ENDPOINT ESTIMATES FOR COMMUTATORS OF
RIESZ TRANSFORMS ASSOCIATED WITH
SCHRÖDINGER OPERATORS

PENGTAO LI and LIZHONG PENG

(Received 9 November 2008)

Abstract
In this paper, we discuss the H^1_1-boundedness of commutators of Riesz transforms associated with the Schrödinger operator $L = -\Delta + V$, where $H^1_1(R^n)$ is the Hardy space associated with L. We assume that $V(x)$ is a nonzero, nonnegative potential which belongs to B^q for some $q > n/2$. Let $T_1 = V(x)(-\Delta + V)^{-1}$, $T_2 = V^{1/2}(-\Delta + V)^{-1/2}$ and $T_3 = \nabla(-\Delta + V)^{-1/2}$. We prove that, for $b \in \text{BMO}(R^n)$, the commutator $[b, T_3]$ is not bounded from $H^1_1(R^n)$ to $L^1(R^n)$ as T_3 itself. As an alternative, we obtain that $[b, T_i]$, ($i = 1, 2, 3$) are of $(H^1_1, L^1_{\text{weak}})$-boundedness.

Keywords and phrases: commutator, H^1_1, BMO, Schrödinger operator, Riesz transform.

1. Introduction

Let $L = -\Delta + V$ be the Schrödinger operator on R^n, $n \geq 3$. Throughout this paper, we assume that V is a nonzero, nonnegative potential which belongs to B_q for some $q > n/2$. Let T_i ($i = 1, 2, 3$) be the Riesz transform associated with Schrödinger operators, specifically, $T_1 = V(-\Delta + V)^{-1}$, $T_2 = V^{1/2}(-\Delta + V)^{-1/2}$ and $T_3 = \nabla(-\Delta + V)^{-1/2}$. The L^p-boundedness of T_i ($i = 1, 2, 3$) was widely studied in [7, 9]. In [3], using a pointwise estimate of the kernel of T_i ($i = 1, 2, 3$), the authors proved the L^p-boundedness of commutators $[b, T_i]$ ($i = 1, 2, 3$) for some $p > 1$. In this paper, we discuss the boundedness of $[b, T_i]$ ($i = 1, 2, 3$) at the endpoint $p = 1$.

A nonnegative locally L^q integrable function $V(x)$ on R^n is said to belong to B_q ($1 < q < \infty$), if there exists $C > 0$, such that the reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_B V^q(x) \, dx\right)^{1/q} \leq C\left(\frac{1}{|B|} \int_B V(x) \, dx\right)$$

(1.1)

holds for every ball B in R^n.

The first author was supported by the Macau Government Science and Technology Development Fund FDCT/014/2008/A1; the second author was supported by NNSF of China No. 10471002 and RFDP of China No. 20060001010.

© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00
By Hölder’s inequality, we have $B_{q_1} \subseteq B_{q_2}$ for $q_1 \geq q_2 > 1$. One remarkable feature of the B_q class is that if $V \in B_q$ for some $q > 1$, then there exists an $\epsilon > 0$ which depends only on n and the constant C in (1.1) such that $V \in B_{q+\epsilon}$. It is also well known that if $V \in B_q$, $q > 1$, then $V(x) \, dx$ is a doubling measure, namely for any $r > 0, x \in \mathbb{R}^n$ and some constant C_0,

$$\int_{B(x,2r)} V(y) \, dy \leq C_0 \int_{B(x,r)} V(y) \, dy. \tag{1.2}$$

For such a Schrödinger operator L, Shen [7] studied the L^p-boundedness of Riesz transforms associated with L. He obtained the following result.

Theorem 1.1 [7, Theorem 0.5, Theorem 3.1, Theorem 5.10].

(i) Suppose that $V \in B_q$ and $q \geq n/2$. Then for $q' \leq p < \infty$,

$$\|(-\Delta + V)^{-1} Vf\|_p \leq C_p \|f\|_p.$$

(ii) Suppose that $V \in B_q$ and $q \geq n/2$. Then for $(2q)' \leq p < \infty$,

$$\|(-\Delta + V)^{-1/2} V^{1/2} f\|_p \leq C_p \|f\|_p.$$

(iii) Suppose that $V \in B_q$ and $n/2 \leq q < n$. Then for $p_1' \leq p < \infty$,

$$\|(-\Delta + V)^{-1/2} \nabla f\|_p \leq C_p \|f\|_p$$

where $1/p_1 = 1/q' - 1/n$.

By duality, we can easily obtain the L^p-boundedness of T_i ($i = 1, 2, 3$). Take $T_3 = \nabla (-\Delta + V)^{-1/2}$ for example; using (iii) of Theorem 1.1, we find that T_3 is bounded on $L^p(\mathbb{R}^n)$, $1 < p \leq p_1$. So an interesting problem is the boundedness of T_i ($i = 1, 2, 3$) at the endpoint $p = 1$. In Section 2, we prove that the T_i ($i = 1, 2, 3$) are bounded from $L^1(\mathbb{R}^n)$ to $L^1_{\text{weak}}(\mathbb{R}^n)$. It was pointed out in [7] that if $V \in B_n$, then T_3 is a Calderón–Zygmund operator. So when considering $[b, T_3]$, we restrict ourselves to the case where $V \in B_q$ ($n/2 < q < n$).

In [3] the authors proved that for $b \in \text{BMO}(\mathbb{R}^n)$, the commutators $[b, T_i]$ ($i = 1, 2, 3$) are bounded on $L^p(\mathbb{R}^n)$ for some $p > 1$. Another problem we are interested in is the boundedness of commutators $[b, T_i]$ ($i = 1, 2, 3$) at endpoint $p = 1$ for $b \in \text{BMO}(\mathbb{R}^n)$. In [6] Pérez proved that if $b \in \text{BMO}(\mathbb{R}^n)$, the commutator $[b, T]$ may not be of weak-type $(1, 1)$ where T is a Calderón–Zygmund operator. In [4] Harboure et al. proved that, even if we restrict $f \in H^1(\mathbb{R}^n) \subset L^1(\mathbb{R}^n)$, $[b, T]f$ still may not be in $L^1(\mathbb{R}^n)$.

In [2] Dziubanski and Zienkiewicz studied the Hardy space H^1_L associated with the Schrödinger operator $L = -\Delta + V$, for $V \in B_q$, $q > n/2$. Actually they showed that if $f \in H^1_L(\mathbb{R}^n)$, then $T_3 f \in L^1(\mathbb{R}^n)$. So a natural question is whether the commutator $[b, T_3]$ is bounded from $H^1_L(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$ when $b \in \text{BMO}(\mathbb{R}^n)$? Unfortunately, in Section 3, we get a negative result. We give a counterexample to imply that the commutators $[b, T_i]$ ($i = 1, 2, 3$) may not be bounded from $H^1_L(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$.
These facts imply that, in order to get the H^1_L-boundedness of the commutators $[b, T_i]$ ($i = 1, 2, 3$), we need to replace of the space $L^1(R^n)$ by a larger class. In Section 4, we prove that, if $b \in \text{BMO}(R^n)$, the commutators $[b, T_i]$ ($i = 1, 2, 3$) are bounded from $H^1_L(R^n)$ into $L^1_{\text{weak}}(R^n)$.

In the rest of this section, we list some notation and properties for later use.

Definition 1.2. For $x \in R^n$, the function $m(x, V)$ is defined by

$$
\frac{1}{m(x, V)} = \sup_{r > 0} \left\{ r : \frac{1}{r^{n-2}} \int_{B(x, r)} V(y) \, dy \leq 1 \right\}.
$$

(1.3)

Clearly, $0 < m(x, V) < \infty$ for every $x \in R^n$ and if $r = 1/m(x, V)$, then $1/r^{n-2} \int_{B(x, r)} V(y) \, dy = 1$. For simplicity, we sometimes denote $1/m(x, V)$ by $\rho(x)$ in proofs.

The function $m(x, V)$ has many useful properties. We list them in the following lemmas.

Lemma 1.3 [7, Lemma 1.4]. There exist $C > 0$, $c > 0$ and $k_0 > 0$ such that for $x, y \in R^n$:

1. $m(x, V) \sim m(y, V)$, if $|x - y| \leq C/m(x, V)$;
2. $m(y, V) \leq C(1 + |x - y|m(x, V))^{k_0}m(x, V)$;
3. $m(y, V) \geq cm(x, V)/(1 + |x - y|m(x, V))^{k_0/(k_0+1)}$.

Lemma 1.4 [7, Lemma 1.8]. There exist $C > 0$ and $k_0 > 0$ such that if $Rm(x, V) \geq 1$, then

$$
\frac{1}{R^{n-2}} \int_{B(x, R)} V(y) \, dy \leq C(Rm(x, V))^{k_0}.
$$

When we estimate the integral of the kernels of T_i ($i = 1, 2, 3$), we need the following lemma.

Lemma 1.5 [3, Lemma 1]. Suppose that $V \in B_q$ for some $q > n/2$. Let $N > \log_2 C_0 + 1$, where C_0 is the constant in (1.2). Then for any $x_0 \in R^n$ and $R > 0$,

$$
\frac{1}{\{1 + m(x_0, V)R\}^N} \int_{B(x_0, R)} V(\xi) \, d\xi \leq R^{n-2}.
$$

2. The (L^1, L^1_{weak})-boundedness of T_i ($i = 1, 2, 3$)

In this section, we discuss the (L^1, L^1_{weak})-boundedness of T_i ($i = 1, 2, 3$). For the operator $T_3 = \nabla(-\Delta + V)^{-1/2}$, Li [5] proved the (L^1, L^1_{weak})-boundedness of the Riesz transform $X_{\lambda}L^{-1/2}$ associated with a Schrödinger operator on a nilpotent group. So we need only give the proof of T_i for $i = 1, 2$. For the proof, we need the well-known Calderón–Zygmund decomposition as follows.

Lemma 2.1 [8]. Let $f \in L^1$ and $\alpha > 0$; there exist a decomposition of f as $f = g + b$, where $b = \sum_k b_k$, and a sequence of balls $\{B_k^*\}$ such that:
Now we estimate

Using (i) and (iv) of Lemma 2.1,

Then by (i) of Theorem 1.1 and 1 < p < q,

Now we estimate \(|x : |T_1b(x)| > \alpha/2| |

\[\leq \sum_k |16B^*_k| + |\{x \in (\bigcup 16B^*_k)^c : |T_1b(x)| > \alpha/2\}| \]

\[\leq \frac{c}{\alpha} \int |f(x)| \, dx + |\{x \in (\bigcup 16B^*_k)^c : |T_1b(x)| > \alpha/2\}|. \]
By the cancelling property of b_k, we let $B^*_k = B(x_k, r_k)$. Then

$$\{x \in (\cup 16B^*_k)^c : |T_1 b(x)| > \alpha/2\}$$

$$\leq \frac{c}{\alpha} \int_{(\cup 16B^*_k)^c} |T_1 b(x)| \, dx$$

$$\leq \frac{c}{\alpha} \sum_k \int_{B^*_k} \int_{(\cup 16B^*_k)^c} |K_1(x, y) - K_1(x, x_k)| b_k(y) \, dy \, dx$$

$$\leq \frac{c}{\alpha} \sum_k \int_{B^*_k} |b_k(y)| \, dy \int_{(\cup 16B^*_k)^c} |K_1(x, y) - K_1(x, x_k)| \, dx.$$

Because $y \in B^*_k$, then $|y - x_k| < r_k < |x - x_k|/16$. In Lemma 2.3, set $h = |y - x_k|$. Then

$$|K_1(x, y) - K_1(x, x_k)| \leq \frac{C_K}{(1 + m(x_k, V)|x - x_k|)^K} \frac{|y - x_k|^\delta}{|x - x_k|^{n-2+\delta}} V(x).$$

By Lemma 1.5,

$$\int_{(\cup 16B^*_k)^c} |K_1(x, y) - K_1(x, x_k)| \, dx$$

$$\leq \int_{(\cup B^*_k)^c} \frac{C_K}{(1 + m(x_k, V)|x - x_k|)^K} \frac{|y - x_k|^\delta}{|x - x_k|^{n-2+\delta}} V(x) \, dx$$

$$\leq \sum_{j=4}^{\infty} \int_{2jr_k \leq |x - x_k| < 2jr_k} \frac{C_K}{(1 + m(x_k, V)|x - x_k|)^K} \frac{|y - x_k|^\delta}{|x - x_k|^{n-2+\delta}} V(x) \, dx$$

$$\leq \sum_{j=4}^{\infty} \frac{C_K}{(1 + m(x_k, V)2jr_k)^K} \frac{r_k^\delta}{(2jr_k)^{n-2+\delta}} \int_{|x - x_k| < 2^j r_k} V(x) \, dx$$

$$\leq \sum_{j=4}^{\infty} \frac{r_k^\delta}{(2jr_k)^{n-2+\delta}} (2^j r_k)^{n-2} \leq C.$$

Finally, we obtain

$$\{|x : |T_1 b(x)| > \alpha/2\} \leq \frac{c}{\alpha} \int |f(x)| \, dx + \frac{c}{\alpha} \sum_k \int_{B^*_k} |b_k(x)| \, dx$$

$$\leq \frac{c}{\alpha} \int |f(x)| \, dx.$$

This completes the proof of Theorem 2.2. \square

For the (L^1, L^1_{weak})-boundedness of T_2, we need the following lemma.
Lemma 2.4 [3, Lemma 3]. Suppose that $V \in B_q$ for some $q > n/2$. Then there exists $\delta > 0$ such that for any integer $K > 0$, $0 < h < |x - y|/16$,

$$|K_2(x, y)| \leq \frac{C_K}{(1 + m(y, V)|x - y|)^K} \frac{1}{|x - y|^{n-1}} V^{1/2}(x), \tag{2.3}$$

$$|K_2(x, y + h) - K_2(x, y)| \leq \frac{C_K}{(1 + m(y, V)|x - y|)^K} \frac{|h|^\delta}{|x - y|^{n-1+\delta}} V^{1/2}(x). \tag{2.4}$$

We now prove the (L^1, L^1_{weak})-boundedness of T_2.

Theorem 2.5. Suppose $V \in B_q$ for some $q > n/2$. If $T_2 = V^{1/2}(x)(-\Delta + V)^{-1/2}$, then T_2 is bounded from $L^1(R^n)$ into $L^1_{\text{weak}}(R^n)$.

Proof. By the Calderón–Zygmund decomposition,

$$|[x : |T_2 f(x)| > \alpha]| \leq |[x : |T_2 g(x)| > \alpha/2]| + |[x : |T_2 b(x)| > \alpha/2]|.$$

Similarly, we only need to estimate $|[x \in (\cup 16B_k^*)^c : |T_2 b(x)| > \alpha/2]|$. Set $B_k^* = B(x_k, r_k)$. Then by the cancelling of $b_k(x)$,

$$|[x \in (\cup 16B_k^*)^c : |T_2 b(x)| > \alpha/2]|$$

$$\leq \frac{C}{\alpha} \sum_k \int_{(\cup 16B_k^*)^c} \left| \int_{B_k^*} [K_2(x, y) - K_2(x, x_k)] b(y) \, dy \right| \, dx$$

$$\leq \frac{C}{\alpha} \sum_k \int_{B_k^*} |b(y)| \, dy \int_{(\cup 16B_k^*)^c} |K_2(x, y) - K_2(x, x_k)| \, dx.$$

Since $y \in B_k^*$ and $x \in (\cup 16B_k^*)^c$, then $|y - x_k| < r_k < |x - x_k|/16$. Let $h = |y - x_k|$, by Lemma 2.4 and Hölder’s inequality,

$$\int_{(\cup 16B_k^*)^c} |K_2(x, y) - K_2(x, x_k)| \, dx$$

$$\leq \sum_{j=4}^\infty \int_{2^jr_k < |x - x_k| \leq 2^{j+1}r_k} \frac{C_K}{(1 + m(x_k, V)|x - x_k|)^K} \frac{|y - x_k|^\delta}{|x - x_k|^{n-1+\delta}} V^{1/2}(x) \, dx$$

$$\leq \sum_{j=4}^\infty \frac{C_K}{(1 + m(x_k, V)2^jr_k)^K} \frac{r_k^\delta}{(2^jr_k)^{n-1+\delta}} (2^{2j+1}r_k)^{n/(2q)' - 1/2}$$

$$\times \left(\int_{|x - x_k| < 2^{j+1}r_k} V^q(x) \, dx \right)^{1/q}$$

$$\leq \sum_{j=4}^\infty \frac{C_K}{(1 + m(x_k, V)2^jr_k)^K} \frac{r_k^\delta}{(2^jr_k)^{n-1+\delta}} (2^{2j+1}r_k)^{n/(2q)' + n/2q - n/2}$$

$$\times \left(\int_{|x - x_k| < 2^{j+1}r_k} V(x) \, dx \right)^{1/2}.$$
Finally, we obtain
\[
\{|x : |T_2 b(x)| > \alpha/2|\} \leq \frac{C}{\alpha} \|f\|_1 + \frac{C}{\alpha} \sum_k \int_{B_k} |b_k(x)| \, dx \leq \frac{C}{\alpha} \|f\|_1.
\]

This completes the proof of Theorem 2.5. \(\square\)

In a similar manner to the two previous theorems, and using the following lemma, we can prove the \((L^1, L^1_{\text{weak}})\)-boundedness of \(T_3\).

Lemma 2.6 [3, Lemma 4]. Suppose that \(V \in B_q\) for some \(n/2 < q < n\). Then there exists \(\delta > 0\) and for any integer \(K > 0\), \(0 < h < |x - y|/16\),

\[
|K_3(x, y)| \leq \frac{C_K}{\{1 + m(y, V)|x - y|\}^K |x - y|^n |x - y|^n - 1}
\times \left(\int_{B(x, |x - y|)} \frac{V(\xi)}{|x - \xi|^n} \, d\xi + \frac{1}{|x - y|} \right),
\]

(2.5)

\[
|K_3(x, y + h) - K_3(x, y)| \leq \frac{C_K}{\{1 + m(y, V)|x - y|\}^K |x - y|^n |x - y|^n + \delta}
\times \left(\int_{B(x, |x - y|)} \frac{V(\xi)}{|x - \xi|^n} \, d\xi + \frac{1}{|x - y|} \right).
\]

(2.6)

Theorem 2.7. Suppose that \(V \in B_q\), \(n/2 < q < n\). Letting \(T_3 = \nabla(-\Delta + V)^{-1/2}\), then \(T_3\) is bounded from \(L^1(R^n)\) into \(L^1_{\text{weak}}(R^n)\).

3. Failure for \((H^1_L, L^1)\)-boundedness of \([b, T_3]\)

In [2] Dziubanski and Zienkiewicz studied the Hardy space \(H^1_L\) associated with a Schrödinger operator \(L\). In that paper they constructed the atomic Hardy space as follows.

Definition 3.1 \((H^1_L)\)-atom. For \(n \in \mathbb{Z}\), define the set \(\mathfrak{B}_n\) by

\[
\mathfrak{B}_n = \{x : 2^n/2 \leq m(x, V) < 2^{(n+1)/2}\}.
\]

Since \(0 < m(x, V) < \infty\), then \(R^n = \bigcup_n \mathfrak{B}_n\).

A function \(a(x)\) is an atom for the Hardy space \(H^1_L(R^n)\) associated with a ball \(B(x_0, r)\), if the following conditions hold:

(i) \(\supp a(x) \subset B(x_0, r)\);
(ii) \(\|a\|_{L^\infty} \leq 1/|B(x_0, r)|\);
(iii) if \(x_0 \in \mathfrak{B}_n\), then \(r \leq 2^{1-n/2}\);
(iv) if \(x_0 \in \mathfrak{B}_n\) and \(r \leq 2^{-1-n/2}\), then \(\int a(x) \, dx = 0\).
The atomic norm in $H^1_L(R^n)$ is defined by $\|f\|_{L-\text{atom}} = \inf(\sum_j |\lambda_j|)$, where the infimum is taken over all decompositions $f = \sum_j \lambda_j a_j$ where a_j are H^1_L-atoms.

In [2] the authors obtained the atomic decomposition of H^1_L as follows.

Theorem 3.2 [2, Theorem 1.5]. Assuming that V is a nonnegative potential such that $V \in B_{n/2}$, then the norms $\|f\|_{H^1_L}$ and $\|f\|_{L-\text{atom}}$ are equivalent, that is, there exists a constant $C > 0$ such that

$$C^{-1} \|f\|_{H^1_L} \leq \|f\|_{L-\text{atom}} \leq C \|f\|_{H^1_L}.$$

Using atomic decomposition, the authors obtained the following result.

Theorem 3.3 [2, Theorem 1.7]. If $V \in B_{n/2}$ is a nonnegative potential, then there is a constant $C > 0$ such that

$$C^{-1} \|f\|_{H^1_L} \leq \|f\|_{L^1} + \sum_{j=1}^d \|R^L_j f\|_{L^1} \leq C \|f\|_{H^1_L}.$$

where R^L_j denotes the jth component of the operator $T_3 = \nabla(\Delta + V)^{-1/2}$.

Theorem 3.3 implies that the Riesz transform R^L_j is bounded from $H^1_L(R^n)$ into $L^1(R^n)$. A natural question is whether the commutator $[b, R^L_j]$ is bounded from $H^1_L(R^n)$ into $L^1(R^n)$ for $b \in \text{BMO}(R^n)$. For Calderón–Zygmund operators, the answer is negative. In [4], Harboure et al. proved that for a singular integral operator T, if $[b, T]$ is bounded from $H^1(R^n)$ into $L^1(R^n)$, then b must be a constant. In this section we prove in a similar manner that for $T_3 = \nabla(\Delta + V)^{-1/2}$, the commutator $[b, T_3]$ may not be bounded from $H^1_L(R^n)$ into $L^1(R^n)$.

First we state the definition of the dual space of $H^1_L(R^n)$ which was introduced in [1].

Definition 3.4. We shall say that a locally integrable function f belongs to $\text{BMO}_L(R^n)$ whenever there is a constant $C > 0$ such that

$$\frac{1}{|B_s|} \int_{B_s} |f(y) - f_{B_s}| \, dy \leq C \quad \text{and} \quad \frac{1}{|B_r|} \int_{B_r} |f(y)| \, dy \leq C,$$

for all balls $B_s = B_s(x), B_r = B_r(x)$ such that $s \leq \rho(x) \leq r$. We let $\|f\|_{\text{BMO}_L}$ denote the smallest C in the above inequalities. Here and subsequently, we set $f_B = (1/|B|) \int_B f(x) \, dx$.

Theorem 3.5. Let $T_3 = \nabla(\Delta + V)^{-1/2}$ be the Riesz transform associated with the Schrödinger operator and let $b \in \text{BMO}_L(R^n)$. Then the following two statements are equivalent.

(i) The commutator $[b, T_3]$ is bounded from $H^1_L(R^n)$ into $L^1(R^n)$.

(ii) For any atom a supported in a ball with center x_0 and radius $r < \rho(x_0)$, for $u \in B$,

$$\int_{(33B)^c} |K_3(x, u)| \left| \int_B b(y) a(y) \, dy \right| \, dx \leq C.$$
PROOF. Because $a(x)$ is an H^1_L-atom, we assume that the support of $a(x)$ is $B(x_0, r)$. In order to estimate the L^1 norm of $T_3a(x)$, we divide the discussion into two cases as follows.

Case I. For $\rho(x_0) \leq r \leq 4\rho(x_0)$,

$$[b, T_3]a(x) = \chi_{2B}(x)[b, T_3]a(x) + \chi_{(2B)^c}(x)[b, T_3]a(x)$$

$$= \chi_{2B}(x)[b, T_3]a(x) + \chi_{(2B)^c}(x)b(x)T_3a(x) - \chi_{(2B)^c}(x)T_3(ba)(x)$$

$$=: M_1 + M_2 + M_3.$$

For M_1, by the L^p-boundedness $[b, T_3]$, we get

$$\|M_1\|_{L^1} = \int_{2B} |[b, T_3]a(x)| \, dx$$

$$\leq C \left(\int_{2B} |[b, T_3]a(x)|^p \, dx \right)^{1/p} |B|^{1-1/p}$$

$$\leq C \|a\|_p |B|^{1-1/p} \|b\|_{BMO_L}$$

For M_2, we have

$$\|M_2\|_{L^1} = \int_{(2B)^c} |b(x)||T_3a(x)| \, dx \leq \int_B |a(y)| \, dy \int_{(2B)^c} |b(x)||K_3(x, y)| \, dx.$$

Using Lemma 2.6,

$$\int_{(2B)^c} |b(x)||K_3(x, y)| \, dx$$

$$\leq \int_{(2B)^c} |b(x)| \frac{C_K}{[1 + m(y, V)|x - y|]K} \frac{1}{|x - y|^{n-1}}$$

$$\times \left(\int_{B(x,|x-y|)} \frac{V(z)}{|x - z|^{n-1}} \, dz \right) \, dx$$

$$+ \int_{(2B)^c} |b(x)| \frac{1}{[1 + m(y, V)|x - y|]K} \frac{1}{|x - y|^n} \, dx$$

$$=: M_{21} + M_{22}.$$

For M_{22}, because $y \in B$ and $|x - x_0| > 2^k r$ imply $|x - y| > |x - x_0| - |y - x_0| > 2^k r - r > 2^{k-1} r$,

$$M_{22} \leq \sum_{k=1}^{\infty} \int_{2^k < |x-x_0| \leq 2^{k+1} r} |b(x)| \frac{1}{|x - y|^n} \frac{C_K}{[1 + m(y, V)|x - y|]K} \, dx$$

$$\leq \sum_{k=1}^{\infty} \frac{C_K}{[1 + m(y, V)2^{k-1} r]^K} \frac{1}{(2^{k-1} r)^n} \int_{|x-x_0| \leq 2^{k+1} r} |b(x)| \, dx.$$
Therefore, choosing K large enough, we have

$$
M_{22} \leq \sum_{k=1}^{\infty} \frac{C_K}{1 + 2^{k-1} K} \|b\|_{\text{BMO}_L}.
$$

Because $|x - z| < |x - y|$ implies that $|z - x_0| \leq |z - x| + |x - x_0| \leq |x - y| + |x - x_0| \leq 2|x - x_0| + |y - x_0| < 2^{k+2}r + r < 2^{k+3}r$, then

$$
M_{21} \leq \sum_{k=1}^{\infty} \int_{2^r < |x - x_0| \leq 2^{k+1}r} \frac{C_K |y - x|^{|1-n|}}{(1 + m(y, V)|x - y|)^K} \left(\int_{B(x, |x - y|)} \frac{V(z)}{|x - z|^{|n-1|}} dz \right) |b(x)| dx
$$

$$
\leq \sum_{k=1}^{\infty} \frac{C_K}{1 + 2^{k-1} K} \frac{1}{(2^{k+1}r)^{n-1}} (2^{k+1}r)^{n/p'} \|b\|_{\text{BMO}_L}
$$

$$
\times \left\| \int_{B(x_0, 2^{k+3}r)} V(z) \left| x_{B(x_0, 2^{k+3}r)}(z) \right| |z - x|^{|n-1|} dz \right\|_{L^{p_1}(dx)}
$$

$$
\leq \sum_{k=1}^{\infty} \frac{C_K}{1 + 2^{k-1} K} \frac{1}{(2^{k+1}r)^{n-1}} \int_{B(x_0, 2^{k+3}r)} V(z) dz
$$

Because $2^{k+3}r > r \geq \rho(x_0)$ for $k \geq 1$, $2^{k+3}r m(x_0, V) > 1$. Then by Lemma 1.4, the double property of $V(x, dx)$ and $rm(x_0, V) \leq 4$ for $r \leq 4 \rho(x_0)$,

$$
\frac{1}{(2^{k+1}r)^{n-2}} \int_{B(x_0, 2^{k+3}r)} V(z) dz \leq C(2^{k+3}r m(x_0, V))^{k_0} \leq C 2^{k_0}.
$$

Therefore, choosing K large enough, we obtain

$$
M_{21} \leq C \|b\|_{\text{BMO}_L} \sum_{k=1}^{\infty} \frac{C_K}{(1 + 2^{k-1} K)^{K}} \cdot 2^{k_0} \leq C \|b\|_{\text{BMO}_L}.
$$

This implies that $\|M_2\|_{L^1} \leq C \|b\|_{\text{BMO}_L}$.

Finally, we estimate M_3:

$$
\|M_3\|_{L^1} = \int_{(2B)^c} \left| \int_B K_3(x, y) b(y) a(y) dy \right| dx
$$

$$
\leq \int_B |b(y)| |a(y)| \int_{|x - x_0| > 2r} \frac{C_K |x - y|^{|1-n|}}{(1 + m(y, V)|x - y|)^K} dy
$$
Then by Lemma 1.4, choosing K large enough,

\[
M_{31} \leq \sum_{k=1}^{\infty} \frac{C_K}{(1 + 2^{k-1})^K} \left(\int_{B(x, |x-y|)} \frac{1}{n-1}\left(\int_{B(x, |x-y|)} \frac{V(z)}{|z-x|^{n-1}} d\nu(z) \right) \right) d\nu(x).
\]

For $y \in B$, $|x - x_0| > 2^{k}r$, we have $|x - y| > |x - x_0| - |y - x_0| > 2^{k}r - r > 2^{k-1}r$, where $k \geq 1$. Then

\[
M_{32} = \int_{(2B)^c} \frac{C_K}{1 + m(y, V)[|x-y|]^{K}} \frac{1}{|x-y|^n} d\nu(x)
\]

\[
\leq \sum_{k=1}^{\infty} \int_{2^{k}r < |x-x_0| \leq 2^{k+1}r} \frac{C_K}{1 + m(y, V)[|x-y|]^{K}} \frac{1}{|x-y|^n} d\nu(x)
\]

\[
\leq \sum_{k=1}^{\infty} \frac{C_K}{1 + 2^{k-1}m(y, V)r} \left(\int_{|x-x_0| \leq 2^{k+1}r} \frac{1}{(2^{k-1}r)^n} d\nu(x) \right)
\]

Here we have used the fact that, for $4\rho(x_0) \geq r > \rho(x_0)$ and any $|y - x_0| < r < 4\rho(x_0)$, we have $m(y, V)r \geq r \rho(x_0) \sim 1$. For M_{31}, since $|y - x_0| < r$, $|x - x_0| > 2^{k}r$, then $|x - y| > |x - x_0| - |y - x_0| \geq 2^{k-1}r$. Then

\[
M_{31} = \int_{(2B)^c} \frac{C_K}{1 + m(y, V)[|x-y|]^{K}} \frac{1}{|x-y|^n} \left(\int_{B(x, |x-y|)} \frac{V(z)}{|z-x|^{n-1}} d\nu(z) \right) d\nu(x)
\]

\[
\leq \sum_{k=1}^{\infty} \frac{C_K}{1 + 2^{k-1}m(y, V)2^{k-1}r} \left(\int_{B(x, |x-y|)} \frac{V(z)}{|z-x|^{n-1}} d\nu(z) \right) d\nu(x)
\]

For $z \in B(x, |x-y|)$, $|z - x| \leq |x - y|$. So for every $y \in B(x_0, r)$ and $|x - x_0| \leq 2^{k+1}r$,

\[
|z - x_0| \leq |z - x| + |x - x_0|
\]

\[
\leq |x - y| + |x - x_0| \leq 2|x - x_0| + |y - x_0|
\]

\[
\leq 2^{k+2}r + r \leq 2^{k+3}r.
\]

Then by Lemma 1.4, choosing K large enough,

\[
M_{31} \leq \sum_{k=1}^{\infty} \frac{C_K}{(1 + 2^{k-1})^K} \left(\int_{B(x, |x-y|)} \frac{1}{n-1}\left(\int_{B(x, |x-y|)} \frac{V(z)}{|z-x|^{n-1}} d\nu(z) \right) \right) d\nu(x)
\]

\[
\leq \left\| \int_{B(x, 2^{k+1}r)} \frac{V(z)\chi_{B(x, 2^{k+1}r)}(z)}{|z-x_0|^{n-1}} d\nu(z) \right\|_{L^p(dx)}
\]
In fact, we have proved that for an

\[\rho(x_0) \leq r \leq 4\rho(x_0), \]

then \(1 \leq rm(x_0, V) \leq 4. \) Then for \(y \in B, \) \(|y - x_0| \leq r \leq 4\rho(x_0). \) Therefore we have \(m(x_0, V) \sim m(y, V) \) and \(1 \leq rm(y, V) \leq 4. \) Finally, using (ii) of Definition 3.1, we obtain

\[\| M_3 \|_{L^1} \leq \int_B |b(y)||a(y)|(M_{31} + M_{32}) \, dy \leq C \frac{1}{|B|} \int_B |b(y)| \, dy \leq C \| b \|_{BMO_L}. \]

In fact, we have proved that for an \(H^1 \)-atom \(a(x) \) with support \(B(x_0, r) \) with \(\rho(x_0) \leq r \leq 4\rho(x_0), \) if \(b \in BMO_L(R^n), \) then \(\| [b, T_3]a \|_{L^1} \leq C \| b \|_{BMO_L}. \)

Case II. For \(r < \rho(x_0), \) the atom \(a(x) \) has the cancelling condition \(\int_B a(x) \, dx = 0. \) For any \(u \in B, \)

\[
[b, T_3]a(x) = \chi_{33B}(x)[b, T_3]a(x) + \chi_{(33B)^c}(x)[b, T_3]a(x)
\]

\[
= \chi_{33B}(x)[b, T_3]a(x) + \chi_{(33B)^c}(x)(b(x) - b_B)T_3a(x)
\]

\[
- \chi_{(33B)^c}(x)T_3((b - b_B))a(x)
\]

\[
= \chi_{33B}(x)[b, T_3]a(x) + \chi_{(33B)^c}(x)(b(x) - b_B)T_3a(x)
\]

\[
- \chi_{(33B)^c}(x) \int [K_3(x, y) - K_3(x, u)](b(y) - b_B)a(y) \, dy
\]

\[
- \chi_{(33B)^c}(x) \int K_3(x, u)[b(y) - b_B]a(y) \, dy
\]

\[
=: I_1 + I_2 + I_3 + I_4.
\]

Clearly we can see that \(I_4 \) is the term in the integral of (ii) of Theorem 3.5. So we need only estimate \(I_i \) (i = 1, 2, 3) separately.

Because \([b, T_3] \) is bounded on \(L^p \) for \(1 < p < p_1, \) then we have

\[
\| I_1 \|_{L^1} \leq \int_{33B} \| [b, T_3]a(x) \| \, dx
\]

\[
\leq C|B|^{1-1/p} \left(\int_{33B} \| [b, T_3]a(x) \|^p \, dx \right)^{1/p}
\]

\[
\leq C|B|^{1-1/p} \| a \|^p \| b \|_{BMO_L}
\]

\[
\leq C \| b \|_{BMO_L}.
\]
By the cancelling property of $a(x)$,

$$\|I_2\|_{L^1} \leq \int_{(33B)^c} |b(x) - b_B| |T_3a(x)| \, dx$$

$$\leq \int_{(33B)^c} |b(x) - b_B| \int_B |K_3(x, y) - K_3(x, x_0)||a(y)| \, dy$$

$$\leq \int_B |a(y)| \, dy \int_{(33B)^c} |b(x) - b_B||K_3(x, y) - K_3(x, x_0)| \, dx.$$

Because $y \in B(x_0, r)$ and $x \in (33B)^c$, we have $|y - x_0| < |x - x_0|/16$. By Lemma 2.6, setting $h = |y - x_0|$,

$$|K_3(x, y) - K_3(x, x_0)| \leq \frac{C_K}{\{1 + m(x_0, V)|x - x_0|\}^K} \frac{|y - x_0|^\delta}{|x - x_0|^{n-1+\delta}}$$

$$\times \left(\int_{B(x, |x-x_0|)} \frac{V(\xi)}{|x - \xi|^{n-1}} \, d\xi + \frac{1}{|x - x_0|} \right).$$

Naturally we divide the integral into two parts,

$$\int_{(33B)^c} |b(x) - b_B||K_3(x, y) - K_3(x, x_0)| \, dx$$

$$\leq \int_{(33B)^c} \frac{C_K |b(x) - b_B|}{\{1 + m(x_0, V)|x - x_0|\}^K} \frac{|y - x_0|^\delta}{|x - x_0|^{n-1+\delta}}$$

$$\times \left(\int_{B(x, |x-x_0|)} \frac{V(\xi)}{|x - \xi|^{n-1}} \, d\xi \right) \, dx$$

$$+ \int_{(33B)^c} |b(x) - b_B| \frac{C_K}{\{1 + m(x_0, V)|x - x_0|\}^K} \frac{|y - x_0|^\delta}{|x - x_0|^{n+\delta}} \, dx$$

$$=: I_{22} + I_{22}.$$

For I_{22}, because $\text{BMO}_L(R^n)$ is a subspace of $\text{BMO}(R^n)$, then $\|b\|_{\text{BMO}} \leq \|b\|_{\text{BMO}_L}$.

We have

$$I_{22} \leq \sum_{k=5}^{\infty} \int_{2^k r < |x-x_0| \leq 2^{k+1} r} |b(x) - b_B| \frac{C_K}{\{1 + m(x_0, V)|x - x_0|\}^K} \frac{|y - x_0|^\delta}{|x - x_0|^{n+\delta}} \, dx$$

$$\leq \sum_{k=5}^{\infty} \frac{C_K}{\{1 + m(x_0, V)2^k r\}^K (2^k r)^{n+\delta}} (2^{k+1} r)^n (k + 2) \|b\|_{\text{BMO}}$$

$$\leq C\|b\|_{\text{BMO}_L} \sum_{k=5}^{\infty} \frac{(k + 2)}{2^{k\delta}}$$

$$\leq C\|b\|_{\text{BMO}_L}.$$
For \(I_{21} \), by Hölder’s inequality and Lemma 1.5,

\[
I_{21} \leq \sum_{k=5}^{\infty} \frac{C_K}{(1+2^k r_m(x_0, V))^K} \int_{|x-x_0| \leq 2^k r} \frac{r^\delta |b(x) - b_B|}{(2^k r)^{n-1+\delta}} \times \left(\int_{B(x,|x-x_0|)} \frac{V(\xi)}{|x - \xi|^{n-1}} \, d\xi \right) \, dx
\]

\[
\leq \sum_{k=5}^{\infty} \frac{C_K \|b\|_{BMO}}{(1+2^k r_m(x_0, V))^K} \frac{(k+2)r^\delta}{(2^k r)^{n-1+\delta}} \frac{(2^k r)^n}{p'_1}
\times \left(\int_{B(x_0,2^k r)} \frac{V^q(\xi)}{|x - \xi|^{n-1}} \, d\xi \right)^{1/q}
\leq \sum_{k=5}^{\infty} \frac{C_K \|b\|_{BMO_L}}{(1+2^k r_m(x_0, V))^K} \frac{(k+2)r^\delta}{(2^k r)^{n-1+\delta}} \frac{(2^k r)^n}{p'_1+n/q-n}
\times \int_{B(x_0,r)} V(\xi) \, d\xi
\leq C \|b\|_{BMO_L} \sum_{k=5}^{\infty} \frac{(k+2)r^\delta}{(2^k r)^{n-1+\delta}} \frac{(2^k r)^n}{p'_1+n/q-n-2}
\leq C \|b\|_{BMO_L}.
\]

Finally, for \(\|I_3\|_{L^1} \), we get

\[
\|I_3\|_{L^1} \leq \int_{(33B)^c} \int_B |K_3(x, y) - K_3(x, u)||b(y) - b_B||a(y)| \, dy \, dx
= \int_B |b(y) - b_B||a(y)| \, dy \int_{(16B)^c} |K_3(x, y) - K_3(x, u)| \, dx.
\]

On the one hand, because \(u \in B \), we have \(|y-u| \leq |y-x_0| + |x_0-u| \leq 2r \). On the other hand, for \(x \in (33B)^c \), we have \(|x-u| > |x-x_0| - |u-x_0| > 32r \). Therefore \(|y-u| \leq 2r \leq |x-u|/16 \). By Lemma 2.6, setting \(h = |y-u| \),

\[
|K_3(x, y) - K_3(x, u)| \leq \frac{C_K}{(1+m(u, V)|x-u|)K} \frac{|y-u|^\delta}{|x-u|^{n-1+\delta}} \times \left(\int_{B(x,|x-u|)} \frac{V(\xi)}{|x - \xi|^{n-1}} \, d\xi + \frac{1}{|x-u|} \right).
\]
Similarly, we divide the integral of the above inequality into
\[\int_{(33B)^c} |K_3(x, y) - K_3(x, u)| \, dx = I_{31} + I_{32}. \]

For \(I_{32} \), we have
\[
I_{32} \leq \sum_{k=5}^{\infty} \int_{2^k r \leq |x-u| \leq 2^{k+1} r} \frac{C_K}{(1 + m(u, V)|x-u|)^K} \frac{|y-u|^{\delta}}{|x-u|^{n+\delta}} \, dx \\
\leq C \sum_{k=5}^{\infty} \frac{r^{\delta}}{(2^k r)^{n+\delta}} (2^{k+1} r)^n \\
\leq C.
\]

For \(I_{31} \), notice that every \(\xi \in B(x, |x-u|) \), and \(|\xi - u| \leq 2|x-u| \). If \(|x-u| \leq 2^k r \), then \(|\xi - u| \leq 2^{k+2} r \). So we have
\[
I_{31} \leq \sum_{k=5}^{\infty} \frac{C_K}{(1 + m(u, V)|2^k r|)^K} \frac{r^{\delta}}{(2^k r)^{n-1+\delta}} (2^{k+1} r)^{n/p_1'} \\
\times \left\| \int V(\xi) \chi_{B(u, 2^k r)}(\xi) \frac{|x-\xi|^{n-1}}{|x-u|^{n-1}} \, d\xi \right\|_{L^{p_1}(dx)} \\
\leq \sum_{k=5}^{\infty} \frac{C_K}{(1 + m(u, V)|2^k r|)^K} \frac{r^{\delta}}{(2^k r)^{n-1+\delta}} (2^{k+1} r)^{n/p_1'} \left(\int_{B(u, 2^k r)} V^q(\xi) \, d\xi \right)^{1/q} \\
\leq \sum_{k=5}^{\infty} \frac{C_K}{(2^k r)^{\delta}} (2^{k+1} r)^{n/p_1'+n/q-n-2} \leq C.
\]

Then we have \(\|I_3\|_{L^1} \leq \int_B |b(y) - b_B| |a(y)| \, dy \leq (1/|B|) \int_B |b(y) - b_B| \, dy \leq \|b\|_{BMO_L} \). Finally, the estimate of \(\|I_i\|_{L^1} \) \((i = 1, 2, 3) \) implies that, for an \(H^1_L \)-atom \(a(x) \), \(\|T_3a(x)\|_{L^1} \leq C \) if and only if \(\|I_4\|_{L^1} \leq C \). This completes the proof of Theorem 3.5.

Counterexample 3.6. From Theorem 3.5, we find that the commutator \([b, T_3]\) may not be bounded from \(H^1_L(R^n) \) into \(L^1(R^n) \). We use a simple example to imply this conclusion. If we choose \(r \) small enough such that \(33r < \rho(x_0) \),
\[
\int_{|x-x_0|>33r} |K_3(x, x_0)| \, dx \\
\geq \int_{|x-x_0|>33r} |R(x, x_0)| \, dx - \int_{|x-x_0|>33r} |K_3(x, x_0) - R(x, x_0)| \, dx
\]
\[
\begin{align*}
\geq & \int_{|x-x_0|>33r} |R(x, x_0)| \, dx - \int_{|x-x_0|>\rho(x_0)} |K_3(x, x_0)| \, dx \\
& - \int_{|x-x_0|>\rho(x_0)} |R(x, x_0)| \, dx \\
& - \int_{33r<|x-x_0|\leq\rho(x_0)} |K_3(x, x_0) - R(x, x_0)| \, dx \\
\geq & \int_{33r<|x-x_0|<\rho(x_0)} |R(x, x_0)| \, dx - \int_{|x-x_0|>\rho(x_0)} |K_3(x, x_0)| \, dx \\
& - \int_{33r<|x-x_0|<\rho(x_0)} |K_3(x, x_0) - R(x, x_0)| \, dx \\
=: & \ M_1 - M_2 - M_3.
\end{align*}
\]

Shen [7] proved that there exist constants \(C_1, C_2 \) such that \(M_2 \leq C_1 \) and \(M_3 \leq C_2 \). Then by Theorem 3.5, if \([b, T_3] \) is bounded from \(H^1_L \) to \(L^1 \), then
\[
\left(\int_{33r<|x-x_0|<\rho(x_0)} |R(x, x_0)| \, dx - C_1 - C_2 \right) \left| \int b(y)a(y) \, dy \right| \leq C
\]
where \(|R(x, x_0)| = 1/|x-x_0|^n \). If we set \(V(x) = 1 \) for convenience, then by Definition 3.1, it is easy to see that \(\rho(x_0) = 1 \). By Definition 3.1, because \(r \) is the radius of the atom \(a(x) \), then \(r \leq 2^{1-n/2} \). This means that if \(n \) is large enough,
\[
\left(C \frac{n}{2} - C_1 - C_2 \right) \left| \int b(y)a(y) \, dy \right| \leq \left(\ln \frac{1}{33r} - C_1 - C_2 \right) \left| \int b(y)a(y) \, dy \right| \leq C,
\]
that is,
\[
\left| \int b(y)a(y) \, dy \right| \to 0 \quad \text{when} \ r \to 0 \ (n \to \infty). \quad (\ast)
\]

Unfortunately the conclusion \((\ast)\) is not true for a general atom \(a(x) \). For example, we set
\[
b(x) = \log |x|, \quad \text{when} \ |x| \leq 1, \quad b(x) = 0, \quad \text{otherwise};
a_k(x) = \begin{cases} -2^k, & \text{when} \ x \in \left(0, \frac{1}{2^{k+1}} \right), \\ 2^k, & \text{when} \ x \in \left(\frac{1}{2^{k+1}}, \frac{1}{2^k} \right). \end{cases}
\]

It can be proved that \(b(x) \in \text{BMO}_L(R^n) \) and \(a_k(x), k \in \mathbb{Z}^+ \) are \(H^1_L \)-atoms. We have, for every \(k \in \mathbb{Z}^+, \left| \int b(y)a_k(y) \, dy \right| = \ln 2 \), which is contrary to the conclusion \((\ast)\).

4. \((H^1_L, L^1_{\text{weak}})\)-boundedness of \([b, T_i], i = 1, 2, 3\)

The counterexample in Section 3 implies that, if \(b \in \text{BMO}_L(R^n) \) and \(b \) is nonzero in the \(\text{BMO}_L \) norm, we cannot guarantee that the commutators \([b, T_i] (i = 1, 2, 3)\) are bounded from \(H^1_L(R^n) \) into \(L^1(R^n) \). In this section we prove that if \(L^1 \) is replaced by a larger space, namely \(L^1_{\text{weak}}(R^n) \), then the \([b, T_i] (i = 1, 2, 3)\) are bounded on \(H^1_L(R^n) \).
THEOREM 4.1. Suppose that $V \in B_q$, $q > n/2$. Let $T_1 = V(x)(-\Delta + V)^{-1}$, $T_2 = V^{1/2}(-\Delta + V)^{-1/2}$ and $T_3 = \nabla(-\Delta + V)^{-1/2}$. For $b \in \text{BMO}$, the commutators $[b, T_i]$ ($i = 1, 2, 3$) are bounded from $H^1_L(R^n)$ into $L^1_{\text{weak}}(R^n)$.

PROOF. For convenience, we prove the $(H^1_L, L^1_{\text{weak}})$-boundedness of $[b, T_3]$. The proofs for $[b, T_1]$ and $[b, T_2]$ are similar. From Theorem 3.2, we know that for every $f \in H^1_L$, there exist a sequence of H^1_L-atoms $\{a_j(x)\}$ and a sequence of $\{\lambda_j\}$ for $j \in \mathbb{Z}$ such that $f = \sum_j \lambda_j a_j(x)$ and $\sum_j |\lambda_j| \leq \|f\|_{H^1_L}$. If we set the support of $a_j(x)$ as $B_j = B(x_j, r_j)$, then $r_j \leq 4\rho(x_0)$ by Definition 3.1. Therefore,

$$[b, T_3]f(x) = \sum_j \lambda_j [b, T_3]a_j(x)$$

$$= \sum_{r_j < \rho(x_j)} \lambda_j [b, T_3]a_j(x) + \sum_{\rho(x_j) \leq r_j < 4\rho(x_j)} \lambda_j [b, T_3]a_j(x)$$

$$=: \sum_1 \lambda_j [b, T_3]a_j(x) + \sum_2 \lambda_j [b, T_3]a_j(x),$$

where we denote

$$\sum_{r_j < \rho(x_j)} \lambda_j [b, T_3]a_j(x) \quad \text{by} \quad \sum_1 \lambda_j [b, T_3]a_j(x)$$

and

$$\sum_{\rho(x_j) \leq r_j < 4\rho(x_j)} \lambda_j [b, T_3]a_j(x) \quad \text{by} \quad \sum_2 \lambda_j [b, T_3]a_j(x).$$

Then

$$|\{x : |[b, T_3]f(x)| > \lambda\}| \leq \left| \left\{ x : \sum_1 \lambda_j [b, T_3]a_j(x) > \lambda/2 \right\} \right| + \left| \left\{ x : \sum_2 \lambda_j [b, T_3]a_j(x) > \lambda/2 \right\} \right|. $$

Hence we need to estimate $|\{x : \sum_i \lambda_j [b, T_3]a_j(x) > \lambda/2\}|$, $i = 1, 2$, separately.

Step I. First, we estimate $\left| \left\{ x : \sum_1 \lambda_j [b, T_3]a_j(x) > \lambda/2 \right\} \right|$. We have

$$\left| \left\{ x : \sum_1 \lambda_j [b, T_3]a_j(x) > \lambda/2 \right\} \right| \leq \left| \left\{ x : \sum_1 \lambda_j (b(x) - b_{B_j})T_3a_j(x) \chi_{(16B_j)}(x) > \lambda/6 \right\} \right| + \left| \left\{ x : \sum_1 \lambda_j (b(x) - b_{B_j})T_3a_j(x) \chi_{(16B_j)^c}(x) > \lambda/6 \right\} \right| + \left| \left\{ x : \sum_1 \lambda_j T_3((b - b_{B_j})a_j)(x) > \lambda/6 \right\} \right|$$

$$=: I_1 + I_2 + I_3.$$
For I_1, because T_3 is bounded on $L^p(\mathbb{R}^n)$, $1 < p < p_1$, $1/p_1 = 1/q - 1/n$,
\[
I_1 = \left| \left\{ x : \sum_{j=1}^\infty \lambda_j (b(x) - b_{B_j}) T_3 a_j(x) \chi_{(16B_j)^c}(x) > \lambda / 6 \right\} \right|
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \int_{16B_j} |b(x) - b_{B_j}| |T_3 a_j(x)| \, dx
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \left(\int_{16B_j} |b(x) - b_{B_j}|^2 \, dx \right)^{1/2} \left(\int_{16B_j} |T_3 a_j(x)|^2 \, dx \right)^{1/2}
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \|B_j\|^{1/2} \|b\|_{\text{BMO}} \|a_j\|_2
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \|b\|_{\text{BMO}}.
\]

For I_3, by Theorem 2.7, T_3 is of weak-type $(1, 1)$. Using Hölder’s inequality,
\[
\left| \left\{ x : \sum_{j=1}^\infty \lambda_j T_3((b - b_{B_j})a_j)(x) > \lambda / 6 \right\} \right|
\leq \frac{C}{\lambda} \sum_{j=1}^\infty \int_{B_j} |b(x) - b_{B_j}| |a_j(x)| \, dx
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \|b\|_{\text{BMO}}.
\]

For I_2, the atom a_j has the cancelling property when $r_j \leq \rho(x_j)$. We have
\[
\left| \left\{ x : \sum_{j=1}^\infty \lambda_j (b(x) - b_{B_j}) T_3 a_j(x) \chi_{(16B_j)^c}(x) > \lambda / 6 \right\} \right|
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \int_{(16B_j)^c} |b(x) - b_{B_j}| \times |T_3 a_j(x)| \, dx
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \int_{(16B_j)^c} |b(x) - b_{B_j}| \left| \int_{B_j} |K_3(x, y) - K_3(x, x_j)| a_j(y) \, dy \right| \, dx
\leq \frac{C}{\lambda} \sum_{j=1}^\infty |\lambda_j| \int_{B_j} |a_j(y)| \, dy \int_{(16B_j)^c} |b(x) - b_{B_j}| |K_3(x, y) - K_3(x, x_j)| \, dx.
\]

We set $I_{2, y} = \int_{(16B_j)^c} |b(x) - b_{B_j}| |K_3(x, y) - K_3(x, x_j)| \, dx$. Because $y \in B_j$, $|y - x_j| < r_j$ and $x \in (16B_j)^c$, $|x - x_j| > 16r_j$, then $|y - x_j| \leq |x - x_j|/16$. By (2.6) of Lemma 2.6,
\[
|K_3(x, y) - K_3(x, x_j)| \leq \frac{C_K}{\left(1 + m(x_j, V)|x - x_j|\right)^K} \frac{|y - x_j|^\delta}{|x - x_j|^{n-1+\delta}} \times \left(\int_{B(x, |x - x_j|)} \frac{V(u)}{|x - u|^{n-1}} \, du + \frac{1}{|x - x_j|} \right).
\]
Then
\[I_{2,y} = \int_{(16B)\gamma} |b(x) - b_{B_j}| |K_3(x, y) - K_3(x, x_j)| \, dx \]
\[\leq \int_{(16B)\gamma} \frac{C_K |b(x) - b_{B_j}| |y - x_j|^\delta}{\{1 + m(x, V)|x - x_j|\}^K |x - x_j|^{n-1+\delta}} \times \left(\int_{B(x, |x-x_j|)} \frac{V(u)}{|x-u|^n} \, du \right) \, dx \]
\[+ \int_{(16B)\gamma} |b(x) - b_{B_j}| \frac{|y - x_j|^\delta}{|x - x_j|^{n+\delta}} \, dx \]
\[=: I_{14,y}^1 + I_{14,y}^2. \]

For \(I_{2,y}^2\), we have
\[I_{2,y}^2 = \int_{(16B)\gamma} |b(x) - b_{B_j}| \frac{|y - x_j|^\delta}{|x - x_j|^{n+\delta}} \, dx \]
\[\leq \sum_{k=4}^\infty \int_{2^k r_j \leq |x-x_j|<2^{k+1}r_j} |b(x) - b_{B_j}| \frac{|y - x_j|^\delta}{|x - x_j|^{n+\delta}} \, dx \]
\[\leq \sum_{k=4}^\infty \frac{r_j^\delta}{(2^k r_j)^{n+\delta}} \int_{|x-x_j|<2^{k+1}r_j} |b(x) - b_{B_j}| \, dx \]
\[\leq C\|b\|_{BMO} \sum_{k=4}^\infty \frac{(k + 2)r_j^\delta}{(2^k r_j)^{n+\delta}} (2^{k+1} r_j)^n \]
\[\leq C\|b\|_{BMO}. \]

For \(I_{2,y}^1\), we have
\[I_{2,y}^1 \leq \sum_{k=4}^\infty \int_{2^k r_j \leq |x-x_j|<2^{k+1}r_j} \frac{C_K |b(x) - b_{B_j}| |y - x_j|^\delta}{\{1 + m(x, V)|x - x_j|\}^K |x - x_j|^{n-1+\delta}} \times \left(\int_{B(x, |x-x_j|)} \frac{V(u)}{|x-u|^n} \, du \right) \, dx \]
\[\leq \sum_{k=4}^\infty \frac{C_K}{\{1 + m(x, V)2^k r_j\}^K} \frac{r_j^\delta}{(2^k r_j)^{n-1+\delta}} \int_{2^k r_j \leq |x-x_j|<2^{k+1}r_j} |b(x) - b_{B_j}| \times \left(\int_{B(x, |x-x_j|)} \frac{V(u)}{|x-u|^n} \, du \right) \, dx. \]

Because every \(u \in B(x, |x-x_j|)\) implies that \(|u - x_j| \leq 2|x - x_j| \leq 2^{k+2}r_j\) for \(|x - x_j| < 2^{k+1}r_j\), then by Hölder’s inequality and Lemma 1.5.
We estimate Step II. Similar to the proof of step I, using the

\[
I_2 = \sum_{k=4}^{\infty} \frac{C_K}{\{1 + m(x_j, V)^{2k}r_j\}^K} \frac{r_j^\delta}{(2k r_j)^{n-1+\delta}}
\]

\[
\times \left(\int_{|x-x_j| < 2^{k+1}r_j} |b(x) - b_{B_j}|^{p_1'} dx \right)^{1/p_1'}
\]

\[
\times \left| \int \frac{V(u) \chi_{B(x_j, 2^{k+2}r_j)}(u)}{|x - u|^{n-1}} du \right|_{L^{p_1}(dx)}
\]

\[
\leq C \sum_{k=4}^{\infty} \frac{\||b||_{BMO}}{\{1 + m(x_j, V)^{2k}r_j\}^K} \frac{(k + 2)r_j^\delta}{(2k r_j)^{n-1+\delta}}
\]

\[
\times \left(\int_{B(x_j, 2^{k+2}r_j)} V(u) du \right)^{1/q}
\]

\[
\leq C \sum_{k=4}^{\infty} \frac{(k + 2)r_j^\delta}{(2k r_j)^{n-1+\delta}} \frac{(2k+1) r_j^{n/p_1'+n/q-n}}{\{1 + m(x_j, V)^{2k}r_j\}^K}
\]

\[
\times \left[\int_{B(x_j, 2^{k+2}r_j)} V(u) du \right]^{1/q}
\]

\[
\leq C \|b\|_{BMO} \sum_{k=4}^{\infty} \frac{(k + 2)r_j^\delta}{(2k r_j)^{n-1+\delta}} \frac{(2k+1) r_j^{n/p_1'+n/q-n-n-2}}{
\}

\] where we have used the fact that, for \(1/q = 1/p - 1/n, n/p_1' + n/q - n + n - 2 = n - 1\). Then

\[
I_2 \leq \frac{C}{\lambda} \sum_{1} |\lambda_j| \int_{B_j} |a_j(y)|(I_{14, y}) dy \leq \frac{C}{\lambda} \|b\|_{BMO} \sum_{1} |\lambda_j|.
\]

Step II. We estimate \(|\{x : |\sum_2 \lambda_j [b, T_3]a_j(x) > \lambda/2\}|. Notice that in this case, \(\rho(x_j) \leq r_j \leq \rho(x_0)\), the atom \(a_j(x)\) has no cancelling property. Similarly,

\[
\left| \left\{ x : \sum_2 \lambda_j [b, T_3]a_j(x) > \lambda/2 \right\} \right|
\]

\[
\leq \left| \left\{ x : \sum_2 \lambda_j (b(x) - b_{B_j})T_3a_j(x) \chi_{(2B_j)}(x) > \lambda/6 \right\} \right|
\]

\[
+ \left| \left\{ x : \sum_2 \lambda_j (b(x) - b_{B_j})T_3a_j(x) \chi_{(2B_j)\complement}(x) > \lambda/6 \right\} \right|
\]

\[
+ \left| \left\{ x : \sum_2 \lambda_j T_3((b - b_{B_j})a_j)(x) > \lambda/6 \right\} \right|
\]

\[
=: I_4 + I_5 + I_6.
\]

Similar to the proof of step I, using the \(L^p\)- and \((L^1, L^1)\)-boundedness of \(T_3\),

\[
I_4 \leq \frac{C}{\lambda} \|b\|_{BMO} \sum_2 |\lambda_j| \quad \text{and} \quad I_6 \leq \frac{C}{\lambda} \|b\|_{BMO} \sum_2 |\lambda_j|.
\]
For I_5, we have
\[
I_5 = \left\{ x : \left| \sum_j \lambda_j (b(x) - b_{B_j}) T_3 a_j(x) (x_{2B_j}) \right| > \lambda / 6 \right\}
\]
\[
\leq \frac{C}{\lambda} \sum_j |\lambda_j| \int_{(2B_j)^c} |b(x) - b_{B_j}| |T a_j(x)| \, dx
\]
\[
\leq \frac{C}{\lambda} \int_{B_j} |a_j(y)| \, dy \int_{(2B_j)^c} |b(x) - b_{B_j}| |K_3(x, y)| \, dx.
\]
We set $I_{5,y} = \int_{(2B_j)^c} |b(x) - b_{B_j}| |K_3(x, y)| \, dx$. By (2.5) of Lemma 2.6,
\[
|K_3(x, y)| \leq \frac{C_K}{\{1 + m(y, V)|x - y|\}^K} \frac{1}{|x - y|^{n-1}}
\times \left(\int_{B(x,|x-y|)} \frac{V(u)}{|x - u|^{n-1}} \, du + \frac{1}{|x - y|} \right).
\]
Then
\[
I_{5,y} = \int_{(2B_j)^c} |b(x) - b_{B_j}| |K_3(x, y)| \, dx
\]
\[
\leq \int_{(2B_j)^c} \frac{C_K |b(x) - b_{B_j}|}{\{1 + m(y, V)|x - y|\}^K} \frac{1}{|x - y|^{n-1}} \left(\int_{B(x,|x-y|)} \frac{V(u)}{|x - u|^{n-1}} \, du + \frac{1}{|x - y|} \right) \, dx
\]
\[
+ \int_{(2B_j)^c} \frac{C_K |b(x) - b_{B_j}|}{\{1 + m(y, V)|x - y|\}^K} \frac{1}{|x - y|^n} \, dx
\]
\[=: I_{5,y}^1 + I_{5,y}^2.
\]
For $I_{5,y}^2$, we have
\[
I_{5,y}^2 = \int_{(2B_j)^c} \frac{C_K |b(x) - b_{B_j}|}{\{1 + m(y, V)|x - y|\}^K} \frac{1}{|x - y|^n} \, dx
\]
\[
\leq \sum_{k=1}^{\infty} \frac{C_K}{\{1 + m(y, V)2^{k-1}r_j\}^K} \frac{1}{(2^{k-1}r_j)^n} \int_{2^k r_j \leq |x-x_j| < 2^{k+1} r_j} |b(x) - b_{B_j}| \, dx
\]
\[
\leq \sum_{k=1}^{\infty} (k+2) \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^K}
\]
\[
\leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} \frac{C_K (k+2)}{(1 + 2^{k-1})^K}
\]
\[
\leq C \|b\|_{\text{BMO}}.
\]
Here, in the second inequality, we used the fact that because $y \in B_j$, $|y - x_j| < r_j$, then $|x - y| > |x - x_j| - |y - x_j| > 2^{k-1} r_j$ for $2^k r_j \leq |x-x_j| < 2^{k+1} r_j$. In the fourth inequality, we used the fact that because $\rho(x_j) \leq r_j \leq \rho(x_0)$, then $|y - x_j| < r_j < 4 \rho(x_j)$, $m(y, V) \sim m(x, V)$ and $1 \leq r_j m(x_j, V) \leq 4$.
Finally, we estimate $I_{5,y}^1$. For every $u \in B(x, |x - y|)$, $|u - x| < |y - x_j| + |x - x_j|$, then for $2^kr_j \leq |x - x_j| < 2^k r_j$, we have $|x - y| > 2^{k-1}r_j$ and $|u - x_j| < |x - u| + |x - x_j| < |y - x_j| + 2|x - x_j| < 2^{k+3}r_j$. Using Hölder’s inequality,

$$I_{5,y}^1 = \int_{(2B_j)^c} \frac{C_K |b(x) - b_{B_j}|}{\{1 + m(y, V)|x - y|\}^{K}} \frac{1}{|x - y|^{n-1}} \left(\int_{B(x, |x - y|)} V(u) \frac{1}{|x - u|^{n-1}} \, du \right) \, dx \leq \sum_{k=1}^{\infty} \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k+1}r_j)^{n/\rho_1'}}{(2^{k-1}r_j)^{n-1}} \left(\int_{|x - x_j| < 2^{k+3}r_j} V^q(x) \, dx \right)^{1/q} \times \left(\int_{|x - x_j| < 2^{k+1}r_j} V^{q'}(x) \, dx \right)^{1/q'} \times \left(\int_{|x - x_j| < 2^{k+1}r_j} \frac{1}{|x - u|^{n-1}} \, du \right)^{1/p_1}.$$

Because $y \in B(x_j, r)$, we have $|y - x_j| < 4 \rho(x_j)$ and $m(x_j, V) \sim m(y, V)$. For $\rho(x_j) \leq r_j \leq 4 \rho(x_j)$, we have $1 \leq m(x_j, V)r_j \leq 4$. By Lemma 1.4 and the fractional integral,

$$I_{5,y}^1 \leq C \sum_{k=1}^{\infty} \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k+1}r_j)^{n/\rho_1'}}{(2^{k-1}r_j)^{n-1}} \left(\int_{|x - x_j| < 2^{k+3}r_j} V^{q}(x) \, dx \right)^{1/q} \times \left(\int_{|x - x_j| < 2^{k+3}r_j} V^{q'}(x) \, dx \right)^{1/q'} \times \left(\int_{|x - x_j| < 2^{k+1}r_j} \frac{1}{|x - u|^{n-1}} \, du \right)^{1/p_1} \leq C \sum_{k=1}^{\infty} \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k+1}r_j)^{n/\rho_1'+n/q-n}}{(2^{k-1}r_j)^{n-1}} \left(\int_{|x - x_j| < 2^{k+3}r_j} V(x) \, dx \right) \leq C \sum_{k=1}^{\infty} \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k+1}r_j)^{n/\rho_1'+n/q-n}}{(2^{k-1}r_j)^{n-1}} \left(\int_{|x - x_j| < 2^{k+3}r_j} V(x) \, dx \right) \leq C \sum_{k=1}^{\infty} \frac{C_K \|b\|_{\text{BMO}}}{\{1 + m(y, V)2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k+1}r_j)^{n/\rho_1'+n/q-n}}{(2^{k-1}r_j)^{n-1}} \left(\int_{|x - x_j| < 2^{k+3}r_j} V(x) \, dx \right) \leq C \|b\|_{\text{BMO}} \sum_{k=1}^{\infty} \frac{C_K}{\{1 + 2^{k-1}r_j\}^{K}} \frac{(k + 2)(2^{k-1}r_j)^{n/\rho_1'+n/q-n}}{(2^{k-1}r_j)^{n-1}} \leq C \|b\|_{\text{BMO}}.$$

Finally, we obtain

$$I_{5} \leq \frac{C}{\lambda} \sum_{j} |\lambda_j| \int_{B_j} |a_j(y)| (I_{5,y}) \, dy \leq \frac{C}{\lambda} \|b\|_{\text{BMO}} \sum_{j} |\lambda_j|.$$

This completes the proof of Theorem 4.1. \qed
Acknowledgement

The first author is grateful to Professor Jie Xiao for his kind hospitality at the Memorial University of Newfoundland in St. John’s where part of this work was conceived.

References

PENGTAO LI, Department of Mathematics, Faculty of Science and Technology, University of Macau, Av. Padre Tomás Pereira, Taipa, Macau, PR China
e-mail: li_ptao@163.com

LIZHONG PENG, LMAM School of Mathematical Sciences, Peking University, Beijing 100871, PR China
e-mail: lzpeng@pku.edu.cn