligible to excellent approximation. Viscous forces are also
negligible, even in the helium sublayer where shears are greatest. This is despite the
kinematic viscosity being somewhat greater than χ . We discuss how the confinement
layers at each pole might fit into a global dynamical picture of the solar tachocline.
That picture, in turn, suggests a new insight into the early Sun and into the
longstanding enigma of solar lithium depletion.

Key words: MHD and electrohydrodynamics

1. Introduction
This paper analyses a new family of laminar magnetostrophic flows that may be

important for confining the interior magnetic field Bi needed to explain the Sun’s
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differential rotation. As illustrated in figure 1(a), the differential rotation observed
within the convection zone goes over into near-solid rotation within the radiative,
stably stratified interior, via a thin shear layer called the ‘tachocline’ much of which
is also stably stratified. The need for the interior field Bi has been argued elsewhere
(McIntyre 1994; Rüdiger & Kitchatinov 1997; Gough & McIntyre 1998, hereafter
GM98); the main arguments are briefly recalled below. The observational evidence,
along with many ideas about the tachocline, is reviewed and further referenced in a
recent major compendium, The Solar Tachocline (Hughes, Rosner & Weiss 2007), and
further discussed in the second edition of Mestel’s Stellar Magnetism (Mestel 2011).

By a ‘confined’ Bi we mean a field most if not all of whose lines are contained
beneath the convection zone, and held there against magnetic (ohmic) diffusion. Such
confinement is well known to be necessary in order for the field to help enforce solid
rotation in the interior (e.g. Ferraro 1937; Mestel & Weiss 1987; Charbonneau &
MacGregor 1993; MacGregor & Charbonneau 1999), and thereby keep the tacho-
cline thin. Confinement against magnetic diffusion requires fluid motion. So, besides
magnetic effects, a realistic theory of confinement must take account of Coriolis effects,
stable stratification, baroclinicity, and thermal relaxation. Without these effects we
cannot correctly describe, for instance, the overall torque balance, which necessarily
involves mean meridional circulations (MMCs) as well as Maxwell stresses.

The first attempt at a tachocline theory was that of Spiegel & Zahn (1992). It
included all the above effects except Bi . Rüdiger & Kitchatinov (1997) included Bi but
omitted the other effects. The first attempt to include all of them was that of GM98,
in a line of investigation further developed by Garaud & Garaud (2008). Meanwhile,
the dynamical importance of compositional as well as thermal stratification (e.g.
Mestel 1953) was suggested for tachocline theories (McIntyre 2007). In particular, the
helium settling layer beneath the tachocline is nearly impermeable to MMCs because
of the small diffusivity of helium through hydrogen. This near-impermeability of
compositionally stratified regions has been called the ‘mu-choke’ (Mestel & Moss
1986). The reality of the Sun’s helium settling layer is strongly indicated both by
standard solar-evolution models and by helioseismology (e.g. Christensen-Dalsgaard,
Proffitt & Thompson 1993; Ciacio, degl’Innocenti & Ricci 1997; Elliott & Gough
1999; Christensen-Dalsgaard & Thompson 2007, also Christensen-Dalsgaard &
Gough 2011, in prep.). As will be seen, this combination of circumstances gives
rise to some new and interesting fluid dynamics.

The need for the interior field Bi arises from a well-known difficulty with
non-magnetic theories. They tend to spread the strong differential rotation of the
convection zone down into the radiative interior. Although sometimes disputed, this
is a robust and well-understood consequence of thermal relaxation, interacting with
Coriolis effects and gyroscopically-pumped MMCs (Haynes et al. 1991; Spiegel &
Zahn 1992; Elliott 1997; McIntyre 2007; Garaud & Brummell 2008). As shown by
Spiegel & Zahn and confirmed by Elliott, this downward spreading or burrowing
would have produced a tachocline far thicker than observed. The accompanying
MMC, acting throughout the Sun’s lifetime, would also have prevented the helium
settling layer from forming.

To counter the burrowing tendency and to allow the interior to rotate solidly,
angular momentum has to be transported somehow from the low-latitude tachocline
to the high-latitude tachocline. The non-magnetic horizontal eddy viscosity proposed
for this purpose by Spiegel & Zahn is inconsistent with the properties of non-magnetic
stratified turbulence known from many studies of the terrestrial atmosphere (McIntyre
1994, 2003, and references). Angular-momentum transport by internal gravity waves
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Figure 1. (a) The Sun’s differential rotation deduced from helioseismic data using inverse
methods (adapted from Schou et al. 1998). The radiative interior rotates approximately solidly
with angular velocity Ωi = 2.7 × 10−6 s−1, or 435 nHz. Within the convection zone, the angular
velocity increases with colatitude through 350, 400, 450 nHz (heavy contours) to a maximum
just under 470 nHz at the equator. (b) Schematic illustration showing the top of the radiative
interior (inner sphere) and the time-averaged magnetic field threading the tachocline just
above. The cutaway outer sphere indicates the top of the tachocline, whose depth has been
exaggerated. Poloidal magnetic field lines emerge from the interior in high latitudes and are
wound up into their curved shapes by the tachocline’s differential rotation, acting against
turbulent eddy diffusion. A prograde torque is transmitted from low to high latitudes along
these field lines. The slow polar and fast equatorial rotation are indicated by the darker
shadings of the outer sphere. The dashed lines indicate the latitudes at which the rotation of
the convection zone matches that of the interior.

is a physically possible alternative (e.g. Schatzman 1993; Zahn, Talon & Matias 1997;
Rogers & Glatzmaier 2006; Charbonnel & Talon 2007, and references). However,
it is highly improbable as the main mechanism because, by itself, it has no natural
tendency to produce solid rotation at all latitudes and depths (e.g. Plumb & McEwan
1978).

A suitably-shaped magnetic field can, by contrast, naturally produce the required
angular momentum transport, via the Alfvénic elasticity of the field lines. A suitable
shape is one in which the field lines link low latitudes to high latitudes within the
tachocline. The simplest such shape – simplest by virtue of its axisymmetry – is that
suggested schematically in figure 1(b), in which the linkage is via a time-averaged
field whose lines thread the tachocline, forming the superficial part of a global-scale
interior dipole stabilized by a deep toroidal field (e.g. Braithwaite & Spruit 2004).
Such an interior dipole has a diffusive lifetime somewhat greater than the Sun’s
lifetime of around 4.5 × 109 yr. The dipole imposes an Alfvénic ‘Ferraro constraint’
on the interior. It is this constraint that helps to enforce the interior’s solid rotation
(e.g. Ferraro 1937; Mestel & Weiss 1987; MacGregor & Charbonneau 1999).

The field lines shown in figure 1(b) emerge from the interior (light-grey sphere)
near the north pole and, after threading their way through the tachocline, re-enter
the interior near the south pole. They return northward through an interior ‘apple-
core’ region, not shown, surrounding the rotation axis. It is crucial that the field
lines emerging from the interior bend over toward the horizontal as they enter

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.93


448 T. S. Wood and M. E. McIntyre

the tachocline. They must be prevented from extending upward through the polar
cap, as occurs when magnetic diffusion dominates (e.g. Braithwaite & Spruit 2004;
Brun & Zahn 2006). The curved shapes of the field lines in figure 1(b) are evidently
such as to transport angular momentum from low to high latitudes by means of
persistent Alfvénic torques, exactly as required to prevent the tachocline’s MMCs
from burrowing into the interior and thickening the tachocline. This persistent angular
momentum transport from the curved field lines might of course be supplemented
by transport due to MHD-turbulent stresses within the tachocline (e.g. Spruit 2002;
Gilman & Cally 2007; Parfrey & Menou 2007).

The time averaging envisaged in figure 1(b) conceals a plethora of fast processes,
including the 22-year dynamo cycle, convective overshoot, and other turbulent
processes arising from instabilities in the tachocline. All these are fast relative to
the time scales on which the mean structure of the tachocline is maintained, ∼105 yr
or more. Apart from possibly contributing to the time-averaged angular momentum
transport, the fast processes are presumed to have two important consequences. The
first is to produce a turbulent magnetic diffusivity that stops the field lines being
wound up arbitrarily tightly by the shear in the tachocline, keeping the curved shapes
shown.

The second important consequence is that, away from the poles, the field lines are
held down, and held approximately horizontal, by turbulent ‘magnetic flux pumping’
from the convective overshoot layer. The effectiveness of such flux pumping can be
strongly argued from several lines of evidence, including three-dimensional direct
numerical simulations, with varying emphasis on the role of turbulent anisotropy
and of vertical gradients of density and turbulent intensity (e.g. Tobias et al. 2001;
Kitchatinov & Rüdiger 2008, and references; see also § 3 of Weiss et al. 2004 and
§ 8.6.1 of Mestel 2011 for historical reviews).

Near the poles it is less clear that magnetic flux pumping will be effective in
confining the field. At least its effectiveness for near-vertical magnetic fields has not,
to our knowledge, been convincingly demonstrated. However, as argued for instance
in GM98, there are good reasons in any case (§ 2 below) to expect the tachocline’s
MMC near the poles to take the form of weak but persistent downwelling. This
suggests that the field can, in any case, be confined in the polar caps through an
advection–diffusion balance, the kind of balance argued for heuristically in GM98. The
purpose of this paper is to show in detail, by solving an appropriate set of nonlinear
magnetohydrodynamic equations, that such polar confinement by downwelling is
indeed possible in a physically realistic model, applicable to the Sun both today and
early in its main-sequence lifetime.

A large family of axisymmetric nonlinear solutions showing polar confinement has
been obtained using two different techniques. The first technique is semi-analytical
in a sense to be explained, and the second is numerical on a two-dimensional grid.
The solutions are to be regarded as candidate solutions for possible flows in the real
Sun, all showing confinement in the sense that the total magnetic field strength |B|
dies off exponentially with altitude, thanks to downward advection acting against
upward diffusion. In this sense the poloidal and toroidal field components are both
well confined. We call these flows ‘confinement layers’. They are not to be confused
with the tachocline itself. Rather, they occupy relatively thin regions at the bottom of
the tachocline and are much more weakly sheared, with relatively long time scales.

The detailed dynamics involves not only magnetic advection, stretching, twisting and
diffusion but also a near-perfect balance between Lorentz, Coriolis, pressure-gradient
and buoyancy forces (§§ 3ff.). Thus the confinement-layer flows are magnetostrophic,
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Figure 2. The magnetic confinement layer near the north pole in a model for today’s Sun.
The field strength |B| falls off exponentially with altitude z. The toroidal components of B
and velocity u are not shown. The streamlines with arrows show the downwelling responsible
for the confinement. If the downwelling were switched off, the field near the pole would
diffuse and become nearly vertical, as illustrated for instance in Brun & Zahn (2006).
Compositional stratification is indicated by shading. The plot is from a numerical solution;
the corresponding semi-analytical solution looks almost identical. The horizontal and vertical
axes are colatitudinal distance r and altitude z in units of δ, the advection–diffusion scale
defined in (1.1). With typical parameter values, the scale δ is of the order of a fraction of a
megametre, ∼ 10−3 of the Sun’s radius.

like certain flows that have been studied in connection with models of the Earth’s
liquid core (e.g. Kleeorin et al. 1997, and references therein), though different in most
other respects. For instance the latter flows are viscous but unstratified: buoyancy
forces and thermal diffusion are absent. In the confinement-layer flows studied here,
by contrast, viscosity turns out to be wholly unimportant while buoyancy and thermal
diffusion are crucial, along with magnetic diffusion.

Figure 2 gives a preview of a typical confinement-layer flow, seen in vertical
cross-section. It shows the poloidal velocity and magnetic field components from
a numerical solution. The emerging magnetic field lines are bent over within the
confinement layer, as required to fit into the global picture sketched in figure 1(b).
The magnetic field B has a toroidal component, not shown in the figure, imparting
spiral shapes to the three-dimensional field lines and providing the prograde Alfvénic
torque demanded by the global picture, in balance with a retrograde Coriolis torque
on the equatorward flow.

The vertical and colatitudinal distances in figure 2 are shown in units of the
magnetic advection–diffusion scale

δ = η/U, (1.1)

say, where U is the magnitude of the downwelling and η is the magnetic diffusivity.
Throughout this paper, we assume that the confinement-layer flow is laminar, and
therefore use molecular or microscopic diffusivity values (§ 3). Issues of stability or
instability lie beyond the scope of this paper but, close to the pole at least, there
appears to be a strong case for stability, to be argued in a future paper, arising from
the smallness of the scale δ. Under reasonable assumptions, δ is only a fraction of a
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megametre, far smaller than the thickness of the overlying tachocline which latter, by
contrast, is probably unstable and indeed turbulent, as already mentioned (e.g. Spruit
2002; Gilman & Cally 2007; Parfrey & Menou 2007).

In the present-day Sun’s helium settling layer, the top of which corresponds
to the shaded region in figure 2, a downward gradient of helium concentration
reinforces the stable stratification due to the sub-adiabatic temperature gradient.
Because the diffusivity of helium through hydrogen, χ ≈ 0.9 × 101 cm2 s−1, is much
less than the magnetic diffusivity η ≈ 4.1 × 102 cm2 s−1, the helium settling layer is
nearly impermeable to the confinement-layer flow. Helium advection and diffusion
are comparable only in the extremely thin ‘helium sublayer’ marked in figure 2. In this
and other respects, all the solutions in the present paper supersede those described in
a first report on this work (Wood & McIntyre 2007, hereafter WM07). For instance,
in WM07 we took χ to be zero, implying a helium sublayer of vanishing thickness.
We also took ν, the kinematic viscosity, to be zero and allowed a finite slip velocity at
the top of the helium settling layer, assuming that this slip velocity would in reality
be resolved into a weak Ekman layer. However, the solutions presented here show
that, on the contrary, no Ekman layer forms. The slip discontinuity is replaced by a
smooth velocity profile across the helium sublayer and, as will be shown in § 6, the
flow stays essentially inviscid.

The plan of the paper is as follows. In § 2 we summarize the reasons for expecting
persistent downwelling over the poles. In § 3 we present the model equations
and in § 4 the semi-analytical solutions. Those solutions rely on assuming a self-
similar horizontal structure that is asymptotically valid in the limit of strong stable
stratification. The same limit was taken in WM07.

The validity of the strong-stratification limit is assessed in §§ 5 and 6, which take a
thorough look at the dynamical balances and scalings in the confinement layer and
helium sublayer respectively. Strong stable stratification means that the thermal and
compositional stratification surfaces are ‘flat’, meaning gravitationally horizontal, to
sufficient approximation in some region surrounding the poles, which for reasonable
parameter values can be quite large in horizontal extent, up to tens of degrees of
colatitude. Within the helium sublayer, the low magnetic Reynolds number and flat
geometry cause the momentum balance to take on the character of flow in a porous
medium, as fluid pushes horizontally past the field lines. As already indicated, true
viscous effects are negligible everywhere, even in the sublayer.

Boundary conditions for the numerical solutions are discussed in § 7. The numerical
solutions themselves are presented and discussed in § 8. They provide cross-checks
with the semi-analytical solutions plus additional insights. In particular, they directly
demonstrate the flatness of the stratification surfaces by solving the full equations, for
finite stratification. The solutions allow the stratification surfaces to tilt as they may,
but confirm that the departures from flatness are indeed small when the stratification
is realistically strong. In figure 2, for instance, the departures from flatness are barely
visible.

In § 9 we discuss a subtlety that arises when comparing the semi-analytical and
numerical solutions in the upper part of the flow. The dynamical balances aloft
become delicate as the Lorentz and Coriolis forces become vanishingly small. The
effects of truncation error and other small effects thus complicate the comparison.
However, this is something of an academic point because of our expectation that,
in reality, the confinement-layer solutions will need to be matched to a turbulent
tachocline aloft, a task that remains a challenge for the future.
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In § 10 we show that the presence of the helium settling layer is not crucial to our
confinement-layer model. The interior field Bi is sufficient by itself to turn the flow
equatorward, and the field remains confined in much the same way. That result has
relevance to the Sun’s early main-sequence evolution. It explains for instance how the
burrowing tendency could have been held in check from the start, allowing the helium
settling layer to form. In the concluding discussion, § 11, we consider the implications
for early solar evolution and lithium depletion.

2. Downwelling in the polar tachocline
Our polar-confinement scenario relies on the MMC pattern in the stably-stratified

polar tachocline being robustly and persistently downward above the confinement
layer, after averaging out any fast fluctuations due to waves and turbulence. As
recognized in GM98, helioseismology provides a compelling reason to expect polar
downwelling rather than upwelling, at least in today’s tachocline. A further reason
is that a downward MMC over the pole is a robust consequence of the gyroscopic
pumping already mentioned, which, in the absence of the interior field Bi , would
mediate the downward spreading or burrowing of the convection zone’s slow polar
rotation. The distinction between gyroscopically-pumped MMCs and MMCs driven
in other ways is reviewed in McIntyre (2007, §§ 8.1–8.2), confirming also the robustness
of the burrowing tendency itself, despite recent controversy. The upshot is that we
expect persistent polar downwelling to be present not only in today’s Sun, but also
throughout the Sun’s main-sequence lifetime.

The argument from helioseismology is as follows. As is well known, the pressure,
density and angular velocity fields, averaged with respect to time and longitude, satisfy
hydrostatic and cyclostrophic balance to excellent approximation. Departures from
such balance must take the form of fast oscillations such as p-modes and g-modes, or
turbulent fluctuations. From the curl of the momentum equation, taking its azimuthal
component, we may show in the standard way that balance implies the so-called
‘thermal-wind relation’. In cylindrical polar coordinates (z, r, φ) centred on the axis
of rotation, with the axial coordinate z directed vertically upward at the north pole,
the thermal-wind relation can be expressed as

rρ2 ∂ |Ω |2
∂z

= (∇p × ∇ρ) · eφ, (2.1)

where Ω is the absolute angular velocity of the Sun’s differential rotation, ρ is
the density, and p is the total pressure. The unit vector eφ is directed azimuthally,
while ∇p, being dominated by its hydrostatic part, is very close to being vertically
downward. On the assumption that the observed negative sign of ∂ |Ω |2/∂z persists
into the region near the pole invisible to helioseismology – Occam’s razor makes this
a reasonable assumption – we must have a minimum in ρ, and hence a maximum in
temperature T , on each isobaric surface at the pole.

The stably-stratified radiative envelope is a thermally relaxing system. Local
temperature anomalies, defined as departures of T from local radiative equilibrium,
will tend to relax back toward zero. To hold T above radiative equilibrium near
the pole, there has to be persistent adiabatic compression by downwelling, with
compensating upwelling and negative T anomalies in lower latitudes.

The strength U of the polar downwelling is difficult to estimate precisely. Among
other things it depends on the tachocline thickness, which is not well constrained
by helioseismology. The thickness scale enters both via (2.1) and, more sensitively,
via the rate of diffusive thermal relaxation within the tachocline. GM98 estimated
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U ∼ 10−5 cm s−1, using the rather small tachocline thickness estimate, 13Mm, derived
by Elliott & Gough (1999). The value of U thus estimated is inversely proportional
to the cube of the tachocline thickness, and so a similar estimate using a deeper
tachocline would yield a much smaller value of U .

However, GM98 assumed that the bulk of the tachocline is laminar. McIntyre
(2007) considered an alternative scenario in which magnetohydrodynamic turbulent
stresses within a deeper tachocline dominate the angular-momentum transport from
the overlying convection zone, except near the bottom of the tachocline. The turbulent
stresses were estimated by assuming a particular prescription for the turbulence,
following Spruit (2002). The stresses diverge in a thin layer near the bottom of
the tachocline, just above the confinement layer, where they gyroscopically pump a
downwelling of the order of U ∼ 4 × 10−5 cm s−1 or greater.

Fortunately, our confinement-layer solutions can accommodate a wide range of
uncertainty over the value of U . They will show that polar field confinement by down-
welling is robust over a range of U values at least as wide as 10−6 cm s−1 to 10−4 cm s−1.
From here on we use GM98’s value U ∼ 10−5 cm s−1 for illustrative purposes.

3. The model equations
Consider the magnetic confinement layer near the north pole. As already noted,

the magnetic advection–diffusion thickness scale δ = η/U is to be evaluated with
the microscopic magnetic diffusivity η, whose value in the neighbourhood of the
tachocline is carefully estimated by Gough (2007) to be η ≈ 4.1 × 102 cm2 s−1. This
gives the value δ ≈ 0.4Mm if U ≈ 10−5 cm s−1.

We work in a frame rotating with the same angular velocity as the interior,
Ωi = 2.7 × 10−6 s−1, and seek axisymmetric solutions of the Boussinesq MHD
equations within a domain consisting of a cylindrical volume V surrounding the
pole. Cylindrical coordinates (z, r, φ) centred on the rotation axis will be used, with
corresponding unit vectors (ez, er , eφ). The use of cylindrical coordinates will lead
to significant mathematical simplifications. We may regard them as slightly-distorted
spherical coordinates, with r representing approximate colatitudinal distance and z

locally vertical. The confinement-layer flows to be studied are thin-shell flows, with
z ∼ δ and r � δ, and so the coordinate distortions should be qualitatively unimportant
out to colatitudes as far as 20◦ or so.

The Boussinesq framework should itself be highly accurate because typical flow and
Alfvén velocities are tiny fractions of the local sound speed, and because δ values of
the order of a fraction of a megametre are far smaller than the pressure scale height,
≈ 60Mm. Conveniently, Boussinesq dynamics permits us to measure the strength
of the magnetic field B in terms of the corresponding Alfvén speed, with 1 gauss
corresponding to 0.6 cm s−1 at a (constant) tachocline density of 0.2 g cm−3 (Gough
2007).

We impose uniform downwelling of magnitude U aloft and a simple axial dipolar,
fully-diffused poloidal magnetic field structure beneath, to represent the interior
magnetic field Bi = (Biz, Bir , Biφ), on to which the field B in the confinement layer is
to be matched. This interior dipolar field has Bir/r constant and Biz a linear function
of z. It is possible to have Biφ �= 0 with Biφ/r constant; however, for reasons to be
explained at the end of the section, the main focus will be on the purely poloidal
case Biφ =0. This implies the vanishing of the Alfvénic torque beneath. For the
semi-analytical solutions, the condition Biφ = 0 is imposed directly. For the numerical
solutions a less direct procedure is necessary, to be explained in § 8.
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It is convenient to non-dimensionalize the equations using δ as the length scale
in the horizontal (r) as well as in the vertical (z) direction. Thus the thin-shell nature
of the flow is expressed by the dimensionless relation r � 1. We take U as the scale for
the velocity field u, and δ/U as the time scale, ∼ 105 yr if U ∼ 10−5 cm s−1. This is the
advection time scale for the flow through the confinement layer and, by construction,
is also the time scale on which B diffuses across the confinement layer. Since this time
scale far exceeds the typical turnover time of the turbulent eddies in the overlying
layers, we may neglect any fluctuations in the downwelling aloft. We therefore take
U to be steady as well as uniform, representing the time-averaged downwelling that
is gyroscopically pumped by turbulence in the overlying layers, whether those layers
consist of the convection zone or the tachocline or both. Fluctuations in U may well
be present, but should not greatly influence the structure of the confinement layer on
time scales ∼ 105 yr or more. Even if the downwelling comes in pulses, the cumulative
effect will arguably be much the same as if it were steady.

We non-dimensionalize the magnetic field B (expressed as Alfvén velocity) with
respect to a different velocity scale (2Ωiη)1/2 ≈ 0.05 cm s−1. The significance of this
last choice will emerge in § 5. It will simplify the scaling relations (5.5)–(5.10).
We suppose that the thermal and compositional stratifications are approximately
uniform within the helium settling layer, shaded in figure 2, since the confinement
layer’s MMCs do not penetrate into that region. Writing ϑ̂ and µ̂ for the fractional
(therefore dimensionless) perturbations of Boussinesq potential temperature and mean
molecular weight, we therefore impose that the corresponding buoyancy frequencies
are exactly constant at the bottom of the domain. That is, we impose, with z now the
dimensionless vertical coordinate,

∂ϑ̂

∂z

∣∣∣∣∣
bottom

=
N2

ϑδ

g
= const., (3.1)

∂µ̂

∂z

∣∣∣∣
bottom

= −
N2

µδ

g
= const., (3.2)

the dimensional buoyancy frequencies Nϑ and Nµ being constant by definition. For
today’s Sun we have Nϑ ≈ 0.8 × 10−3 s−1 (Gough 2007, and D. O. Gough 2010,
personal communication), and Nµ ≈ 0.5 × 10−3 s−1 (e.g. Christensen-Dalsgaard &
Thompson 2007),† corresponding to a total buoyancy frequency N =(N2

ϑ + N2
µ)1/2 ≈

0.94 × 10−3 s−1 representative of the stratification just inside the helium settling layer.
In place of ϑ̂ and µ̂ it proves convenient to define rescaled quantities ϑ and µ, also
dimensionless, by

N2
ϑδ

g
ϑ = ϑ̂, (3.3)

N2
µδ

g
µ = µ̂, (3.4)

so that the dimensionless stratifications inside the helium settling layer become simply
∂ϑ/∂z = 1 and ∂µ/∂z = −1.

† Estimates of Nµ vary (e.g. Christensen-Dalsgaard et al. 1993). The value Nµ ≈ 0.5 × 10−3 s−1 was
computed in McIntyre (2007, § 8.5) from information given in Christensen-Dalsgaard & Thompson
(2007). However, the results presented in this paper are not critically dependent on the value of Nµ;
see § 6.
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454 T. S. Wood and M. E. McIntyre

Finally, we non-dimensionalize the pressure anomaly p′ by 2Ωiηρ where
ρ ≈ 0.2 g cm−3, the constant Boussinesq density, and thus arrive at the following
dimensionless equations:

Ro
Du
Dt

+ ez × u = − ∇p′ + αϑ ϑez − αµµez + (∇ × B) × B + Ek∇2u, (3.5)

0 = ∇ · u, (3.6)

∂ B
∂t

= ∇ × (u × B) + ∇2 B, (3.7)

0 = ∇ · B, (3.8)

Dϑ

Dt
=

κ

η
∇2ϑ, (3.9)

Dµ

Dt
=

χ

η
∇2µ, (3.10)

where D/Dt = ∂/∂t + u · ∇, the material derivative, and where ez is the vertical
unit vector. The thermal and compositional diffusivities κ and χ take numerical
values κ ≈ 1.4 × 107 cm2 s−1 and χ ≈ 0.9 × 101 cm2 s−1 in the neighbourhood of the
tachocline (Gough 2007). In (3.10) we have neglected gravitational settling, an excellent
approximation in virtue of the short time scale ∼105 yr of the confinement-layer
dynamics relative to the Sun’s lifetime, �109 yr. We have defined four dimensionless
constants

αϑ =
N2

ϑδ2

2Ωiη
, αµ =

N2
µδ2

2Ωiη
, (3.11)

Ro =
U

2Ωiδ
=

η

2Ωiδ2
, and Ek =

ν

2Ωiδ2
=

ν

η
Ro (3.12)

where ν is the kinematic viscosity, the sum of molecular and radiative contributions,
≈2.7 × 101 cm2 s−1 in the neighbourhood of the tachocline (Gough 2007). The Rossby
and Ekman numbers, Ro and Ek, quantify how far magnetic flux and fluid momentum
diffuse across the confinement layer during one solar rotation. For U ∼ 10−5 cm s−1 the
Rossby number is tiny, Ro ∼ 0.5 × 10−7, and the Ekman number is smaller still because
ν/η ≈ 0.7 × 10−1. To excellent approximation, therefore, the flows under consideration
will be magnetostrophic. That is, in (3.5) the Coriolis force will be balanced against
the combined pressure-gradient, buoyancy, and Lorentz forces:

ez × u = −∇p′ + αϑ ϑez − αµµez + (∇ × B) × B, (3.13)

and this will be verified independently from the numerical solutions, from which
magnetostrophic balance emerges rather than being imposed.

We are concerned here only with axisymmetric steady states. Then the azimuthal
components of (3.13) and its curl are respectively

ur =
1

r
B · ∇(rBφ), (3.14)

∂uφ

∂z
= αϑ

∂ϑ

∂r
− αµ

∂µ

∂r
+

1

r

∂

∂z
(B2

φ) − r B · ∇
(

[∇ × B]φ
r

)
, (3.15)

where r is the dimensionless perpendicular distance from the rotation axis, and where
suffixes z, r, φ denote vector components.
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Confinement of the Sun’s interior magnetic field 455

Equation (3.14) represents the local torque balance about the rotation axis, after
multiplication by r . It describes how the retrograde Coriolis torque from the
equatorward flow is balanced by the prograde Lorentz torque from the confined
magnetic field.† Equation (3.15) represents thermal-wind balance generalized to
include compositional gradients and the Lorentz force-curl. In the upper part of
figure 2, where the magnetic field and compositional stratification are both negligible,
this balance becomes the standard thermal-wind balance

∂uφ

∂z
= αϑ

∂ϑ

∂r
, (3.16)

which is the Boussinesq, low-Rossby-number limit of (2.1) in dimensionless units.
The overall torque balance for the confinement layer can be expressed by integrating

r times (3.14) over the volume V of the cylindrical domain, then using the divergence
theorem and the fact that ∇ · u = 0. The result is∫

∂V

1
2
r2u · dS =

∫
∂V

rBφ B · dS, (3.17)

where dS is the vector area element directed outward. In the corresponding
dimensional equation, 1

2
r2 is replaced by Ωir

2, the absolute angular momentum
per unit mass after neglecting contributions O(Ro).

The right-hand side of (3.17) represents the total Alfvénic torque exerted on the
confinement layer. The left-hand side represents the net rate of absolute angular
momentum export by the flow coming in through the top and out through the
periphery, as in figure 2. For any such velocity field the left-hand side is positive.
Therefore the Alfvénic torque must also be positive, i.e. prograde.

The need for the field Bi is now apparent. Without it, the balance described by
(3.17) would be impossible. Instead, the fluid within V , and outside it as well, would
begin to be spun down by the flow. In the Sun, this would cause the slow rotation of
the high-latitude convection zone to spread down into the radiative envelope, in the
Haynes–Spiegel–Zahn burrowing process noted in § 1. We also note that the torque
balance described by (3.17) is very different from the torque balance described by
Rüdiger & Kitchatinov (1997) and Kitchatinov & Rüdiger (2006) in which there is
no Coriolis effect, the Lorentz torque being balanced instead by a viscous torque.
In fact for realistic solar parameter values it will be seen that, as already indicated,
viscous torques are entirely negligible – perhaps counterintuitively for shear layers as
thin as the confinement layer and the helium sublayer.

The balance expressed by (3.17) must apply also throughout the interior apple-core
region that surrounds the rotation axis, magnetically linking the confinement layer at
the north pole to that at the south. The mu-choke, both in the Sun’s helium-rich inner
core and in the helium settling layer, if present, is enough to suppress MMCs in the
apple-core region and make the left-hand side of (3.17) negligible, when the volume of
integration V is taken as the interior apple-core region. Any Alfvénic torque exerted
on the bottom of one confinement layer must therefore be balanced by an equal and
opposite Alfvénic torque exerted on the bottom of the other confinement layer. If we
assume that the two confinement layers are mirror-symmetric about the equatorial

† A referee reminds us that this torque balance is related to the well-known Taylor constraint
for magnetostrophic flow (Taylor 1963). If (3.14) is integrated vertically between two hypothetical
impermeable boundaries then, because ∇ · u = 0, the integral on the left and hence that on the right
must vanish. In the confinement-layer problem, however, this constraint is broken by the presence
of downwelling aloft.
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plane, then it follows that the torque, and therefore Biφ , must vanish on the bottom
of each confinement layer. The prograde Alfvénic torque on each confinement layer
must therefore come wholly from its sideways connection to lower latitudes via the
tachocline, which is consistent with the global picture suggested in figure 1(b).

4. The semi-analytical solutions
Equation (3.15) describes how the Coriolis and Lorentz force-curls act to tilt the

stratification surfaces within the confinement layer. Now if the stable stratification
is sufficiently strong, then the tilting will be only slight. The formal asymptotic limit
to describe this is αϑ, αµ → ∞ with u and B finite so as to preserve the steady-state
torque balance (3.17) and a steady-state balance in the induction equation (3.7). In
that limit, (3.15) implies that ∂ϑ/∂r → 0 and ∂µ/∂r → 0, with both sides of (3.15)
finite. The stratification surfaces become perfectly flat: ϑ → ϑ(z) and, in the helium
sublayer, µ → µ(z).

In the limit of perfect flatness thus enforced by (3.15), the remaining equations can
be reduced to a system of coupled ordinary differential equations. With ϑ =ϑ(z) and
µ =µ(z), (3.9) and (3.10) imply for steady flow that

uz =
κ

η

d

dz
ln

dϑ

dz
=

χ

η

d

dz
ln

dµ

dz
. (4.1)

Therefore uz is also a function of z alone, uz = uz(z). From (3.6) it then follows that
ur is r times a function of z alone, on the assumption of regularity at the pole r =0.
We say that the poloidal velocity field is ‘horizontally self-similar’. The induction
equation (3.7) then permits a steady poloidal magnetic field that is horizontally
self-similar in the same sense. The resulting equations are

rur = B · ∇(rBφ), (4.2)

0 =
1

r

∂(rur )

∂r
+

duz

dz
, (4.3)

ru · ∇Bφ

r
= r B · ∇uφ

r
+

(
∇2 − 1

r2

)
Bφ, (4.4)

uz

dBz

dz
= Bz

duz

dz
+

d2Bz

dz2
, (4.5)

0 =
1

r

∂(rBr )

∂r
+

dBz

dz
. (4.6)

The azimuthal component of (3.5) is replaced by (3.14) and multiplied by r to
give (4.2), expressing the balance between Coriolis and Lorentz torques as before.
Equations (4.3)–(4.6) correspond to (3.6)–(3.8); (3.9) and (3.10) have no further role,
beyond their connection to the downwelling expressed by (4.1). Equation (4.4) permits
more general toroidal magnetic and differential-rotation fields than were considered
in WM07.

For large but finite αϑ and αµ, departures from perfect flatness arise as small
corrections. To describe these corrections it is necessary to bring back (3.9), (3.10) and
(3.15); the order of magnitude of the corrections is analysed in §§ 5 and 6. The whole
picture will be independently checked by the numerical solutions, which automatically
contain the departures from flatness governed by (3.9), (3.10) and (3.15) since the full
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set of equations is used, with finite values of αϑ and αµ, for instance to produce the
almost-flat numerical solution plotted in figure 2.

Returning now to the limit of perfect flatness, we focus on (4.2)–(4.6). These
equations admit a family of solutions in which the function uz(z) is arbitrary except
for certain restrictions on its asymptotic behaviour as z → ± ∞. In particular, we
require uz(z) → −1 as z → +∞ and uz(z) → 0 as z → −∞. These statements will shortly
be made more precise. As discussed in § 7, the arbitrariness in uz(z) is needed to
permit matching to the confinement layer’s surroundings.

Solutions can be most conveniently constructed by taking advantage of the
arbitrariness to specify a suitable uz(z) at the start. With uz(z) specified, we can
then find Bz(z) numerically by solving the vertical component (4.5) of the induction
equation as a linear ordinary differential equation, assuming that the time-averaged
field Bz vanishes far above the confinement layer (z → +∞) and that it matches on to
the imposed interior dipolar magnetic field structure beneath (z → −∞). The interior
dipole has the same horizontally self-similar structure as the confinement layer, with
components satisfying Bir/r = constant, and Biz a linear function of z consistent with
(4.6). Even though the balance in (4.5) is not simple advective–diffusive, we find that
Bz decays upward like exp(−z).

The radial components of u and B can be found directly from their vertical
components, by using (4.3) and (4.6) and assuming regularity at the pole r = 0:

ur = − r

2

duz

dz
, (4.7)

Br = − r

2

dBz

dz
. (4.8)

So once we have Bz(z) we can calculate Br from (4.8), and then the toroidal field
Bφ from (4.2) by using (4.7) and taking advantage of the hyperbolic character of
the operator B · ∇. By calculating Bφ in this way, we ensure that the Lorentz torque
balances the Coriolis torque along each magnetic field line. Requiring that Bφ(r, z) → 0
for all r as z → −∞ (recall the end of § 3) leads to the following, unique solution of
(4.2):

Bφ = Bz

∫ z

−∞

ur

B2
z

dz. (4.9)

For any ur profile that decays exponentially as z → −∞, this solution for Bφ , and with
it the Maxwell stress and Alfvénic torque, will also decay exponentially as z → −∞. The
expression (4.9) then shows that Bφ has the same horizontally self-similar functional
form as ur and Br , namely r times a function of z alone.

To ensure that Bφ decays aloft, as z → +∞, it is sufficient to assume that

ur = O(exp(−γ z)) as z → +∞ (4.10)

for constant γ > 1, implying that uz(z) ∼ −1 + O(exp(−γ z)). The assumption that
γ > 1 ensures that we get solutions with qualitatively reasonable behaviour aloft.
Otherwise we leave the value of γ arbitrary. Once again this is an arbitrariness whose
resolution will depend on matching to the confinement layer’s surroundings, in this
case to conditions aloft. As already indicated, the conditions aloft probably involve
turbulent flow, for which we do not yet have quantitative models. So here we restrict
ourselves to surveying the possible range of behaviours for γ > 1.

The three cases γ > 2, γ = 2, and 2 >γ > 1 need separate consideration. When
γ > 2, the only case considered in WM07, the integral in (4.9) converges to a constant
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plus O(exp(−(γ −2)z)) as z → + ∞. That in turn means that Bφ decays upward like
exp(−z). When γ = 2, the integral in (4.9) asymptotes to a linear function of z, and Bφ

decays upward like z exp(−z). When 2 >γ > 1, the integral in (4.9) increases upward
like exp((2−γ )z), but Bφ still decays upward, like exp(−(γ −1)z).

In all these cases it is clear from (4.9) that Bφ does not have exactly the same z-
dependence aloft as does Bz. This is contrary to what might have been expected from a
naive appeal to advective–diffusive balance, with advection by constant downwelling
uz = −1. Having the same z-dependences would make the right-hand side of (4.2)
vanish. Hence it is the more or less subtle departures from advective–diffusive balance,
including the contribution to Bφ from the twisting of field lines by the differential
rotation uφ , that allow the right-hand side of (4.2) not to vanish and thereby to
provide a Lorentz torque to support the flow ur at all altitudes.

The uφ field that does the twisting can be calculated next, from (4.4) and the
condition that the interior rotates solidly, uφ → 0 as z → −∞. Again this calculation
depends on the hyperbolic character of B · ∇. When Bφ is given by (4.9) we have,
uniquely,

uφ =

∫ z

−∞

(
uz

∂Bφ

∂z
− ∂2Bφ

∂z2

)
dz

Bz

(4.11)

showing that uφ is also r times a function of z alone. That is, the differential rotation is
what astrophysicists call ‘shellular solid rotation’. In the three cases γ > 2, γ = 2, and
2 >γ > 1, the behaviours of uφ as z → +∞ are respectively uφ ∼ constant, uφ ∼ ±z,
and uφ ∼ ± exp((2−γ )z).

Cases with negative shear aloft, ∂uφ/∂z < 0 – especially the last case, with exponen-
tially-increasing negative shear aloft – are suggestive of a possible way to match
upward to the observed, much stronger negative shear in the bulk of the tachocline.
By using (4.9) to eliminate Bφ from ∂/∂z of (4.11), then (4.5) to eliminate d2Bz/dz2

and (4.7) to eliminate duz/dz, we find

∂uφ

∂z
=

uzur

B2
z

− 1

B2
z

∂ur

∂z
− 2ur

r

∫ z

−∞

ur

B2
z

dz ≈ (γ −1)
ur

B2
z

as z → ∞. (4.12)

The asymptotic behaviour on the right comes from the first two terms in the exact
expression. The third term involving the integral is smaller by a factor O(exp(−γ z)).
Asymptotically, therefore, the sign of the shear ∂uφ/∂z aloft is the same as the sign of
ur aloft. We can therefore find solutions that match on to the strong negative tacho-
cline shear provided that there is an exponentially weak poleward mass flux above
the confinement layer. However, a more precise description of such matching must
await future work, for reasons already mentioned. We do not yet have quantitative
models of the precise conditions aloft, which are likely to be affected by small-scale
MHD turbulence (e.g. Spruit 2002; Gilman & Cally 2007; Parfrey & Menou 2007,
and references). Aspects of this are touched on again in § 9, the main point for present
purposes being that the structure aloft is sensitive to conditions aloft whereas, as is
clear from (4.9) and (4.11), the rest of the confinement layer is insensitive to conditions
aloft, as we have verified by varying γ .

Purely for illustration we show one of the solutions in figure 3, somewhat arbitrarily
choosing γ =2.24. In this case the interior field Bi is taken such that Br/r = 1. The
downwelling profile uz(z) was adapted from the numerical solution shown in figure 2,
in the manner described in § 9.

Some three-dimensional streamlines and magnetic field lines corresponding to the
solution in figure 3 are plotted in figure 4, visualizing how the prograde Lorentz torque

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.93


Confinement of the Sun’s interior magnetic field 459

−1 0 1 2
−1

0

1

2

3

4

5

6

uz

ur uφ

z

Velocity field

0 1 2 3
−1

0

1

2

3

4

5

6
Magnetic field

BzBφ Br

r r

r r

Figure 3. Vertical profiles from a semi-analytical solution of the confinement-layer equations
in the strong-stratification limit αϑ, αµ → ∞. The downwelling profile uz(z), solid curve on
the left, was chosen to match the downwelling profile from the numerical solution shown in
figure 2. For numerical reasons, small adjustments were made to this profile in the ‘slippery’
upper region z > 1.5δ; see §§ 7–9. In (4.10) the decay constant γ = 2.24, and the uφ profile
therefore approaches a constant like exp(−0.24z). The parameter Λ, (5.4) below, takes the
value Λ ≈ 3.5.
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Figure 4. Streamlines (a) and magnetic field lines (b) from the semi-analytical solution whose
vertical profiles are displayed in figure 3. The peripheral shading locates the helium settling
layer and helium sublayer.

on the right of (4.2), associated with field-line curvature, balances the retrograde
Coriolis torque on the left of (4.2) and satisfies the overall torque balance (3.17).

5. Confinement-layer scalings
We are interested in the departures from perfect flatness associated with large but

finite stratification. We may regard those departures as the O(ε) correction terms
in an asymptotic expansion whose leading, O(1) term is a semi-analytical solution,
where the small parameter ε is inversely proportional to the stratification and where
the limit ε → 0 is taken within a cylindrical domain of fixed dimensionless size r = rd .
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It will be found that the departures from flatness behave like O(εr2) near the
pole. So instead of saying that the departures are small within the fixed domain
r � rd we may say, perhaps more usefully, that the semi-analytical solutions are valid
as leading-order approximations as long as we are well within some dimensionless
colatitudinal distance of the pole, rϑ say, that is large in comparison with unity. For
a fair range of parameter values the dimensional counterpart of rϑ turns out to be
quite large numerically, of the order of hundreds of megametres, or tens of degrees
of colatitude. Of course for the solutions to apply we must also be within a region
of approximately uniform downwelling. In this section we use scaling arguments
to arrive at an appropriate definition of rϑ for the bulk of the confinement layer,
where the stratification is purely thermal. The next section presents the corresponding
analysis for the helium sublayer.

Consider, then, the scaling regime in the bulk of the confinement layer. Because
the photon mean free path makes the thermal diffusivity κ relatively large, with
κ/η ∼ 3 × 104, the confinement-layer flow only weakly perturbs the background
thermal stratification. Consistently with (3.1) and (3.3) we define a dimensionless
thermal anomaly ϑ ′ such that ϑ = z +ϑ ′ +constant, and such that ϑ ′→ 0 beneath the
confinement layer at the pole. Then, at the pole, and by implication sufficiently close
to it, the leading-order balance in the dimensionless steady-state thermal equation
(3.9) involves only the vertical component uz of u,

uz =
κ

η
∇2ϑ ′. (5.1)

On the right-hand side we have ∇2ϑ ′ ∼ ∂2ϑ ′/∂z2 ∼ ϑ ′ since in the confinement layer
∂/∂z ∼ 1, and since ϑ ′ → 0 beneath. Hence with |uz| ∼ 1 we have

ϑ ′ ∼ η/κ ≈ 3 × 10−5 � 1. (5.2)

In the bulk of the confinement layer we may estimate the departure from flatness,
equivalently the r-dependence of ϑ ′, from (3.15) with αµ neglected and αϑ considered
large. Since the leading-order solution is a semi-analytical solution, the remaining
terms in (3.15) all take the form r times a function of z alone, to leading order, from
which we may deduce that ∂ϑ ′/∂r is r times a function of z alone and hence that

ϑ ′ = aϑ + bϑ r2, (5.3)

to leading order, where aϑ and bϑ are functions of z alone and where aϑ has the
small magnitude given by (5.2), aϑ ∼ η/κ . With ∂/∂z ∼ 1 the condition for (5.3) to
be compatible with uniform downwelling, uz = uz(z) in (5.1), can now be seen to be
r � |aϑ/bϑ |1/2. We may therefore take rϑ ∼ |aϑ/bϑ |1/2 or, alternatively, ε ∼ |bϑ r2

d /aϑ |.
The magnitude of bϑ is governed by the remaining terms in (3.15).

Perhaps surprisingly, the magnitudes of bϑ and rϑ can be simply related to a single
magnitude, that of the vertical component Bz of the magnetic field. This is because
the velocity and magnetic fields of the leading-order, semi-analytical solutions have
components that are all simply related to Bz, thanks to the horizontally self-similar
structure. Let B be the dimensional magnitude of Bz at the bottom of the confinement
layer, in units of Alfvén speed. Then the corresponding dimensionless magnitude of
Bz is Λ1/2, where

Λ =
B2

2Ωiη
, (5.4)
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an Elsasser number based on B. We assume that Λ1/2 characterizes the order of
magnitude of Bz in the bulk of the confinement layer, and that ∂/∂z ∼ 1 as before.†
Then the leading-order, semi-analytical solutions satisfy the dimensionless scaling
relations

uz ∼ 1, (5.5)

ur ∼ r, (5.6)

uφ ∼ rΛ−1, (5.7)

Bz ∼ Λ1/2, (5.8)

Br ∼ rΛ1/2, (5.9)

Bφ ∼ rΛ−1/2, (5.10)

and these relations are expected to apply at least for r � rϑ , and probably also for
r � rϑ as a guide to orders of magnitude. They can be derived alternatively from
scaling arguments applied directly to (3.14) along with the steady-state versions of
(3.6)–(3.8). We note that, since the horizontal components of B increase with r , the
total magnetic field strength |B| can greatly exceed B for r � 1.

For increasing values of Λ the field lines become stiffer, so that both they and
the velocity streamlines spiral less tightly, as noted in WM07. The magnitude of
Λ is not well constrained by observations, depending as it does on the magnitude
of the interior field at the top of the radiative envelope. Fortunately, however, it
will be found that the confinement-layer regime described here can accommodate a
considerable range of Λ values.

Now in (3.15), with the term in αµ neglected, the term in αϑ cannot exceed the largest
of the other terms in order of magnitude. From (5.3) we have ∂ϑ ′/∂r ∼ bϑr so that the
term in αϑ has magnitude ∼ αϑbϑr , at least for r � rϑ . The remaining terms in (3.15)
have magnitudes either ∼ rΛ−1 (the terms in uφ and B2

φ) or ∼rΛ (the last term). Those
magnitudes follow from the horizontally self-similar structure of the semi-analytical
solutions, along with ∂/∂z ∼ 1 and the magnitudes (5.5)–(5.10). We may therefore
define the typical magnitude of bϑ to be α−1

ϑ
max(Λ, Λ−1). Correspondingly, with

aϑ ∼ η/κ we may define r2
ϑ , the typical magnitude of aϑ/bϑ , to be

r2
ϑ =

αϑη

κ
min(Λ, Λ−1) =

N2
ϑδ2

2Ωiκ
min(Λ, Λ−1), (5.11)

since αϑ = N2
ϑδ2/2Ωiη. For realistic Nϑ ≈ 0.8 × 10−3 s−1, for downwelling

U ∼ 10−5 cm s−1, and for Λ ∼ 1, we have δ ∼ 0.4Mm and rϑ ∼ 4 × 103, corresponding
to quite a large dimensional colatitudinal distance rϑδ ∼1600Mm.

Note incidentally that, even when the tilting is significant, such as to become
incompatible with (5.1), the slopes of the thermal stratification surfaces are still
geometrically small – far smaller than the geometrical aspect ratio r−1

ϑ . Indeed, even
on a global scale we expect the stratification surfaces to depart from the horizontal by
only ‘a very tiny fraction of a megametre’ from pole to equator (McIntyre 2007, end
of § 8.5), based on observational constraints on shear in the tachocline. Here of course
‘horizontal’ means tangential to the heliopotentials, i.e. to the sum of the centrifugal

† These scaling assumptions are consistent with the example solution shown in figure 3, for which
we imposed Br/r = 1 below the confinement layer, implying that Bz is of order unity within and
just below the confinement layer. Taking z = 0 as the bottom of the confinement layer in figure 3,
we read off Bz = Λ1/2 ≈ 1.9. Consistently, the numerical output gives Λ ≈ 3.5.
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and gravitational potentials. The validity of the foregoing scale analysis, and that of
the next section, will be independently checked by the numerical solutions in § 8.

Of course our cylindrical model with its assumption of uniform downwelling will
itself cease to apply, almost certainly, well inside such large distances from the
pole. One reason for this limitation is that the cylindrical coordinates, regarded as
distorted spherical coordinates, become increasingly inaccurate at large distances
from the pole. However, that is not the most serious limitation. Using true spherical
coordinates would not qualitatively alter the dynamics of the confinement layer. It is
the assumption of uniform downwelling that places the more serious limitation on
the range of applicability of our model. At some colatitude the downwelling from the
real tachocline must give way to upwelling, as required by mass conservation. The
confinement-layer regime cannot then apply even qualitatively. Instead, the interior
magnetic field lines are free to advect and diffuse upward until they encounter the
magnetic flux pumping associated with the convective overshoot layer, as assumed in
figure 1(b). This has wider implications to be discussed in § 11, including implications
for lithium burning.

The range of interior field strengths accommodated by the confinement-layer regime
is determined by (5.11). For uniform downwelling U , the condition for the regime to
apply quantitatively within, say, 10◦ colatitude or 90Mm of the poles is rϑδ � 90Mm.
We assume qualitative applicability for rϑδ � 90Mm. We can use (5.11) together with
realistic Nϑ and diffusivity values to write this last condition as

max(Λ, Λ−1) � 3 × 102

(
U

10−5 cm s−1

)−4

. (5.12)

So for U ∼ 10−5 cm s−1 we expect the regime to apply qualitatively over a range
of more than four decimal orders of magnitude in Λ. The corresponding range of
field strengths, being proportional to Λ1/2, covers more than two decimal orders of
magnitude. To relate this to global-scale interior field strengths, we estimate |Br |
from (5.9) at a nominal 30◦ colatitude, with δ ≈ 0.4Mm so that r ≈ 650. Converting
to dimensional units, we see that the range of field strengths is roughly 3 gauss
� |Br | � 103 gauss, near the top of the radiative envelope at 30◦ colatitude. It
is noteworthy that these values lie substantially above the threshold, more like
10−2 gauss, for the field strength required to enforce the Ferraro constraint in the
interior over the Sun’s lifetime (e.g. Mestel & Weiss 1987; Charbonneau & MacGregor
1993). For smaller values of U , a still wider range of interior field strengths becomes
possible.

6. The helium sublayer
In this section we show that the flow through the helium sublayer has the character

of flow through a porous medium. We also show that, over a large range of N2
µ and

αµ values, the tilting of the compositional stratification surfaces in the sublayer is
even less significant than that of the thermal stratification surfaces in the confinement
layer.

The helium sublayer marks the transition between the compositionally well-
ventilated confinement layer and the nearly impermeable, compositionally stratified
helium settling layer. Therefore, we expect the dimensional sublayer thickness scale,
δχ say, to be determined by a balance between advection and diffusion of helium. In
(3.10) the advection operator u · ∇ scales like the strain rate ∼U/δ just above and
within the sublayer, because uz → 0 just beneath. The strain rate U/δ must therefore
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Confinement of the Sun’s interior magnetic field 463

be comparable to the helium diffusion rate χ/δ2
χ . Since U/δ = η/δ2,

δχ ∼ (χ/η)1/2δ ≈ 1

7
δ (6.1)

for realistic solar parameters.
Although the sublayer thickness scale δχ is small in magnitude relative to δ, it

nevertheless greatly exceeds the Ekman thickness scale δEk = (ν/2Ωi)
1/2. Specifically,

δ2
χ

δ2
Ek

∼ χδ2

η

2Ωi

ν
∼ χδ

U

2Ωi

ν
∼ χ

ν
Ro−1 � 1, (6.2)

because χ/ν ≈ 0.3 while Ro−1 � 1, typically by many decimal orders of magnitude;
recall (3.12). The relations (6.1) and (6.2) suggest that the dynamics of the helium
sublayer should be well described by the asymptotic regime

δEk � δχ � δ. (6.3)

We assume (6.3) throughout this section.
Under (6.3) the magnetic diffusion rate η/δ2

χ in the sublayer greatly exceeds the

helium diffusion rate χ/δ2
χ , by a factor η/χ ∼ (δ/δχ )2. The flow within the sublayer

can therefore induce only a small perturbation B − Bi = B′, say, to the interior field
Bi . In figures 2 and 4, the field lines are hardly deflected as they cross the sublayer.
We may therefore analyse the sublayer as a perturbation to the state with u = 0 and
B = Bi , where Bi has the simple dipolar structure already assumed, with components
satisfying Biφ = 0, Bir/r = constant, and Biz a linear function of z consistent with
∇· Bi =0.

Any such Bi has ∇× Bi = 0 and Lorentz force (∇× Bi)× Bi =0. Using this we
show in Appendix A that, in the asymptotic regime given by (6.3), the steady-state
induction equation becomes simply

0 = Biz

∂

∂z
u +

∂2

∂z2
B′, (6.4)

in the dimensionless variables of § 3. The momentum balance (3.13) becomes

ez × u = −∇p̃ − αµµez + Biz

∂

∂z
B′. (6.5)

Here the thermal-buoyancy term αϑ ϑ ez has been absorbed into a modified pressure
gradient ∇p̃, which also incorporates a gradient contribution to the Lorentz force;
see Appendix A, below (A 3). Because δχ � δ and because, as verified shortly, the
sublayer will prove to be sufficiently flat, we may take Biz to be constant throughout
the sublayer. It is convenient to equate the dimensional value of this constant to B in
the definition (5.4) of the Elsasser number Λ. Then the dimensionless magnitude of
Biz in the sublayer is precisely Λ1/2. We can now integrate (6.4) to give

0 = Λ
1
2 u +

∂ B′

∂z
(6.6)

since both B′ and u vanish beneath the sublayer. Using (6.6) we write (6.5) as

ez × u = −∇p̃ − αµµez − Λu. (6.7)

The term −Λu has the form of a Darcy or Rayleigh drag, showing that the
sublayer behaves like a porous medium on the time scale set by the strain flow.
The impermeability of the helium settling layer together with the sublayer’s flatness
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and thinness act to keep the flow nearly horizontal, compelling it to push past, and
slightly deflect, the magnetic field lines spanning the sublayer at angles steep by
comparison with sublayer aspect ratios. So the Lorentz force from the deflected field
lines resists the sublayer flow in the manner of a Darcy friction; similar behaviour
occurs in Hartmann layers (e.g. Debnath 1973), although in such cases viscosity also
contributes to the balance of forces. Within our sublayer, by contrast, viscosity is
wholly negligible provided that

Λ � δ2
Ek/δ

2
χ , (6.8)

that is, provided that the Darcy friction from the field lines dominates the fluid
friction from viscosity. This condition is easily satisfied, in virtue of (6.2).

In this Darcy regime, (3.14) and (3.15) simplify to

ur = −Λuφ (6.9)

and
∂uφ

∂z
= −αµ

∂µ

∂r
+ Λ

∂ur

∂z
. (6.10)

Together with (3.6) and (3.10), (6.9) and (6.10) describe the sublayer dynamics to an
order of accuracy that includes the first corrections to perfect flatness.

We now use scaling arguments, paralleling those in § 5, to verify that the corrections
can indeed be taken as small and the sublayer treated as flat. As before, we expect
that each term in (6.10) is proportional to r and that

µ = aµ + bµr2 (6.11)

to leading order close to the pole, where r is again dimensionless and where aµ and
bµ are dimensionless functions of z alone. The matching to the helium settling layer
beneath implies that daµ/dz ∼ 1 and that aµ ∼ δχ/δ in the sublayer, if we take the
constant value of µ above the sublayer to be zero. The condition for validity of flat,
horizontally self-similar sublayer solutions is r2 � r2

µ , say, where rµ denotes a typical

magnitude of |aµ/bµ|1/2.
Within the sublayer, the pattern of dimensionless scalings (5.5)–(5.10) is replaced

by

uz ∼ δχ/δ, (6.12)

ur ∼ r, (6.13)

uφ ∼ rΛ−1, (6.14)

B ′
z ∼ Λ1/2 (δχ/δ)2, (6.15)

B ′
r ∼ rΛ1/2 δχ/δ, (6.16)

B ′
φ ∼ rΛ−1/2δχ/δ, (6.17)

for all r � rµ, rϑ . These dimensionless order-of-magnitude relations follow from the
matching to the confinement layer, again noting its horizontally self-similar structure,
and from ∇ · B′ = ∇ · u = 0 together with (6.6) and (6.9), with ∂/∂z ∼ δ/δχ � 1. Again,
further detail is given in Appendix A.

The horizontal velocity components in (6.13)–(6.14) inherit their magnitudes directly
from those in the overlying confinement layer. For this reason, the vertical shear in
the sublayer is larger than that in the confinement layer by a factor δ/δχ . This shows
how, in the limit δχ → 0, preserving (6.3), the sublayer regime goes over into the slip
regime analysed in WM07. The slip regime has infinite shear at the top of the helium
settling layer, with finite discontinuities in both horizontal velocity components.
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We can now estimate rµ and hence the flatness of the sublayer, from (6.10), on
the same basis as before, namely consistency with (3.10) and uniform downwelling.
From (6.11) we have ∂µ/∂r ∼ bµr for all r � rµ , so that in (6.10) the αµ term
has magnitude ∼ αµbµr . Using (6.12)–(6.17) we find that the other terms in (6.10)
have magnitudes ∼ r (δ/δχ )Λ−1 (the term in uφ) and ∼ r (δ/δχ )Λ (the term in ur ).
The typical magnitude of αµbµ can therefore be taken to be (δ/δχ ) max(Λ, Λ−1).
Correspondingly, since aµ ∼ δχ/δ , we may define r2

µ , the typical magnitude of aµ/bµ,

to be αµ(δχ/δ)2 min(Λ, Λ−1) = αµ(χ/η) min(Λ, Λ−1). Comparing this with (5.11) and
recalling that αµ =N2

µδ2/2Ωiη we see that

r2
µ =

αµ

αϑ

κχ

η2
r2
ϑ =

N2
µ

N2
ϑ

κχ

η2
r2
ϑ . (6.18)

Since κχ/η2 ≈ 0.75 × 103, we see that r2
µ � r2

ϑ for a large range of N2
µ values, from

today’s value ∼ N2
ϑ down to almost three decimal orders of magnitude less. This

means that, in most cases, our flatness assumptions hold even more strongly for the
sublayer than for the confinement layer, in the sense of compatibility with uniform
downwelling uz = uz(z) in (3.10).

It is worth going beyond scale analysis to say more about the vertical structure
of the sublayer, especially in its lower extremity or ‘subtail’, wherein we expect |u|
to decay exponentially with depth. Within this subtail, the helium settling layer
suffers only small perturbations to its otherwise uniform compositional stratification
∂µ/∂z = −1. We denote the perturbation to µ by µ′. In the steady state, (3.10) may
then be approximated as

−uz =
χ

η

∂2µ′

∂z2
, (6.19)

which can be combined with (3.6), (6.9), and (6.10) with µ replaced by µ′, to yield a
single equation for µ′,

αµ(η/χ)∇2
Hµ′ = (Λ + Λ−1)

∂4µ′

∂z4
, (6.20)

where ∇2
H = r−1∂(r ∂/∂r)/∂r = ∇2 − ∂2/∂z2. It is now clear that the leading-order scale

analysis given above applies only to the main part of the sublayer and not to the
subtail. Equation (6.20) tells us that the vertical scale, δ� say, for the subtail must
depend on the horizontal scale in a manner reminiscent of the heuristic boundary-layer
analysis given in GM98.

For instance if we assume that the actual horizontal scale is the scale rϑ set by
the confinement layer, so that αµ∇2

H ∼ αµr−2
ϑ , then a straightforward scale analysis of

(6.20) shows that, in terms of the definitions (5.11) and (6.18),

δ� ∼
(

rϑ

rµ

)1
2

δχ , (6.21)

which is generally smaller than δχ . Even at this scale, however, viscosity remains
negligible provided that the Darcy friction from the field lines dominates the fluid
friction from microscopic viscosity. That is, viscosity remains negligible provided that

Λ � Ek ∇2 ∼ Ek (δ/δ�)
2, (6.22)

equivalently δ2
� � δ2

Ek/Λ. (6.23)
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For realistic solar parameters, (6.22) is easily satisfied because Ek ∼ 0.4 × 10−8. A
more detailed analysis (Wood 2010) verifies all these properties of the subtail. The
exponentially weak flow within the subtail is invisible in figure 2, and barely visible
in figure 3.

The actual horizontal scale may or may not be set by the value of rϑ since, along
with boundary conditions for (6.20), it will depend on the size of the downwelling
region and indeed on how the entire global picture sketched in figure 1(b) fits together,
a point to which we return in § 11.

7. Boundary conditions for the numerical solutions
To go beyond the self-similar, perfectly flat solutions described in § 4 we must

compute solutions numerically. To this end a numerical code has been written to
solve the axisymmetric version of (3.5)–(3.10) in a cylindrical domain of radius r = rd ,
say. The scheme on which the code is based is summarized in Appendix B. For reasons
explained there and in Appendix C, it proves necessary to use the full time-dependent
equations (3.5)–(3.10), rather than assuming magnetostrophic balance.

To solve the equations numerically in the cylindrical domain, we need to specify
boundary conditions. This inevitably involves artificial choices. The only way to avoid
making such choices would be to fit the polar caps into the complete, and highly
complicated, global picture. That remains a challenge for the future, requiring the
quantification of turbulent processes in the tachocline and convection zone. Such
quantification would have to include realistic descriptions of turbulent magnetic flux
pumping and of turbulent magnetic diffusion in the bulk of the tachocline. Also crucial
is the turbulent gyroscopic pumping of polar downwelling and of the complementary
upwelling in lower latitudes, together with the effects on the global-scale pattern of
heat flow and the resulting feedback on Nϑ distributions.

As already noted, in the present work we are imposing a dipolar magnetic field
structure underneath the confinement layer, and a uniform downwelling of magnitude
U from a field-free region aloft. Field-free refers to time-averaged fields. In the
example shown in figure 2, the numerical domain was defined by 0 � r � 5, i.e. rd =5,
and −1 � z � 6, one dimensionless unit taller than shown in the figure. We imposed
uz = −1 at z = 6 and Br/r = 1 at z = −1.

As shown in § 4, the bulk of the confinement layer is relatively insensitive to
conditions within the field-free region aloft, and in particular to the vertical shear
∂uφ/∂z aloft. There, the vertical shear is tied to the temperature distribution via
(3.16), and hence to the global-scale heat flow. To avoid having to solve the complete
global-scale problem we simply imposed ϑ = const. and ∂uφ/∂z = 0 at z = 6, which is
consistent with the imposed uniform downwelling and also ensures that no viscous
torque is exerted on the top of the domain.

At the periphery of the domain, the artificial cylindrical surface r = rd = 5, the
numerical algorithm requires us to impose three vertical profiles, including the vertical
profile of Maxwell stress. The stress profile represents the field lines’ connection to
lower latitudes and the Alfvénic torque exerted therefrom. We also need to impose
thermal and compositional stratification profiles ϑ(z) and µ(z) at the periphery, in a
manner consistent with scalings in the confinement layer and helium sublayer (§§ 5
and 6). In this way we artificially fix the altitude of the helium sublayer. We thereby
influence the velocity field as well, since it is tightly linked to the two stratifications by
(3.9) and (3.10). The remaining peripheral boundary conditions are used to promote
smoothness of the fields, and hence to minimize spurious boundary effects in the
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steady state. In particular, we impose

∂

∂r

(ur

r

)
= 0, (7.1)

∂

∂r

(uφ

r

)
= 0, (7.2)

and
∂Bz

∂r
= 0 (7.3)

at r = rd =5.
At the bottom of the domain, the horizontal surface z = −1, we impose the

conditions (3.1) and (3.2), equivalently ∂ϑ/∂z =1 and ∂µ/∂z = −1. We also impose
uφ = 0, i.e. that the interior is in solid rotation, with dimensional angular velocity Ωi ,
as required by the global picture. As discussed at the end of § 3 the global picture
also requires that Bφ = 0, i.e. that there is no Alfvénic torque, on the bottom of the
domain. This last condition cannot be directly imposed, however. Instead, it must be
approached via iterative adjustments to the Maxwell stress profile at the periphery
r = rd . The iteration procedure and its rationale are described in § 8.

We can now see more clearly why uz(z) could be specified arbitrarily when
constructing the semi-analytical solutions in § 4. As already mentioned, for the
numerical solution we need to specify three vertical profiles at the periphery r = rd ,
which are taken to be ϑ(z), µ(z) and Bφ(z). For the semi-analytical solutions of § 4,
ϑ(z) and µ(z) could not be specified independently. Rather, they were both determined
by (4.1), up to boundary conditions, as soon as uz(z) was specified. We could still
have specified Bφ(z), but gave up that freedom in order to ensure the vanishing
of the Alfvénic torque as z → −∞, thus determining Bφ(z) via the expression (4.9).
Also allowed by the semi-analytical framework was the freedom to specify uφ(z) at
r = rd , which we similarly gave up in order to ensure solid rotation as z → −∞, thus
determining uφ(z) via (4.11).

More generally, within the semi-analytical framework, the peripheral and bottom
profiles of Bφ contain equivalent information, and similarly for uφ . This is because of
the Alfvénic coupling along the field lines linking the periphery to the bottom of the
domain, expressed by the B · ∇ operator in (4.2) and (4.4). There is no such precise
equivalence within the numerical framework. The time-dependence, in the equations
solved numerically, replaces static Alfvénic coupling by Alfvénic wave propagation,
requiring one peripheral and one bottom profile to be specified, which we take to be
Bφ(z) and uφ(r) respectively. This is analogous to the need for boundary conditions
at both ends of a stretched string in motion.

8. The numerical solutions
Computing limitations preclude a perfect match to the real Sun’s parameter values.

They also require a slight modification to (3.5)–(3.10), explained in Appendix B,
in which artificial horizontal diffusivities νH , χH are introduced. These maintain
numerical stability while allowing small enough ν and χ in the important vertical
diffusion terms.

From the scale analyses in §§ 5 and 6 we may identify the conditions most essential
to reaching a qualitatively similar parameter regime – that is, qualitatively similar to
a regime with a perfect parameter match to the real Sun. Those essential conditions
are:
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Dimensionless Nominal Value for Condition
parameter solar value numerical solution

Ro 5 × 10−8 10−2 �1
κ/η 3 × 104 102 �1
αϑ (η/κ) 1.4 × 107 50 > max(Λ,Λ−1)†

(rµ/rϑ )2 3 × 102 2 >1
χ/η 2 × 10−2 2 × 10−2 �1
ν/χ 3 1 �1/Ro

†This condition corresponds to r2
ϑ > 1, with r2

ϑ = αϑ (η/κ) min(Λ, Λ−1) as defined in (5.11).

Table 1. Parameter values and conditions; see text.

(i) The Rossby number Ro should be small in comparison with unity, so that the
steady state is close to magnetostrophic.

(ii) The thermal diffusivity κ should be large in comparison with the magnetic
diffusivity η, so that the confinement-layer flow only weakly perturbs the background
thermal stratification.

(iii) The confinement layer and helium sublayer should both be reasonably flat, to
the extent that rϑ and rµ are both distinctly greater than 1. With (6.18) in mind, we
also take rµ > rϑ .

(iv) The helium diffusivity χ should be small in comparison with the magnetic
diffusivity η, so that the helium sublayer is thinner than, and therefore distinct from,
the magnetic confinement layer.

(v) The viscosity ν should be small enough that an Ekman layer does not form at
the top of the helium settling layer, so that the flow is everywhere inviscid, even in
the helium sublayer. With small Ro this condition is easily satisfied in the numerical
model as well as in the real Sun, because of the factor Ro−1 in (6.2).

Leaving νH and χH aside for the moment (see Appendix B) we can characterize the
system by seven dimensionless parameters, including the Elsasser number Λ, which
enters through the boundary conditions. Table 1 presents the other six dimensionless
parameters, with nominal solar values alongside the values used for the numerical
solution presented here (figures 2, 5, and 6). The last column echoes aspects of
the qualitative parameter conditions just stated. The nominal solar values assume
U = 10−5 cm s−1.

In order to allow the stratification surfaces to develop a significant tilt, the horizontal
size of the numerical domain, rd , was chosen to be of the same order as rϑ ; specifically,
we chose rd =5. However, the precise value of rϑ , as determined by (5.11), depends on
the precise value of Λ, which is set indirectly via the boundary condition for Br . For
the case shown in figures 2, 5, and 6 this boundary condition was Br/r = 1 at z = −1,
and we find from the solution that Λ = B2

iz

∣∣
z = 0

≈ 3.5. With the parameter values

in the second-last column of table 1, this in turn means that r2
ϑ ≈ 50/3.5 ≈ 14, so in

fact rϑ is slightly smaller than rd . Nevertheless the numerical solution is remarkably
close to being flat, even close to the periphery of the domain r = rd . Some effects of
departures from flatness can be seen near the periphery in, for instance, figure 10
below, but they do not qualitatively alter the nature of the flow. The confinement-
layer dynamics can therefore apply, at least qualitatively, even at colatitudes for which
the semi-analytical solutions of § 4 are not strictly valid. We should therefore regard
(5.12) as a conservative estimate of the range of interior field strengths for which the
confinement-layer regime applies.
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Figure 5. A numerical solution of the confinement-layer equations with r2
ϑ ≈ 14 and Elsasser

number Λ ≈ 3.5. Other parameter values are given in the second-last column of table 1. From
the same solution as shown in figure 2. Both here and in figure 2, a top layer 5 � z � 6 has
been omitted from the plots. Figures 2, 5, and 6 are all views of the same numerical solution.
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Figure 6. Vertical profiles from a numerical solution of the confinement-layer equations with
r2
ϑ ≈ 14 and Elsasser number Λ ≈ 3.5. Other parameter values are given in the second-last

column of table 1. From the same solution as shown in figure 2.

The vertical profiles of ϑ , µ and Bφ at the periphery of the computational
domain were initially taken from a semi-analytical solution. The resulting steady-
state meridional flow, and the distribution of Coriolis torque it exerts on each field
line, cannot be precisely known in advance. So the steady state found, with this
choice of the peripheral Bφ profile, will generally be such that some of the balancing
Alfvénic torque is exerted on the bottom of the computational domain, rather than
on the periphery r = rd .

As mentioned in the previous section, we can eliminate this bottom torque through
iterative adjustments to the torque at the periphery. Experience with the numerical
solutions reveals that such adjustments are propagated along the magnetic field
lines without, in most cases of interest, greatly perturbing the poloidal velocity and
magnetic field components. So we can reduce the bottom torque simply by mapping
or transferring that torque from the bottom to the periphery of the domain, along
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the field lines. The bottom torque is thereby reduced, though not all the way to zero
since the other fields adjust, slightly reshaping the field lines. The process can then be
repeated, further reducing the bottom torque. After a sufficient number of iterations,
the bottom torque can be reduced to negligible values, with practically all the torque
transferred to the periphery.

Figure 5 shows plots of the steady-state streamlines and magnetic field lines from
the numerical solution whose parameter values are listed in table 1, and whose
meridional cross-section was presented in figure 2. The bottom torque is negligibly
small. Figure 6 shows vertical profiles on the rotation axis, from the same numerical
solution.

9. Upper-domain ‘slipperiness’
On the rotation axis, where the profiles in figure 6 were taken, the stratification

surfaces are flat for any finite αϑ and αµ. If the numerical solution were in perfect
magnetostrophic balance then we could use its uz(z) profile to calculate the other field
components on the axis by the procedure for constructing semi-analytical solutions
described in § 4. But the numerical solutions are not in perfect balance, especially
toward the upper part of the domain, where the Lorentz and Coriolis forces become
small and the artificial viscous forces relatively more significant, along with numerical
truncation errors and other small effects. In particular, the numerical uz(z) and
ur (z) profiles will not conform precisely to the decay law (4.10) as z increases. So
the semi-analytical solution obtained by this process cannot perfectly match the
numerical solution, even on the rotation axis. Indeed, such a semi-analytical solution
will often exhibit wild deviations from the numerical solution toward the upper part
of the domain. There, the delicate balance of terms gives the dynamics a certain
‘slipperiness’, as already evidenced by the upper-domain sensitivity of uφ and ∂uφ/∂z

to values of the decay constant γ in (4.10).
To enable a meaningful comparison between the numerical and semi-analytical

solutions, we are therefore compelled to make small adjustments to uz(z) in the
upper domain, to make uz(z) and ur (z) conform to (4.10), before using them to
compute a semi-analytical solution. In the case shown here the decay constant γ was
chosen, purely for illustration, to be 2.24. The required adjustment to uz(z) is then
very small indeed; the solid uz curves on the left of figures 3 and 6 are practically
indistinguishable from each other.

As already mentioned, conditions aloft in the real Sun may well involve small-scale
MHD turbulence. The resulting departures from magnetostrophic balance may well
produce asymptotic behaviour aloft that disagrees with all the solutions obtained
here, whether semi-analytical or numerical. A realistic matching to conditions aloft
remains a challenge for future modelling work.

10. Confinement layers with no helium settling layer
Although the presence of the helium settling layer influences the structure of the

confinement layer in today’s Sun, it is not actually essential to magnetic confinement.
The qualitative picture sketched in figure 1(b) might therefore apply also to the early
Sun, before the helium settling layer developed.

The analysis presented in § 4 holds good for any suitable profile of uz(z), provided
only that the thermal stratification is sufficiently strong. Compositional stratification
enters only indirectly, via the shape of uz(z) in its lower part representing the helium
sublayer and subtail. As pointed out below (6.21)–(6.23), the shape depends in turn
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Figure 7. A semi-analytical solution of the confinement-layer equations with no helium
settling layer. The downwelling was chosen such that γ = 2.24. The uφ profile has been
rescaled by a factor of 10. The z-origin is arbitrary.

on how the confinement layer and sublayer fit into the global picture sketched in
figure 1(b).

For the early Sun, with no compositional stratification, we have a similar
indeterminacy in the shape of uz(z). However, we may note that with no helium
settling layer the scaling analysis in § 5 then applies not only within the confinement
layer, but also in the region immediately beneath. An argument similar to that leading
to the estimate δ� of the subtail scale in (6.21) predicts that |u| decays with depth on
a length scale ∼ δ, rather than δ�.

Analytical solutions with no helium settling layer can be calculated in the same
way as in § 4. Figure 7 presents such a solution. In this case, the downwelling profile
was chosen to be uz(z) = −(1+exp(−γ (z − 2)))−1/γ , so that uz =O(exp(z)) as z → −∞
and uz = −1 + O(exp(−γ z)) as z → +∞. We have taken γ = 2.24, again purely for
illustration, to allow a more direct comparison with figures 3 and 6. Figure 8 shows
a vertical cross-section through the solution presented in figure 7.

11. Conclusions and future directions
We cannot yet claim to have a complete tachocline theory. Indeed, the confinement

layer and helium sublayer form only two pieces of a complicated jigsaw puzzle. Other
aspects of that jigsaw include the way in which the confinement layer matches upward
to the relatively large negative shear in the bulk of the tachocline, and the way in
which the baroclinic temperature anomalies induced by the tachocline’s MMC fit into
the perturbed global-scale heat flow. In particular, without putting the whole jigsaw
together we cannot quantitatively predict the thickness of the tachocline. Nor can
we predict the precise shapes of the vertical profiles of B and u in the confinement
layer. Those profile shapes depend on matching to conditions not only aloft but
also equatorward, where stratification surfaces and field lines extend into colatitudes
outside the polar downwelling regions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.93


472 T. S. Wood and M. E. McIntyre

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

u

B

Ωi

Figure 8. The magnetic confinement layer near the north pole in a model for the early Sun,
with no helium settling layer. The plot is from the same semi-analytical solution as that of
figure 7.

However, the results obtained here give us the first fully consistent model of polar
field confinement, as such, together with insight into how it could work in today’s
Sun. The results cover a wide range of possible downwelling values and interior field
strengths (end of § 5; as remarked in §8, (5.12) appears to be a conservative estimate).
We have also shown, in § 10, how confinement could have worked in the early Sun.
The dynamics is similar apart from the slightly deeper penetration of the MMC in
the absence of the helium settling layer and helium sublayer. We can use the resulting
insights, alongside our well-established understanding of the gyroscopic pumping of
MMCs, to say something new about the early Sun and the solar lithium-burning
problem.

Standard solar-evolution models predict surface lithium abundances higher than
observed by a factor ∼ 102 (e.g. Vauclair et al. 1978). The reason is that the standard
models mix material down to the bottom of the convection zone but no further. To des-
troy lithium, material from the convection zone must be mixed or circulated to some-
what greater depths and therefore to somewhat higher temperatures, beyond those at
the bottom of today’s tachocline. However, there is no evidence of depletion of the con-
vection zone’s beryllium, which is destroyed at only modestly higher temperatures than
lithium. Further discussion and references may be found in Christensen-Dalsgaard,
Gough & Thompson (1992), in Wood (2010, chap. 6), and in Mestel (2011, §8.8.5).
Here we argue that a quantitative version of the scenario sketched in figure 1(b) has
promise as a way of circulating material to the required depth in the early Sun, and no
further, thus making sense of the high beryllium as well as the low lithium abundance.

As already mentioned in § 1, the downwelling MMC in the polar tachocline that
makes field confinement possible can be regarded as due to a gyroscopically-pumped
MMC trying to burrow downward, but held in check by its encounter with the interior
field Bi and with the helium settling layer, if present. If, in a thought experiment,
we were to switch off the interior field Bi , then the downwelling would spread
or burrow to ever-increasing depths. The time scale for such burrowing is inversely
proportional to Ω2

i (e.g. McIntyre 2007, (8.15)ff.); one may think of rotational stiffness
as strengthening the burrowing tendency.
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surfaces (flat)
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Figure 9. Schematic drawing of the magnetic confinement layer and its immediate
surroundings at the bottom of the high-latitude tachocline. Close to the pole the interior
magnetic field (solid lines) is confined by the downwelling MMC (dashed streamlines). The
vertical scale has been greatly exaggerated.

Now, because the early Sun rotated much faster than today, not only would there
have been no helium settling layer but, also, the burrowing tendency would have been
much stronger than today, tending to push the bottom of the tachocline downward.
This reopens the possibility conjectured in GM98 that there might have been a
ventilated ‘polar pit’ in which most of the convection zone’s lithium, though not
too much of its beryllium, was burnt during the first gigayear or two of the Sun’s
main-sequence evolution.

To take this further we again need to consider the way in which the confinement
layer fits into the global picture. It is arguable that the bottom of the entire polar
downwelling region is depressed relative to its surroundings, forming not so much a
‘pit’ as a shallow ‘frying pan’, too shallow to burn lithium in today’s Sun but possibly
just deep enough in the early Sun.

Here we need to distinguish the shape of the ventilated region from the shapes of
the stratification surfaces, which latter must remain relatively flat, meaning close to
the horizontal. Figure 9 sketches the way in which the confinement layer might fit into
its surroundings near the bottom of the polar tachocline. The stratification surfaces
are shown dotted. At the periphery of the polar downwelling region, the field lines
(solid) spiral outward and upward from the confinement layer on their way to lower
latitudes. They will tend to splay out, as well as slanting upward, as they emerge from
the downwelling region. The MMC will similarly slant upward, flowing approximately
along the field lines (dashed streamlines). This is because the splaying-out increases
the magnetic Reynolds number beyond the order-unity values characteristic of the
confinement layer. Further out, the field lines must continue to rise through the
tachocline until they encounter the convection zone’s overshoot layer, where they
are held horizontal by turbulent magnetic flux pumping as suggested in figure 1(b).
On the way we must expect turbulent eddy fluxes to become increasingly important,
decoupling the MMC’s upwelling streamlines from the time-averaged field lines and
leaving the upwelling free to spread over a wide range of latitudes, constrained only
by mass conservation and global-scale heat flow.

Such a picture applies equally well to today’s Sun and to the early Sun, the main
difference being that the ventilated polar region (unshaded in figure 9) is likely to
have been pushed deeper in the early Sun with its much faster rotation, stronger
burrowing tendency, and global-scale |Bi | values only modestly larger. The ventilated
polar regions could well have been deeper by many tens of megametres, as required
to burn lithium. This deepening is additional to that of the convection zone itself, in
the early Sun relative to today’s Sun, amounting to several more tens of megametres
according to standard solar models (e.g. Ciacio et al. 1997). The early Sun would have
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started to form its helium settling layer just below the ventilated, lithium-destroying
polar regions, i.e. just below the polar confinement layers. Then, thanks to the Sun’s
evolution and to the gradual diminution of Ωi through solar-wind braking, the
ventilated regions would have retreated upward, and the top of the helium settling
layer would have followed them upward as new helium strata formed.

Within the peripheral lightly-shaded region in figure 9, into which the MMC does
not penetrate, we suggest that ventilation is weak or nonexistent and that shear will
be limited by the Ferraro constraint. The darker shading represents the top part of
today’s helium settling layer.

As the lightly-shaded region expands upward and outward beyond the immediate
surroundings sketched in figure 9, through the tachocline toward the overshoot layer,
we may surmise that small-scale MHD instabilities kick in (e.g. Spruit 2002; Gilman &
Cally 2007; Parfrey & Menou 2007, and references), breaking the Ferraro constraint
and blurring the distinction between the shaded and unshaded regions as turbulent
eddy fluxes increase. So a larger-scale picture of the ‘lithium frying pan’ would show
its upward-sloping lower boundary becoming increasingly porous and indistinct at
greater colatitudes.

The global tachocline model that would be needed to test, and to begin to quantify,
the foregoing speculations would have to describe

(i) the precise way in which turbulent stresses in the convection zone and ta-
chocline gyroscopically pump the polar downwelling needed to confine Bi in polar
latitudes;

(ii) the global-scale distribution of temperature and heat flow that fits in with the
MMCs;

(iii) the turbulent magnetic flux pumping by convective overshoot assumed to
confine Bi in extra-polar latitudes;

(iv) the extent to which the winding-up of the time-averaged toroidal field in
extra-polar latitudes of the tachocline (figure 1b) is limited by turbulent eddy fluxes;

(v) the reaction of the overlying turbulent layers to all of the above, especially
the deficit in the convection zone’s differential rotation governing the torques exerted
from above, for instance via feedback on the strength of gyroscopic pumping of the
MMC.

Progress on these formidable problems will depend on finding suitable ways to
model the turbulent processes.
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Appendix A. Helium sublayer scalings
For perturbations B′ to a background magnetic field Bi , the Lorentz force may be

written as

F = (∇× (Bi + B′))× (Bi + B′) = −∇
(

1
2
|Bi |2 + Bi · B′ + 1

2
|B′|2

)
+(Bi + B′) · ∇(Bi + B′).

(A 1)
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If, as here, the background field Bi is curl-free, then all the terms quadratic in Bi

vanish and we have

F = −∇
(

Bi · B′ + 1
2
|B′|2

)
+ B′ · ∇Bi + (Bi + B′) · ∇B′. (A 2)

If Bi and B′ are axisymmetric, and have the scalings given by (6.15)–(6.17), with
∂/∂z ∼ δ/δχ � 1, then all components of B′ · ∇B′ are smaller than the corresponding
components of Bi · ∇B′ by factors (δχ/δ)2, with one exception. The r component of
B′ · ∇B′ includes a term B ′ 2

φ /r , the divergence of the hoop stress. Relative to the

r component of Bi · ∇B′ this term is of order (δχ/δ)2/Λ2. However, the hoop-stress
term itself is smaller than the r component of the Coriolis force by a factor (δχ/δ)2,
even for small Λ, because of (6.14). Therefore, in the asymptotic regime (6.3), (3.13)
becomes

ez × u = −∇p′ + αϑ ϑez − αµµez − ∇(Bi · B′ + 1
2
|B|2) + B′ · ∇Bi + Bi · ∇B′. (A 3)

The flow through the sublayer produces only a small perturbation to the otherwise
uniform thermal stratification. From (3.9) and (3.10) we see that, within the sublayer,
variations in ϑ are smaller than variations in µ by a factor χ/κ � 1. The thermal
stratification in the sublayer may therefore be treated as horizontally uniform, allowing
the thermal buoyancy term αϑ ϑez in (A 3) to be incorporated into the pressure field
along with the −∇(Bi · B′ . . .) term. We denote the modified pressure field as p̃.

The perturbed steady-state induction equation is

0 = (Bi + B′) · ∇u − u · ∇(Bi + B′) + ∇2 B′, (A 4)

again on the assumption that Bi is curl-free. It is readily verified from the scalings
(6.12)–(6.17) and ∂/∂z ∼ δ/δχ � 1 that each component of u · ∇B′ is of the same
order as the corresponding component of B′ · ∇u, but smaller than Bi · ∇u by a
factor (δχ/δ)2. Furthermore, provided that the horizontal scales rϑ and rµ are both
�1 we may also make the boundary-layer approximation, ∇2 ≈ ∂2/∂z2. Thus, in the
asymptotic regime (6.3), we may simplify (A 4) to

0 = Bi · ∇u − u · ∇Bi +
∂2

∂z2
B′. (A 5)

If the field Bi were uniform, and directed along the axis of rotation, then (A 3)
and (A 5) would reduce immediately to (6.5) and (6.4) respectively. Since Bi is
axisymmetric and smooth, this reduction still holds as a first approximation within
some neighbourhood of the axis. It is sufficient to show that this neighbourhood
includes the entire sublayer within a radius r ∼ rµ. We first note that, since ∇ · Bi = 0,
we have Bir/r = − 1

2
∂Biz/∂z as in (4.8). In the sublayer we have ∂Biz/∂z ∼ Biz

(dimensionally, ∂Biz/∂z ∼ Biz/δ) as a consequence of the matching to the confinement
layer, as can be seen, for instance, from the solid curve in the right-hand panel of
figure 3. Now applying the scalings (6.12)–(6.17) we find that, in (A 3), each component
of B′ · ∇Bi is smaller than the corresponding component of Bi · ∇B′ by a factor δχ/δ,
and that, in (A 5), each component of u · ∇Bi is smaller than the corresponding
component of Bi · ∇u by the same factor δχ/δ. Moreover, even at colatitudes r ∼ rµ
the contributions Biz∂ B′/∂z and Biz∂u/∂z dominate all other contributions to Bi · ∇B′

and Bi · ∇u by factors of at least δ/δχ . So (A 3) and (A 5) do indeed reduce to (6.5)
and (6.4).

For r � rµ, tilting of the compositional isopleths produces variations in the
dimensionless altitude of the sublayer no greater than O(δχ/δ), so that Biz may
be assumed constant within the sublayer as assumed in the derivation of (6.9) and
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(6.10). Finally, we note that the foregoing picture applies not only to steady states but
also to time-dependent states with any time scale, such as δ/U = δ2/η, that is long in
comparison with the time scale δ2

χ/η for magnetic diffusion across the sublayer. On
any such time scale the sublayer therefore behaves like a porous medium.

Appendix B. The numerical scheme
We wish to solve a suitable version of (3.5)–(3.10) in axisymmetric cylindrical polar

coordinates. We introduce streamfunctions Ψ and A, i.e. azimuthal vector-potential
components, for the poloidal velocity and magnetic fields, such that

uz =
1

r

∂(rΨ )

∂r
and ur = −∂Ψ

∂z
, (B 1)

Bz =
1

r

∂(rA)

∂r
and Br = −∂A

∂z
, (B 2)

guaranteeing that the fields are divergence-free; rΨ is sometimes called the Stokes
streamfunction. The azimuthal vorticity ωφ and electric current density Jφ = (∇ × B)φ
are related to Ψ and A by

ωφ = −(∇2 − r−2)Ψ (B 3)

and Jφ = −(∇2 − r−2)A. (B 4)

As already explained, and further discussed below, we introduce anisotropic viscosity
and helium diffusivity with dimensionless horizontal components νH and χH . So
(3.5)–(3.10) are replaced by

Ro
1

r

D(ruφ)

Dt
− ∂Ψ

∂z
=

1

r
B · ∇(rBφ) + Ek

[
∂2

∂z2
+ νH

(
∇2

H − 1

r2

)]
uφ, (B 5)

Ro

[
r
D(ωφ/r)

Dt
+

∂(ruφ, uφ/r)

∂(z, r)

]
− ∂uφ

∂z
= −αϑ

∂ϑ

∂r
+ αµ

∂µ

∂r
+ r B · ∇(Jφ/r)

+
∂(rBφ, Bφ/r)

∂(z, r)
+ Ek

[
∂2

∂z2
+ νH

(
∇2

H − 1

r2

)]
ωφ, (B 6)

r
D(Bφ/r)

Dt
= r B · ∇(uφ/r) +

(
∇2 − 1

r2

)
Bφ, (B 7)

1

r

D(rA)

Dt
=

(
∇2 − 1

r2

)
A, (B 8)

Dϑ

Dt
=

κ

η
∇2ϑ, (B 9)

Dµ

Dt
=

χ

η

[
∂2

∂z2
+ χH ∇2

H

]
µ. (B 10)

We solve these equations using a simple finite-difference scheme on an Eulerian
grid regularly spaced in r and z at intervals �r and �z. The outer boundary of
the computational domain is at r = rd . The inner boundary is at r = 2�r , i.e. two
grid intervals from the coordinate singularity at the rotation axis. Because of the
directionality of operators like u · ∇ and B · ∇, the spatial derivatives are calculated
using two-point, one-sided (first-order) finite differences whose directions are chosen
to ensure numerical stability at the grid scale. For reasons of symmetry and good
behaviour near the coordinate singularity, the finite differencing is done by locally
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approximating the fields Ψ/r , uφ/r , ωφ/r , A/r , Bφ/r , ϑ and µ as functions that are
linear in z and in r2 over a single grid interval. This ensures that the error is O(�r)
even for small r . Field values for r < 2�r are obtained by extrapolation from r = 3�r

and r = 2�r , again assuming linear functional dependence on r2.
With the parameter values given in table 1, the dimensionless helium-sublayer

and Ekman-layer thicknesses are δχ/δ = (χ/η)1/2 ≈ 0.14 and δEk/δ = Ek1/2 ≈ 0.01
respectively. We have chosen a vertical grid interval �z = 0.01, dimensionally 0.01δ,
which is small enough to resolve the helium sublayer accurately. This �z is too large
to resolve any Ekman layers. However, Ekman layers are prevented from becoming
significant by careful choice of the code representing the boundary conditions. By
allowing slip velocities and making viscous stresses negligible at the boundaries, we
have been able to keep Ekman-layer formation so weak as to play no significant role
in the dynamics. Uniform rotation is imposed at and just beneath the bottom of the
domain, via the B · ∇ term in the azimuthal component of the induction equation
(B 7).

An explicit Eulerian timestepping scheme is used to evolve the system. The time step
�t must be small enough to resolve thermal diffusion at the grid scale (which is the
fastest process at this scale and therefore determines the Courant–Friedrichs–Lewy
condition). So from table 1, �t � (η/κ)(�z)2 = 10−2 × (0.01)2 = 10−6, dimensionally
10−6δ/U or 10−4(2Ωi)

−1.
We use a semi-analytical confinement-layer solution, of the kind described in § 4,

as the initial condition. The system typically takes several domain-scale magnetic
diffusion times to reach a steady state. As explained in § 8, multiple iterations
of the peripheral Bφ(z) profile are then required to achieve a steady state with
vanishing Bφ(r) at the bottom. To make the computation feasible, in a domain wide
enough to accommodate noticeable tilting of the stratification surfaces, we have used
rd = 5, dimensionally 5δ, and a horizontal grid interval �r = 0.1, dimensionally 0.1δ,
larger than the vertical grid interval �z by a factor of 10. For numerical stability,
the dimensionless horizontal viscosity νH and helium diffusivity χH must then be
chosen so that the diffusive terms in (B 5), (B 6) and (B 10) dominate the advective
terms at the gridscale. In practice, we found it sufficient to take νH = χH = 10,
i.e. to make them a factor 10 greater than the corresponding vertical diffusivities,
as suggested by advective–diffusive scaling when �r/�z = 10. We have verified, in
smaller computational domains, that the coarser horizontal resolution and anisotropic
diffusivities do not qualitatively affect the steady state of the system.

At each time step, the azimuthal vorticity ωφ is updated and the streamfunction
Ψ then computed from (B 3) by inverting the operator ∇2 − r−2, approximated
using centred differences. The inversion is performed iteratively, using a successive-
overrelaxation method described in Press et al. (1986). During the early evolution,
when the dynamics is dominated by time scales not much longer than the time step
�t , many such iterations are required, at each time step, to achieve convergence. At
later times the same degree of convergence can be achieved with far fewer iterations.
Since we are interested only in the ultimate steady state, we can tolerate a larger
error in the inversion during the system’s transient evolution. Further details of the
numerical code are spelt out in Wood (2010).

As anticipated from the small values of Ro and Ek, the steady state is found to
be close to magnetostrophic balance: the motion is scarcely distinguishable from one
in which the balance conditions (3.14) and (3.15) hold exactly. Indeed, in (3.15) the
terms in αϑ and αµ dominate so strongly that, in the case of figure 2 for instance, the
tilting is barely visible, as has been verified from plots, not shown, of the thermal as
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Figure 10. The left and right panels show contours of the left-hand side and right-hand side
of (B 11) respectively, in a vertical cross-section for the numerical solution of figures 2, 5, and
6. The bulk of the confinement layer is close to magnetostrophic balance. The largest fractional
departures from balance occur in the regions above and below the confinement layer where
both sides of (B 11) are numerically small. Unlike that in figure 2, the cross-sections shown
here span the entire numerical domain including the top part 5 � z � 6.

well as the compositional stratification surfaces. This of course is no more than was
anticipated from the scaling arguments of §§ 5 and 6. So the balance (3.15) holds in an
almost trivial sense, with the remaining terms scarcely able to produce any noticeable
effect. The azimuthal momentum balance described by (3.14) is less trivial, but here
also we find that the left-hand side and right-hand side are close to being equal, in
the present notation

−1

r

∂Ψ

∂z
≈ 1

r2
B · ∇(rBφ). (B 11)

Figure 10 shows the left-hand side and right-hand side of (B 11) for the case of
figure 2. The balance is quite accurate despite the modest Ro value chosen for the
numerical solution, 10−2 in table 1.

It might be thought that imposing magnetostrophic balance from the start, as
first suggested by Taylor (1963), would filter out all the fast oscillations – including
inertial or epicyclic oscillations as well as Alfvén waves, gravity waves, and the
various hybrid types – and thereby allow larger time steps to be used. However, the
imposition of magnetostrophic balance leads to pathological behaviour at small scales
(Walker, Barenghi & Jones 1998). Far from eliminating or slowing the fast oscillations,
the imposition of balance exacerbates the problem, for reasons explained in
Appendix C.

Appendix C. Magnetostrophic balance and numerical ill-conditionedness
Filtering out fast oscillations by imposing some kind of balance is a familiar, and

often effective, device in many other problems involving stiff differential equations.
A well-known example is that of fluid flow in non-MHD fluid systems with
strong rotation (small Ro) and stable stratification. The standard ‘quasi-geostrophic
equations’ result from imposing geostrophic or Coriolis–pressure-gradient as well as
hydrostatic balance, thereby filtering out inertia and gravity waves as well as sound
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waves. The filtering saves computational resources by allowing relatively large time
steps.

Such filtering turns out, however, to be ineffective in the confinement-layer problem.
Indeed – at first sight paradoxically – the imposition of magnetostrophic balance
exacerbates the timestepping problem. Far from eliminating fast oscillations, it
introduces spurious modes of oscillation that are even faster, as shown by Walker
et al. (1998) in the context of the terrestrial dynamo problem. Following Walker et al.,
we show how this pathology can be understood through an idealized analysis of the
fast oscillations, first in the unfiltered and then in the filtered equations.

The reason for the pathology is the interplay between the Coriolis and Lorentz
forces. Stratification N2 is relatively unimportant, as will be shown shortly. We
therefore start with the linear theory of MC (magneto–Coriolis) waves, i.e. small
plane-wave disturbances to an unstratified, incompressible fluid with solid rotation
Ω and a uniform magnetic field B. Neglecting viscosity and magnetic diffusivity, we
find the well-known dispersion relation

ω2 − (B · k)2 = ±2Ω · k ω/|k| , (C 1)

where ω is the frequency and k is the wavevector, both dimensional here. If we take
the limit of rapid rotation, |Ω | → ∞, then for most choices of k the four roots of this
dispersion relation are asymptotically

ω ∼ ±2Ω · k
|k| (C 2)

and ω ∼ ± (B · k)2

2Ω · k
|k|. (C 3)

The modes corresponding to (C 2) are inertial or epicyclic waves – in this context
sometimes called ‘fast MC waves’ – and those corresponding to (C 3) are ‘slow MC
waves’. By imposing magnetostrophic balance we neglect relative fluid accelerations,
which corresponds to dropping the ω2 term from the left-hand side of (C 1). The
dispersion relation then becomes

ω = ± (B · k)2

2Ω · k
|k|. (C 4)

So imposing magnetostrophic balance eliminates the two ‘fast’ branches (C 2) of the
full dispersion relation (C 1).

However, not all modes of the full dispersion relation (C 1) have the asymptotic
behaviour described by (C 2) and (C 3). Even in the presence of rapid rotation, there
are always some modes whose k values satisfy

|B · k| � |2Ω · k|/|k| (C 5)

by an arbitrarily large factor. For instance we can fix the direction of k and make |k|
arbitrarily large. Such modes behave like Alfvén waves, with ω ≈ ±B · k. Imposing
magnetostrophic balance removes the mechanism for Alfvén wave propagation, and
must therefore alter the behaviour of these modes. In fact their frequencies become
arbitrarily higher than Alfvén wave frequencies. This can be seen at once by inspection
of (C 4) and (C 5). In summary, even in a rapidly rotating system some modes of the full
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dispersion relation always feel the Lorentz force more strongly than the Coriolis force,
i.e., they satisfy (C 5), and these modes become ill-behaved under the assumption of mag-
netostrophic balance. A numerical scheme that imposes magnetostrophic balance while
retaining realistic (Laplacian) magnetic dissipation will therefore be ill-conditioned.

If we introduce stratification N2 then (C 4) becomes

ω = ± B · k
2Ω · k

[
(B · k)2|k|2 + N2|kH |2

]1/2
, (C 6)

where kH is the horizontal projection of k. Therefore the stratification (a) makes little
difference to the large-|k| behaviour but (b) always increases the frequency of the
ill-behaved modes and thereby, if anything, further exacerbates the problem.
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