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Abstract

Asymptotic and numerical analysis provides essential insight into the behaviour of Fourier
integral solutions for the deflexion of an infinite continuously-supported flexible plate due
to moving load. Thus we can define in detail how the plate deflexion depends upon the
load speed, including (a) the wave patterns generated by a load moving steadily at various
supercritical speeds; and (b) the time-dependent behaviour of the deflexion due to an
impulsively-started load, where the two-dimensional response tends to a steady state except
at the critical speed, when it grows continuously with time (in the absence of dissipation).

1. Introduction

The approximate evaluation of integrals is not only a recognised area of numerical
analysis but also a major branch of asymptotic analysis, which can often provide
valuable insight into the behaviour of solutions to problems in the mathematical
sciences. An asymptotic solution may be sought when an exact mathematical solution
or a numerical solution is difficult to interpret or even obtain, and asymptotic analysis
in combination with numerical computation can also produce important results. It
is a great pleasure for me to participate in this festschrift for Professor David Elliott
to celebrate his 65th birthday, and I hope my small part at the associated meeting
contributed to that clear demonstration of the high regard in which he is held by the
mathematical community.

The mathematical theory for the response of a flexible continuously-supported
beam or plate to a moving load is a case example of the application of asymptotic
analysis and numerical computation.2 A combination of asymptotic analysis and nu-
merical computation yields the steady-state wave patterns generated in the plate by a
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2 The beam or plate may represent a rail or road surface, an airport runway or a floating ice sheet in a
cold region. The moving load might be a conventional vehicle, a landing aeroplane or a hovercraft.
Moving Loads on Ice Plates is the title of a recent monograph [10], where it is emphasised that the
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steadily-moving load ([1]). Secondly, asymptotic analysis supplemented by numerical
computation renders the time-dependent response ([8, 11] and [7]).

2. Modelling moving loads over flexible
continuously-supported plates

The simplest accepted mathematical model to describe the response of a conti-
nuously-supported plate to a moving load corresponds to a thin plate of infinite extent
resting on a foundation of some kind. Thus we assume that the vertical deflexion of
the plate f (JC, v, t) satisfies the partial differential equation

DV*!+p'h^=p-f(x,y,t), (1)

or its visco-elastic counterpart [10]. Here V2 = d2/dx2+d2/dy2 is the usual Laplacian
differential operator, where (x, y) denotes any field point in the plane of the plate,
and t is the time; D is the effective flexural rigidity of the plate; p' and h are the
plate density and thickness respectively; p is the pressure exerted by the underlying
foundation on the plate; and / (x, y, t) is the downward forcing function on the plate
due to the moving load (see below).

In the context of a floating ice plate, as in all the research papers listed in the
previous section, the motion of the underlying foundation (water) is defined by a
velocity potential (j>(x,y, z,t). Thus from Bernoulli's equation for incompressible
irrotational flow we have the pressure at the plate

where p is the water density and g is the gravitational acceleration. We then express
p entirely in terms of £, using the kinematic non-cavitation boundary condition

dt

and invoke the Fourier transform

£(*,, k2, co) = {2jr)-3/2js(x, y, t)eKk>x+k»'-a") dx dy dt (2)

to formally solve (1) for the deflexion of the infinite plate.

deflexion can be much greater when the load is moving than when it is stationary. Hovercraft exploiting
this resonance phenomenon are used as ice breakers on the St. Lawrence Seaway in Canada, but the safe
operation of transport systems of course usually means avoiding any fracture!
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3. Steadily moving loads

For a steady two-dimensional load moving in the x -direction with uniform speed
V, on inverting (2) we obtain the solution as the Fourier integral

f (x, y, 0 = ~ [ | ^ | T e-**-1""*" dkx dk2, (3)
2 n J B { k k )

since the Fourier transform of the loading function f (x, y, t) = F(x — Vt, y) is
/ ( i t , , Jt2, co) = V2nS(Vki - (o)F(kt, k2), and we write fl(Jt,,Jt2) = Dk4 + pg -
phV2k\ - (p V2*?/*)coth(kH), where wavenumber it = y/kj+kjandh' = p'h/p.
There are hybrid (flexural-gravity) waves generated in the plate by the moving load
when the load speed is supercritical - that is, for V > c ^ , where <:„„„ is the minimum
phase speed of these waves. (At subcritical load speeds V < <:„„„, the deflexion
given by (3) closely resembles that produced when the load is stationary.) Note that
B{k\, k2) = 0 is just the dispersion relation with co replaced by Vk\ as required for a
steady wave pattern, since the component of the load velocity normal to any wave crest
(Vk\/k) must equal the crest phase speed (co/k). We can not expect to evaluate such
an integral exactly, but we can exploit asymptotic methods and numerical computation.

It is convenient to choose the observation time to be the instant the travelling load
coincides with the origin of the (x, v)-plane; and from the Cauchy residue theorem
we can use contour integration with respect to &, to first obtain

(4)
t Bkl

due to the pole at £i(£2) associated with the point on the wavenumber curve Ck

defined in the real (ku &2)-plane by B(k{, k2) = 0 (see [4]). It turns out that we can
produce useful formulae for the deflexion at distances somewhat larger than the load
dimension by asymptotic analysis, which at the same time allows us to treat the load
as a concentrated point source.

For most directions away from the load, we get the stationary phase approximation

y) ~ -F(*,o, *20) [ (£*) 1 &
L \ 3 " / J V Kr

as r = y/x2 + v2 -> oo, where K0 = \k'((k20)\ denotes the small curvature on Ck at the
point (fcio, fc2o), 8/dn denotes differentiation normal to Ck in the sense of increasing
co, and 0 is a phase factor equalling n/4 if Ck is convex to the n- direction at the point
(&io> &2o) and n otherwise ([1]). At sufficiently high supercritical load speeds V, there
are variations due to the emergence of caustics associated with points of inflexion on Ck
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(where ifc',^) = k"(k2) = 0), and indeed also "supercaustics" associated with points
on C* where two caustics just merge (where k[(k2) = k"(k2) = k'"(k2) = 0). All of
this enables us to ascertain preferred directions of energy propagation corresponding to
caustics or supercaustics, and to compute the wave patterns that are notably dependent
on the supercritical load speed ([1]). Incidentally, a "shadow zone" appears behind
the load when the load speed V exceeds the water wave speed *JgH.

Milinazzo et al. [5] numerically evaluated the integral (4) for a distributed (rectan-
gular) load, to produce quite remarkable analogous wave pattern plots. They noted that
their computed steady state solution appears bounded when V = *JgH, and indeed
at all (subcritical or supercritical) load speeds considered except the critical speed
V = Cmin. Any large resonant response at some particular load speed is obviously a
matter of considerable practical importance (cf. the footnote on page 110), but succes-
sive mathematical investigation of this phenomenon in our context of moving loads
over floating flexible plates has produced an amusing litany of conflicting predictions.

The pioneering paper by Kheysin [2] discussed the deflexion due to either a steadily-
moving concentrated point load or a steadily-moving line load on a floating flexible
plate (as modelled in Section 2), on the implicit assumption that a steady state exists.
In the case of the concentrated point load, he erroneously concluded that there is
no critical speed (at which the deflexion is unbounded); but for the one-dimensional
response due to a line load, he correctly identified two such critical load speeds.
Nevel [6] subsequently showed that there is a critical load speed for a steadily-
moving uniformly distributed circular load at which the deflexion is unbounded.
Further mathematical investigations of this critical speed phenomenon, but taking
time-dependence into account, are described in the following section.

4. Impulsively-started loads

Kheysin [3] was the first to recognise that time-dependence might help explain the
singularity of the steady-state deflexion due to a load moving steadily at a critical
speed, since any steady-state response corresponds to the load acting for an infinite
period of time. For an impulsively-started line load, he found a critical speed at which
the deflexion £ increases with time t (as t1/2 when t -> 00). In their much later but
more complete analysis for an impulsively-started line load, inter alia Schulkes and
Sneyd [8] identified two load speeds at which the deflexion in the vicinity of the load
increases with time t—viz. as t1/2 when V = <:„„„ and as f1/3 when V = <Jg~H.

However, when Milinazzo et al. [5] observed that their computed steady state
deflexion due to a steadily-moving distributed (rectangular) load appeared to be finite
at the load speed V = y/gH, it became evident that time-dependent analysis for a
two-dimensional response was required ([10]). Indeed, in respect of one of the two
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speeds at which they had found the the deflexion does not tend to a steady state,
Schulkes and Sneyd ([8]) noted it is "possible that V = ~JgH does not represent a
critical speed for two-dimensional sources, because wave energy could radiate in all
directions—not just along the line of motion". Load concentration did not seem to be
a factor however, since the linearity of the mathematical problem evidently permits
generalisation of the response due to a point load to that due to a distributed load (by
superposition), but this aspect might also be explored. Thus we were led to consider
the time-dependent two-dimensional response due to a concentrated point load, and
then the time-dependent response due to a distributed load.

For an impulsively-started concentrated point load, which subsequently travels with
uniform speed V along the *-axis, the appropriate loading function is

f(x,y,t) = P0S(x-Vt)S(y)U(t),

where U(t) is the Heaviside unit step function and Po is constant. The corresponding
deflexion is given by the Fourier double integral ([7])

involving the phase functions *i(£i , k2) = kc — kxV and ^C&i, £2) = kc + k\V
(where k = -Jk] + k\ as before). The phase speed c(k) = co(k)/k is the positive root
of the dispersion relation

K4

<? = [ —

for real k. This result (5) is the two-dimensional generalisation of the one-dimensional
Cartesian form for a line load, analysed by Kheysin [3] and Schulkes and Sneyd [8].
Thus to get the asymptotic behaviour for large time t, we might likewise consider only
the term involving ty\, since the other phase function ^2 is monotonically increasing
with it.

Using the polar coordinate transformation x — Vt — rcos£, y = rsinf, k{ =
k cos 9, k2 = k sin 8, we can re-express (5) as

c(k)

{ 1 _ _i*(c-Vcos0)l 1 _ _-it(c+Vcosfl); 1 \

„ a + ' „ \dBdk), (6)
c—Vcosd c+Vcos# J /
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where the polar coordinates (r, f) define the field position on the plate in any direction
relative to the moving load, and Re(z) denotes the real part of z-

To examine the evolution of the deflexion, from the asymptotic viewpoint we might
consider either (5) or (6) in the limit as time t —> co, especially at the two load speeds
V — y/gH and V = cmin where the one-dimensional response due to a line load was
found to grow ([8]). As discussed at the meeting in honour of David Elliott however, it
is at precisely each of these two load speeds that the stationary point of the important
phase function % coincides with the pole of the associated amplitude function in
the double integral of (5) or (6), which poses an interesting problem for asymptotic
analysis. Thus in the polar coordinate form (6) for example, at these two load speeds
the critical points (points of stationary phase) occur where 6=0 and respectively
(i) k = 0 (when V = *JgH) and (ii) k = &min (when V = Cmin)—that is, at the two
load speeds when V = cg = c, where cg = dco/dk denotes the group speed. We
have since calculated the deflexion numerically from the complete form (5), because
the zeros of the phase functions are zeros of the respective complete numerators, and
enhanced the following asymptotic analysis due to Wang and Hosking ([11]) that was
discussed at the meeting (see [7]).

An alternative expression for the polar coordinate form of the deflexion (6) is
obtained by first representing the time behaviour as an integral, and then (more
importantly) integrating with respect to 9 to get

r kA) sin{kcs)dsdkt (7)
2np JQ c(k) Jo

where A = y/(rcos% + Vs)2 + r2 sin2(£). As discussed at the meeting, we can also
generalize the idea of Nevel [6] to obtain the related time-dependent deflexion under
the centre of a load uniformly distributed over a circular area of radius R. Thus we
introduce

Jo Jo nR2

to get the result for a distributed load analogous to (7):

Jo c(k) Jo

The eventual evolved (potentially steady-state) solution corresponds to setting
t = oo in (7) or (8)—for example, the fully evolved deflexion under the centre of
the circular load is

Po ["> tanh(kH)MkR) [°° / ; 17 , . „
(kVs)sin(kcs) ds dknpR

777 / J0

Jo c(k) Jo
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Po [°° tanh(£//)./,(*#) U(c-V)InpR Jo c(k) V*2(c2 - V2)
dk;

and on introducing a = kc2/^ tanh(£//)] and b — kV2/[g tanh(&//)] we obtain the
integral derived by Nevel [6]:

y, (it/?) U{a-b)
OK

•b)
—//*, (9)

npgP Jo R/£ yja{a - b)

where U is the Heaviside unit step function introduced earlier and £ = kl is the
dimensionless wave number (where I = (D/pg)1/4 is a characteristic length). Non-
zero contributions to the integral correspond to wave numbers k where V < c(k), or
equivalently a > b. Nevel noted that his integral solution (9) is unbounded when
a = b and da/d% = db/d%, which in the deep water limit where tanh(kH) « 1
corresponds to

the critical speed originally identified by Kheysin [2] that is equivalent to cmin.
As previously indicated, the singularity in the solution (9) at the critical load

speed V = Cmn corresponds to a continuously growing response, when the implicit
steady-state assumption is not valid. We can always determine the relevant asymptotic
time-dependent response (as t -> oo) for any load speed, directly from (8). Thus on
first exchanging the order of the integration and then introducing a familiar asymptotic
form for the Bessel function J0(kVs), we get

t:(T) -

x (sin \k(c - V)s + -]+ sin \k(c + V)s - -~h dk ds (10)

for sufficiently large fixed T > 0. Consequently, we may consider the stationary
points for the potentially asymptotically-dominant integral (for s -> oo)

where Im(z) denotes the imaginary part of z, especially with reference to the existence
of any response that does not tend to a steady state.
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Thus when V -*• *JgH from below, we have integral (11) represented asymptoti-
cally by

f

as s —> oo; and hence from (10) there is a transient

°(fT
as t -> oo, so the deflexion tends to a steady state. In the neighbourhood of k = k^n
however, a similar asymptotic evaluation of integral (11) produces a result O(s~l/2),
so that as V -> c^n from above the deflexion grows as

A similar analysis based upon (7) can be made for the concentrated point load, serving
to emphasise that load concentration not only does not affect the time-dependence
of the deflexion underneath the centre of the load, but also that this time-dependence
should be seen at any field position where the disturbance is measurable.

Thus we conclude that the two-dimensional time-dependent analysis predicts that
the deflexion at the load speed V = *JgH approaches a steady state, but at the critical
load speed V = cmin the deflexion continues to grow with time, consistent with the
calculations made by Milinazzo et al. [5] for a steadily-moving distributed load. This
is in contrast with the prediction from one-dimensional time-dependent analysis for a
line load ([3,8]), that the deflexion grows with time at both of these speeds (viz. as t1/3

and tl/2, respectively). Indeed, in our two-dimensional analysis the transient decay at
other load speeds is enhanced by a factor t~i/2 in comparison with the one-dimensional
results for a line load, as one might expect when energy may radiate away in directions
other than along the line of motion of the load.

5. Summary

Detailed asymptotic and numerical analysis allows us to interpret formal Fourier
integral solutions for the deflexion produced by a load moving over a continuously-
supported flexible plate. For a steady load travelling with uniform velocity, we can
determine the distinctive wave patterns that depend upon the load speed. Analysis
of the time-dependent Fourier integral solution for the two-dimensional response due
to an impulsively-started concentrated point load, or for the response underneath a
distributed load, demonstrates that a steady state is achieved at all load speeds except
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the critical load speed coincident with the minimum phase speed of the generated
hybrid waves, when the deflexion grows continuously with time (in the absence of
dissipation).
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