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Abstract The conditions under which the solution of the non-local thermistor problem

ut = ∆u +
λf(u)

(
∫
Ω f(u) dx)2

, x ∈ Ω ⊂ R
N , N � 2, t > 0,

∂u(x, t)
∂ν

+ β(x)u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

blows up are investigated. We assume that f(s) is a decreasing function and that it is integrable in (0, ∞).
Considering a suitable functional we prove that for all λ > 0 the solution of the Neumann problem blows
up in finite time. The same result is obtained for the Robin problem under the assumption that λ is
sufficiently large (λ � 1). In the proof of existence of blow-up for the Dirichlet problem we use the
subsolution technique. We are able to construct a blowing-up lower solution under the assumption that
either λ > λ∗ or 0 < λ < λ∗, for some critical value λ∗, and that the initial condition is sufficiently large
provided also that f(s) satisfies the decay condition

∫ ∞
0 [sf(s) − s2f ′(s)] ds < ∞.

Keywords: non-local parabolic problems; blow-up; comparison techniques; thermistor problem

2000 Mathematics subject classification: Primary 35K60; 35B50; 35Q
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1. Introduction

The operation of the thermistor, a device for regulating electric current in a circuit, is
described by the following system:

ut = ∇ · (κ(u)∇u) + ρ(u)|∇φ|2, x ∈ Ω, t > 0, (1.1)

∇ · (ρ(u)∇φ) = 0, x ∈ Ω, t > 0, (1.2)

together with some boundary conditions for u(x, t) and φ(x, t) on ∂Ω (see, for example,
[3,4]). Ω is assumed to be a smooth, bounded open set of R

N , N � 1, and stands for
the spatial domain occupied by the conductor (the body of the thermistor); the physical
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situation corresponds to N = 3. Moreover, φ(x, t) is the electrical potential, u(x, t) the
temperature inside the conductor, κ(u) > 0 the thermal conductivity, and ρ(u) > 0
stands for the electrical conductivity. The parabolic equation (1.1) describes the heat
flow in the system, while the elliptic equation (1.2) describes the conservation of charge
in the system provided that its variation in space and time is not too rapid.

Under some simplifications the system (1.1), (1.2) might be reduced to a single, but
non-local, equation. Let us suppose that the thermal conductivity κ, the density and
the specific heat of the conductor are constant. If in addition the initial distribution of
temperature changes only in the direction of the x-axis and the potential difference V

applied on the sides of the conductor is fixed, then system (1.1), (1.2) after scaling takes
the form of a one-dimensional single equation:

ut = uxx +
λf(u)

(
∫ 1

−1 f(u) dx)2
, −1 < x < 1, t > 0, (1.3)

where f(u) stands for the electrical resistance of the conductor and λ = V 2 is the
parameter of the problem. The same one-dimensional, non-local model describes the
variation of temperature in the case where the conductor–thermistor is short and fat. In
contrast with this one-dimensional model, the second configuration, when the conductor–
thermistor is long and thin, is described by a two-dimensional model:

ut = ∆u +
λf(u)

(
∫

D
f(u) dx)2

, x ∈ D, t > 0, D ⊂ R
2, (1.4)

where D is the cross-section of the conductor–thermistor Ω, f(u) now represents the
electrical conductivity of the conductor, and λ = I2/A2 with A the area of the cross-
section D. In this case, the current I is considered to be constant. According to the nature
of the conductor, the resistivity may be either an increasing or decreasing function of
temperature. Consequently, f could be assumed to be a monotone function. For a detailed
analysis regarding the construction of the models (1.3) and (1.4) see [20, 23] and the
references therein. For another configuration of the conductor–thermistor, the so-called
narrowing process, which considers that only a small part, and not the whole of the
thermistor, is cylindrical, see [5]. Also, steady states of the full problem (1.1), (1.2) were
investigated in [1,10,11].

Equation (1.3) can also be used to describe thermoviscous flow of linear materials. In
this case, stress τ is assumed to satisfy ∂τ/∂x = 0 and τ ∝ ∂v/∂x, where v(x, t) is the
velocity in the y-direction. For a nonlinear material the same situation is described, after
some scaling, by the equation

ut = uxx +
λf(u)

(
∫ 1

−1 f(u) dx)p
, −1 < x < 1, t > 0,

where p > 1, since now τ ∝ (∂v/∂x)k for some k > 0 (see [22]). In the case of a nonlinear
conductor, when |j| ∝ |∇φ|k, k > 0, a two-dimensional version

ut = ∆u +
λf(u)

(
∫

Ω
f(u) dx)p

, x ∈ Ω, t > 0, Ω ⊂ R
2, (1.5)
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p > 1, can be derived to describe the thermoelectric flow in the conductor (see [22] and
the references therein).

Also, for p = 1 equation (1.5) can describe phenomena associated with the occurrence
of shear bands in metals being deformed under high strain rates [6–8], in the theory
of gravitational equilibrium of polytropic stars [19], in the investigation of the fully
turbulent behaviour of real flows, using invariant measures for the Euler equation [9],
and in modelling aggregation of cells via interaction with a chemical substance (chemo-
taxis) [24].

In this work we do not dwell on existence and uniqueness results. We always assume
that our equation (1.4), with some boundary and initial conditions, has a unique suffi-
ciently smooth solution in a small time interval (0, T ). Such (local) existence and unique-
ness results, for a Lipschitz function satisfying f(s) � c > 0, s > 0, can be derived using
Picard iteration type arguments (see [20]). Moreover, these arguments also yield that the
solution exists as long as it remains bounded, i.e. solutions cease to exist only through
blow-up (‖u(· , t)‖∞ → ∞ as t → t∗ � ∞). With the same arguments we can also prove
local existence and uniqueness in the case of a temperature-dependent thermal conduc-
tivity κ(u) > 0 (see problems (2.10)–(2.12) and (3.8)–(3.10) below). For some blow-up
results regarding the case when p = 1, see [16,24].

The question of the occurrence of blow-up for the thermistor problem has attracted
the interest of many researchers. First Antontsev and Chipot suggested in [3], and then
improved in [4], an energy method to prove blow-up for the solution of the system
(1.1), (1.2). Barabanova [5], using the same method, proved blow-up for the solution of
the system (1.1), (1.2), considering a special configuration of the problem (see above).
Considering now the non-local problem (1.2), N > 1, if f is a decreasing function, we have
a variation of the comparison results that apply to the more standard parabolic problems
(see [20]). Taking advantage of this fact, Lacey [20, 21] and Tzanetis [23] proved the
occurrence of blow-up for the one-dimensional model (1.3) and for the two-dimensional
radially symmetric model (1.4), respectively. Actually, first they estimated the supremum
λ∗ of the spectrum of the related steady-state problem and then they proved blow-up,
for λ > λ∗, by constructing some blowing-up lower solutions for the problem. If f is an
increasing function, then blow-up cannot take place, as has been proven in [6,20]. In this
case, blow-up would be expected to occur only if p < 1 [6,17].

In this article, we generalize the blow-up results existing in [20,21,23], for dimensions
N � 2, p > 1, and for nonlinear-diffusion non-local problems. More precisely, for Neu-
mann and Robin boundary conditions, using the energy method introduced in [3,4], we
prove that in the case of a rapidly decreasing f , blow-up occurs for every λ > 0 and
for sufficiently large λ, respectively. The main advantage of this method is that it does
not require any knowledge about the corresponding steady-state problem, while for the
methods used in [20,21,23] such a knowledge was necessary. Moreover, it can be used to
prove the occurrence of blow-up in the case of a nonlinear-diffusion ohmic heating process
and for p > 1 as well. This method provides us, in the case of the Robin problem, with an
upper bound for the supremum λ∗ of the spectrum of the associated steady-state prob-
lem. Unfortunately, this method does not seem to be applicable for Dirichlet boundary
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conditions. In this case, we again prove blow-up but using comparison techniques. Using
some ideas of Bebernes and Lacey [6], we construct, for large enough initial conditions,
a lower solution that blows up. This construction provides us with an upper estimate of
the blow-up time with respect to λ−λ∗ that seems to be in agreement with the blow-up
estimates given in [18] for the Robin problem. In any case we prove that blow-up is global
and uniform (flat), i.e. u(x, t) ∼ ‖u(· , t)‖∞ as t → t∗− for a.e. x ∈ Ω.

The plan of the paper is as follows. In § 2, we study the Neumann problem. We construct
a proper functional which allows us to deduce finite blow-up for the solution u(x, t) and
for every λ > 0. In § 3, modifying the form of the functional constructed in § 2, we prove
blow-up for the solution of the Robin problem for large values of the parameter λ. Finally,
in § 4 we consider the Dirichlet problem. By constructing a lower solution of a delicate
form which blows up, we deduce that the solution u(x, t) blows up in finite time for large
enough initial conditions and for sufficiently large values of the parameter λ.

2. Neumann Problem

We start our study from the simplest case, when u(x, t) satisfies Neumann boundary
conditions, i.e. the boundary of the thermistor is thermally insulated, and so the (dimen-
sionless) temperature u(x, t) satisfies the problem

ut = ∆u +
λf(u)

(
∫

Ω
f(u) dx)2

, x ∈ Ω, t > 0, (2.1)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0, (2.2)

u(x, 0) = u0(x), x ∈ Ω, (2.3)

where f(s) > 0, f ′(s) < 0. Here ∂/∂ν denotes the normal outward derivative to the
boundary ∂Ω. Throughout this work we assume that u0(x) � 0.

In this case the associated steady-state problem

∆w +
λf(w)

(
∫

Ω
f(w) dx)2

= 0, x ∈ Ω,
∂w

∂ν
= 0, x ∈ ∂Ω, (2.4)

does not permit any kind of solution for every λ > 0. Actually, if we integrate the equation
of problem (2.4) we get

0 =
λ∫

Ω
f(w) dx

,

which is a contradiction. We can prove the same result using maximum-principle argu-
ments (Hopf’s lemma). The lack of stationary solutions is an indication that time-
dependent solutions should be unbounded.

From the physical point of view, since the source term is positive, the system is provided
with heat. On the other hand, the boundary condition ∂u/∂ν = 0 prevents any heat
from escaping. So, in such a situation, one expects the solution (concentration of heat)
to become unbounded. This physical situation is described by the following theorem.
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Theorem 2.1. There exists t∗ � ∞ such that ‖u(· , t)‖∞ → ∞ as t → t∗. If∫ ∞
0 f(s) ds < ∞, then u(x, t) blows up in finite time, i.e. t∗ < ∞, while if

∫ ∞
0 f(s) ds = ∞,

then t∗ = ∞. Moreover, blow-up is global and flat (uniform), i.e.

‖u(· , t)‖∞ ∼ u(x, t) as t → t∗ − for a.e. x ∈ Ω.

In order to prove this theorem we need the following auxiliary result (see also [12,15]).

Lemma 2.2. Let T > 0 and let z ∈ C1([0, T ); C(Ω̄)), where Ω is a bounded domain
of R

N . Then for every t ∈ [0, T ) there exist points ξ(t), σ(t) ∈ Ω̄ with

M(t) := max
x∈Ω̄

z(x, t) = z(ξ(t), t), m(t) := min
x∈Ω̄

z(x, t) = z(σ(t), t),

and the functions M(t), m(t) are almost everywhere (a.e.) differentiable on (0, T ) with

dM

dt
(t) = zt(ξ(t), t) and

dm

dt
(t) = zt(σ(t), t) a.e. on (0, T ). (2.5)

Proof. Let us fix t ∈ [0, T ). Since z ∈ C1([0, T ); C(Ω̄)) and Ω is bounded, there
exist points ξ(t), σ(t) ∈ Ω̄ such that M(t) := maxx∈Ω̄ z(x, t) = z(ξ(t), t) and m(t) :=
minx∈Ω̄ z(x, t) = z(σ(t), t). In the following we prove that M(t) satisfies relation (2.5).
The proof that m(t) satisfies (2.5) as well follows the same steps and so we omit it.

Now let s, t ∈ [0, T ) be fixed. If M(t) � M(s) we have

0 � M(s) − M(t) = z(ξ(s), s) − max
x∈Ω̄

z(x, t) � z(ξ(s), s) − z(ξ(s), t),

and so we conclude that

|M(t) − M(s)| � ‖z(t) − z(s)‖C(Ω̄).

Now the mean-value theorem for functions in Banach spaces (C(Ω̄) in this case) yields
(see [13])

|M(t) − M(s)| � |t − s| max
0�τ�max{t,s}

‖zt(τ)‖C(Ω̄), t, s ∈ [0, T ).

Since zt ∈ C([0, T ); C(Ω̄)), we get that M(t) is locally Lipschitz on [0, T ) and hence
almost everywhere differentiable on (0, T ) in view of Rademacher’s theorem (see [14]).

Let us fix t ∈ (0, T ), then since z ∈ C1([0, T ); C(Ω̄)) we have

sup
y∈Ω

∣∣∣∣z(y, t + h) − z(y, t)
h

− zt(y, t)
∣∣∣∣ → 0 as h → 0. (2.6)

By the definition of M(t),

M(t + h) = z(ξ(t + h), t + h) � z(ξ(t), t + h).

Therefore, given h > 0, we obtain

M(t + h) − M(t)
h

� z(ξ(t), t + h) − z(ξ(t), t)
h

.

https://doi.org/10.1017/S001309150500101X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150500101X


394 N. I. Kavallaris and T. Nadzieja

Now letting h → 0+ and using (2.6) we get

lim inf
h→0+

M(t + h) − M(t)
h

� zt(ξ(t), t), t ∈ (0, T ). (2.7)

On the other hand,

M(t − h) = z(ξ(t − h), t − h) � z(ξ(t), t − h),

and so
M(t) − M(t − h)

h
� z(ξ(t), t) − z(ξ(t), t − h)

h
, h > 0.

Again letting h → 0+ and using (2.6) we obtain

lim sup
h→0−

M(t + h) − M(t)
h

� zt(ξ(t), t), t ∈ (0, T ). (2.8)

Since M(t) is a.e. differentiable, relations (2.7) and (2.8) imply that

dM

dt
(t) = zt(ξ(t), t) a.e. on (0, T ).

This completes the proof. �

Proof of Theorem 2.1. First we assume that
∫ ∞
0 f(s) ds < ∞. Under this assump-

tion and the positivity of u (which is a consequence of the maximum principle) the
functional

Y (t) =
∫

Ω

∫ ∞

u(x,t)
f(σ) dσ dx

is well defined and non-negative. Taking the derivative of Y (t) with respect to t and using
equation (2.1) we obtain

Y ′(t) = −
∫

Ω

f(u)ut dx = −
∫

Ω

f(u)∆u dx −
λ

∫
Ω

f2(u) dx

(
∫

Ω
f(u) dx)2

.

Using Jensen’s inequality for φ(s) = s2 and integration by parts we have

Y ′(t) � −
∫

Ω

f(u)∆u dx − λ

|Ω| =
∫

Ω

f ′(u)|∇u|2 dx − λ

|Ω| .

Now using the monotonicity of f(s) we finally get

Y ′(t) � − λ

|Ω| .

Hence

0 � Y (t) � Y (0) − λ

|Ω| t.
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The latter yields that u(x, t) cannot exist beyond t∗, where

t∗ � T ∗
u =

|Ω|Y (0)
λ

< ∞. (2.9)

Since the solution u(x, t) of (2.1)–(2.3) ceases to exist only when it becomes unbounded,
we deduce that ‖u(· , t)‖∞ → ∞ as t → t∗− (finite-time blow-up). An immediate result
of relation (2.9) is that as the L1-norm of the initial conditions increases, the bound T ∗

u

on the blow-up time, as is expected, decreases. Moreover, we can prove that u(x, t) blows
up globally and uniformly, i.e. u(x, t) ∼ ‖u(· , t)‖∞ as t → t∗ for a.e. x ∈ Ω (global and
flat blow-up).

Using similar arguments to those in [21] we can prove that blow-up is global,
i.e. u(x, t) → ∞ as t → t∗ for almost every x ∈ Ω. Indeed, if we set N(t) = maxx∈Ω̄u(x, t),
then, in view of Lemma 2.2, N(t) satisfies

dN(t)
dt

� h(t)f(N(t)), for h(t) =
λ

(
∫

Ω
f(u(x, t)) dx)2

,

where we have also used the fact that the maximum of u(x, t) is attained in Ω. Since f

is decreasing we finally obtain
dN(t)

dt
� h(t)f(0).

Given that N(t) → ∞ as t → t∗ we get that

∫ t

0
h(s) ds → ∞ as t → t∗,

which yields, since h(t) < ∞ for t < t∗, that h(t) → ∞ as t → t∗ and so we deduce global
blow-up. Now note that n(t) = minx∈Ω̄ u(x, t); then, in view of Lemma 2.2, we obtain

dn

dt
� λf(n)

(
∫

Ω
f(u) dx)2

� λf(N)
(
∫

Ω
f(u) dx)2

� dN

dt
, a.e. in (0, t∗),

and finally n(t) < N(t) � n(t) + C, C = N(0) − n(0), for every t ∈ (0, t∗). The latter
implies that blow-up is uniform. Moreover, u(x, t) → ∞ for all x ∈ Ω as t → t∗.

In the following we will show that the relation
∫ ∞
0 f(s) ds = ∞ ensures that prob-

lem (2.1)–(2.3) has a global-in-time unbounded solution. Indeed, again using the fact
that N(t) satisfies

dN

dt
� λf(N)

(
∫

Ω
f(u) dx)2

� λ

f(N)|Ω|2 a.e. in (0, t),

for every t > 0, and integrating over (0, t) yields

∫ N(t)

N(0)
f(s) ds � λ

|Ω|2 t,
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for every t > 0. The latter implies that the solution cannot blow up. So either the solution
exists for all times and it is bounded or it diverges, i.e. N(t) → ∞ as t → ∞. From the
inequality ( ∫

Ω

u(x, t) dx

)
t

� λ

|Ω|f(0)
> 0,

we deduce that limt→∞
∫

Ω
u(x, t) dx = ∞. Hence N(t) is unbounded. �

Remark 2.3. Using the same method as above we can prove the existence of global
and flat blow-up for the problem

ut = ∇ · (κ(u)∇(u)) +
λf(u)

(
∫

Ω
f(u) dx)p

, x ∈ Ω, t > 0, (2.10)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0, (2.11)

u(x, 0) = u0(x), x ∈ Ω, (2.12)

where κ(u) � c > 0 and p � 2.

Remark 2.4. If 1 < p < 2, we are also able, using the same method, to prove the
occurrence of blow-up under the assumption∫ ∞

0
fp−1(s) ds < ∞. (2.13)

We consider the functional

Y (t) =
∫

Ω

∫ ∞

u(x,t)
fp−1(σ) dσ dx,

which is now well defined due to (2.13). Differentiating and applying integration by parts
we obtain

Y ′(t) =
∫

Ω

(p − 1)fp−2(u)f ′(u)|∇u|2 dx −
λ

∫
Ω

fp(u) dx

(
∫

Ω
f(u) dx)p

� −
λ

∫
Ω

fp(u) dx

(
∫

Ω
f(u) dx)p

,

since f(s) is decreasing. Making use of Hölder’s inequality we obtain

Y ′(t) � − λ

|Ω|p/q
,

where q = p/(p − 1). Thus

0 � Y (t) � Y (0) − λ

|Ω|p/q
t

and so u(x, t) blows up in finite time t∗ where the upper bound on the blow-up time is
now given by the relation

T ∗
u =

Y (0)|Ω|p/q

λ
.

Again we can prove that blow-up is global and uniform.

https://doi.org/10.1017/S001309150500101X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150500101X


On the blow-up of the non-local thermistor problem 397

3. Robin problem

Now we discuss the problem applying a Robin condition, i.e. considering Newtonian
cooling, over the whole boundary ∂Ω:

ut = ∆u +
λf(u)

(
∫

Ω
f(u) dx)2

, x ∈ Ω, t > 0, (3.1)

∂u

∂ν
+ βu(x, t) = 0, x ∈ ∂Ω, t > 0, (3.2)

u(x, 0) = u0(x), x ∈ Ω, (3.3)

where β = β(x) > 0. We still assume that f(s) > 0, f ′(s) < 0 and
∫ ∞
0 f(s) ds < ∞;

actually, for simplicity we take ∫ ∞

0
f(s) ds = 1. (3.4)

The main result of this section is the following theorem.

Theorem 3.1. If u(x, t) is a solution of (3.1)–(3.3), then for λ sufficiently large there
exists t∗ < ∞ such that ‖u(· , t)‖∞ → ∞ as t → t∗−, i.e. u(x, t) blows up in finite time.
Moreover, blow-up is global and flat.

Proof. In this case the technique used for the Neumann problem fails because when
integrating by parts the term containing ∂u/∂ν does not vanish any more on the bound-
ary. In order to overcome this difficulty we have to properly modify the form of the
functional Y (t), so that the boundary terms are killed. This can be done using an auxil-
iary function in the definition of Y (t). More precisely, we now consider the functional

Y (t) =
∫

Ω

Ψ(x)
( ∫ ∞

u(x,t)
f(σ) dσ

)
dx,

where Ψ(x) is the Robin eigenfunction corresponding to the principal eigenvalue of the
Laplacian, i.e. Ψ(x) satisfies the problem

−∆Ψ = µ1Ψ, x ∈ Ω,
∂Ψ

∂ν
+ βΨ = 0, x ∈ ∂Ω. (3.5)

It is known (see, for example, [2, Theorem 4.3]) that µ1 is positive and that Ψ(x) does
not change sign in Ω̄, so it can be chosen to be positive and for simplicity normalized so
that ∫

Ω

Ψ(x) dx = 1. (3.6)

Hence the functional Y (t) is non-negative and well defined because of the relation (3.4).
Differentiating Y (t) and using (3.1) we obtain

Y ′(t) = −
∫

Ω

Ψ(x)f(u)ut = −
∫

Ω

Ψ(x)f(u)∆u dx −
λ

∫
Ω

f2(u)Ψ(x) dx

(
∫

Ω
f(u) dx)2

.
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Integrating by parts and using Jensen’s inequality we obtain

Y ′(t) � −
∫

∂Ω

Ψ(s)f(u)
∂u

∂ν
ds +

∫
Ω

∇(Ψ(x)f(u)) · ∇u dx − λm

|Ω|

=
∫

∂Ω

β(s)Ψ(s)f(u)u ds +
∫

Ω

∇(Ψ(x))f(u) · ∇u dx +
∫

Ω

Ψ(x)f ′(u)|∇u|2 dx − λm

|Ω| ,

where m = minx∈Ω̄ Ψ(x) > 0.
Using the monotonicity of f we have

Y ′(t) �
∫

∂Ω

βΨf(u)u ds +
∫

∂Ω

∂Ψ

∂ν

( ∫ u

0
f(σ) dσ

)
ds −

∫
Ω

∆Ψ

( ∫ u

0
f(σ) dσ

)
dx − λm

|Ω|

=
∫

∂Ω

βΨf(u)u ds −
∫

∂Ω

βΨ

( ∫ u

0
f(σ) dσ

)
ds + µ1

∫
Ω

Ψ

( ∫ u

0
f(σ) dσ

)
dx − λm

|Ω|

� µ1

∫
Ω

Ψ

( ∫ ∞

0
f(σ) dσ

)
dx − λm

|Ω|

= µ1 − λm

|Ω| ,

where relations (3.4) and (3.6) have also been taken into account. If we integrate the last
relation over (0, t) we get

Y (t) � Y (0) −
(

λm

|Ω| − µ1

)
t,

and so if we choose λ > λ̂ = µ1|Ω|/m, we observe that u(x, t) cannot be extended beyond

T ∗
u =

Y (0)
(λm/|Ω|) − µ1

,

and so it should blow up in finite time t∗ � T ∗
u . Using the same arguments as in the

analysis of the Neumann problem it can be proven that blow-up is also global. The
uniform nature of blow-up can be proven either by using arguments similar to those used
in the Neumann problem or by using the same arguments used for the Dirichlet problem
(see the next section). �

For the Robin problem, our method, apart from the occurrence of blow-up, provides us
with an upper estimate of the critical parameter, say λ∗, above which the corresponding
steady-state problem

∆w +
λf(w)

(
∫

Ω
f(w) dx)2

= 0, x ∈ Ω,
∂w

∂ν
+ βw(x) = 0, x ∈ ∂Ω, (3.7)

has no solutions. Indeed, we claim that λ∗ � λ̂, because otherwise, for initial condi-
tions u(x, 0) < wm(x; λ), where wm(x; λ) is the minimal solution of problem (3.7) cor-
responding to λ̂ < λ < λ∗, we could prove, using ideas similar to those in [21], that
u(x, t) → wm(x) as t → ∞, which is a contradiction since blow-up occurs for every initial
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condition if λ > λ̂. This estimate seems not to be optimal, at least for f(s) = e−s, since
Bebernes and Lacey conjectured (in [6]) that λ∗, in this case, should be proportional to
2|∂Ω|2. However, for the one-dimensional case our estimate λ̂ improves the existing ones
in the literature (see [21,23]).

Remark 3.2. In the case of a temperature-dependent thermal conductivity κ(u) > 0,
u satisfies the problem

ut = ∇(κ(u)∇u) +
λf(u)

(
∫

Ω
f(u) dx)2

, x ∈ Ω, t > 0, (3.8)

∂u

∂ν
+ βu(x, t) = 0, x ∈ ∂Ω, t > 0, (3.9)

u(x, 0) = u0(x), x ∈ Ω, (3.10)

we can prove that blow-up occurs under the additional assumption that κ(s) satisfies the
conditions (f(s)κ(s))′ < 0, s > 0 and

∫ ∞
0 f(s)κ(s) ds < ∞, or∫ ∞

0
f(s)κ(s) ds = 1, (3.11)

after scaling. Indeed, considering again the functional Y (t), differentiating with respect
to t and using equation (3.8) we obtain

Y ′(t) � −
∫

Ω

Ψ(x)f(u)∇(κ(u)∇u) dx − λm

|Ω| ,

where we have also applied Jensen’s inequality; we recall that m = minx∈Ω̄ Ψ(x) > 0 and
Ψ(x) > 0 is the eigenfunction associated with the principal eigenvalue µ1 of problem (3.5)
satisfying (3.6).

Using integration by parts now, we get

Y ′(t) � −
∫

∂Ω

Ψf(u)κ(u)
∂u

∂ν
ds +

∫
Ω

∇(Ψ(x)f(u))κ(u) · ∇(u) dx − λm

|Ω|

= β

∫
∂Ω

Ψf(u)κ(u)u ds +
∫

Ω

∇Ψ(x) · ∇
( ∫ u

0
f(σ)κ(σ) dσ

)
dx

+
∫

Ω

Ψ(x)f ′(u)κ(u)|∇u|2 dx − λm

|Ω| (due to the boundary conditions)

� β

∫
∂Ω

Ψf(u)κ(u)u ds − β

∫
∂Ω

Ψ

( ∫ u

0
f(σ)κ(σ) dσ

)
ds

−
∫

Ω

∆Ψ

( ∫ u

0
f(σ)κ(σ) dσ

)
dx − λm

|Ω| (since f ′(s) < 0)

= µ1 − λm

|Ω| (since (f(s)κ(s))′ < 0 and (3.6), (3.11) are full field).

The latter yields

0 < Y (t) � Y (0) −
(

λm

|Ω| − µ1

)
t,
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and finally we conclude that the solution of (3.8)–(3.10) blows up globally in finite time
by

T ∗
u =

Y (0)
(λm/|Ω|) − µ1

,

provided that λ > λ̂ = µ1|Ω|/m. It can also be proven that blow-up is global and uniform.
When the exponent of the non-local term is p > 2 we can prove again that the solution

of the corresponding time-dependent problem blows up for large values of the parameter
λ. We consider again Y (t) and following the same steps as in the case p = 2 we obtain

Y ′(t) � µ1 − λm

∫
Ω

f2(u) dx

(
∫

Ω
f(u) dx)p

.

Using Jensen’s inequality, the above relation takes the form

Y ′(t) � µ1 − λm

|Ω|p−1fp−2(0)
,

where we have also used the fact that f(s) is decreasing. Thus

0 � Y (t) � Y (0) −
(

λm

|Ω|p−1fp−2(0)
− µ1

)
t,

and if we choose

λ > λ̂ =
µ1|Ω|p−1fp−2(0)

m
,

then we finally observe that u(x, t) blows up, again uniformly and globally, as t → t∗,
where

t∗ � T ∗
u =

Y (0)
(λm/|Ω|p−1fp−2(0)) − µ1

.

It can also be proven that λ̂ is an upper bound of critical value λ∗.

Remark 3.3. For 1 < p < 2, we should again impose the condition that f(s) satisfies∫ ∞
0 fp−1(s) ds < ∞ or, after scaling,∫ ∞

0
fp−1(s) ds = 1. (3.12)

It is enough to consider the functional

Y (t) =
∫

Ω

Ψ(x)
( ∫ ∞

u(x,t)
fp−1(σ) dσ

)
dx,

which is well defined and positive; here Ψ(x) is again the principal eigenfunction of
problem (3.5) normalized by the condition (3.6). Following the same steps as in the case
p = 2 and using the monotonicity of fp−1(s), we get that

Y ′(t) � µ1 −
λm

∫
Ω

fp(u) dx

(
∫

Ω
f(u) dx)p

.
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This last relation takes the form

Y ′(t) � µ1 − λm

|Ω|p/q
,

in view of Hölder’s inequality, where q = p/(p − 1), and so we obtain that

0 � Y (t) � Y (0) −
(

λm

|Ω|p/q
− µ1

)
t.

Consequently, for λ > λ̂ = µ1|Ω|p/q/m, we deduce that ‖u(· , t)‖∞ → ∞ as t → t∗, where

t∗ � T ∗
u =

Y (0)
(λm/|Ω|p/q) − µ1

.

Apart from the fact that blow-up is global, we can also prove that it is uniform as well.
Moreover, λ̂ again provides an upper-bound estimate of the critical value λ∗.

4. The Dirichlet problem

In this section we deal with the problem

ut = ∆u +
λf(u)

(
∫

Ω
f(u) dx)2

, x ∈ Ω, t > 0, (4.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (4.2)

u(x, 0) = u0(x), x ∈ Ω. (4.3)

In this case we expect blow-up to occur if f(s) satisfies the condition∫ ∞

0
f(s) ds < ∞. (4.4)

Indeed, under (4.4) there exists a critical parameter λ∗ � 2|∂Ω|2 (see Theorem 2.2 in [6])
such that the steady-state problem

∆w +
λf(w)

(
∫

Ω
f(w) dx)2

= 0, x ∈ Ω, w(x) = 0, x ∈ ∂Ω (4.5)

has no solutions for λ > λ∗.
If we try to prove blow-up again using the (positive) functional

Y (t) =
∫

Ω

Ψ(x)
( ∫ ∞

u(x,t)
f(σ) dσ

)
dx,

where now Ψ(x) > 0 is the eigenfunction corresponding to the principal eigenvalue µ1 of
−∆ with Dirichlet conditions, we obtain that

Y ′(t) � µ1 −
λ

∫
Ω

f2(u)Ψ(x) dx

(
∫

Ω
f(u) dx)2

.
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But this relation does not enable us, as it does in the Robin case, to deduce blow-up
because now it seems difficult to find a positive lower (time-independent) bound for the
quantity

λ
∫

Ω
f2(u)Ψ(x) dx

(
∫

Ω
f(u) dx)2

.

Thus we will prove blow-up, for λ > λ∗, by constructing a lower solution of problem
(4.1)–(4.3) that blows up. Our main result in this section is the following theorem.

Theorem 4.1. For λ > λ∗ and sufficiently large initial conditions the solution of the
problem (4.1)–(4.3) blows up globally and uniformly in finite time provided that f(s)
satisfies

∫ ∞
0 [sf(s) − s2f ′(s)] ds < ∞.

Proof. For the construction of this lower solution we will need to first define a lower
solution of problem (4.5), which was first introduced by Bebernes and Lacey in [6]. This
lower solution has the form

v(x; µ, ν, δ) =

⎧⎪⎨
⎪⎩

V (
√

νδd(x, ∂Ω); µ), d(x, ∂Ω) <
µ√
νδ

,

V (µ; µ) = M, d(x, ∂Ω) � µ√
νδ

,
(4.6)

where V is the solution of the problem

V ′′ + f(V ) = 0, 0 < y < µ, V (0; µ) = 0, V ′(µ; µ) = 0, (4.7)

while δ = λ/(
∫

Ω
f(w) dx)2 is the so-called local parameter of (4.5) and ν is a constant

to be determined later. Here d(x, ∂Ω) stands for the distance between x ∈ Ω and the
boundary ∂Ω. As is indicated in [6], d is smooth and more precisely |∆d| < K, for
some K, in a neighbourhood of the boundary if ∂Ω is smooth. In particular, such a
neighbourhood consists of all x ∈ Ω such that d(x, ∂Ω) � µ/

√
νδ < ρ where ρ is smaller

than the infimum of the radius of the largest interior ball touching the boundary at
some z ∈ ∂Ω. Hence in the following δ is chosen large enough to ensure that µ/

√
νδ < ρ.

Now we proceed as in [6]. Obviously, v satisfies the correct boundary condition and is
C1 while

∆v + δf(v) = δf(V (µ)) > 0 for d(x, ∂Ω) � µ√
νδ

,

∆v + δf(v) = νδ|∇d|2V ′′ +
√

νδV ′∆d + δf(V )

= (1 − ν)δf(V ) +
√

νδV ′∆d where d(x, ∂Ω) <
µ√
νδ

> (1 − ν)δf(V ) −
√

δKV ′ � 0 for ν < 1,

provided that ν � 1 − (KG(µ)/
√

δ), where G(µ) = supy∈(0,µ)(V ′/f(V )). So, on choosing
ν = 1 − KG(µ)/

√
δ, v is a lower solution of problem (4.5) for sufficiently large δ, i.e. for

λ < λ∗ sufficiently close to λ∗.

https://doi.org/10.1017/S001309150500101X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150500101X


On the blow-up of the non-local thermistor problem 403

Problem (4.7) yields that V satisfies

V ′2 = 2
∫ M

V

f(s) ds = 2
∫ ∞

V

f(s) ds − 2
∫ ∞

M

f(s) ds = 2(F (V ) − F (M)),

where F (σ) =
∫ ∞

σ
f(s) ds and so the relation between µ and M is defined by

µ = µ(M) =
1√
2

∫ M

0
[F (s) − F (M)]−1/2 ds. (4.8)

We now consider as a candidate lower solution the function

z(x, t) =

⎧⎪⎨
⎪⎩

V (
√

νδd(x, ∂Ω); µ), d(x, ∂Ω) <
µ√
νδ

,

V (µ; µ) = M(t), d(x, ∂Ω) � µ√
νδ

,
(4.9)

where the functions µ = µ(t), M = M(t), δ = δ(t) and the constant ν should be
determined. Actually, due to (4.8) the dependence between M(t) and µ(t) is determined,
while we are free to choose the dependence between M(t) and δ(t). It is evident, from the
definition of z(x, t) that, if the ratio µ/

√
νδ decreases to 0 as t increases, then the spatial

independent behaviour of z(x, t) dominates the behaviour near the boundary, i.e. the
growth of z(x, t) is uniform (flat) as t increases. In the following we will choose M(t) and
the dependence between M and δ such that, for large enough initial conditions, z(x, t) is
a lower solution of problem (4.1)–(4.3) which blows up in finite time. Indeed, we choose

δ = δ(M) = M2/f(M), (∗)

while we impose the condition that M(t) satisfies

Ṁ(t) :=
dM

dt
=

λ − λ∗

(
∫

Ω
f(z) dx)2

inf
x∈Ω

{
f(z)
zM

}
> 0 for t > 0, (4.10)

and M(0) is chosen large enough so that δ0 = δ(M(0)) = M2(0)/f(M(0)) is also suffi-
ciently large (note that δ′(M) > 0). We have

zM =
∂z

∂M
=

∂V

∂y
y′(M) +

∂V

∂µ
µ′(M) > 0,

where y = y(M) =
√

νδ(M)d(x, ∂Ω). In fact, differentiating problem (4.7) with respect
to y and using the monotonicity of f(s) together with maximum-principle arguments we
get ∂V/∂y > 0. Besides, y′(M) = 1

2y(M)δ′(M)/δ(M) > 0 and µ′(M), Vµ(y; µ) > 0. After
scaling, Y = y/µ yields that problem (4.7) can be written in the form

W ′′ + µ2f(W ) = 0, 0 < Y < 1, W (0; µ) = 0, W ′(1; µ) = 0,

where W (Y ) = V (y). Differentiating this problem with respect to µ we obtain

−W ′′
µ − µ2f ′(W )Wµ = 2µf(W ) > 0, 0 < Y < 1, Wµ(0; µ) = 0, W ′

µ(1; µ) = 0,
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which implies, via the maximum principle, that Wµ(Y ; µ) = Vµ(y; µ) > 0 for 0 < y < µ

and Wµ(1; µ) = M ′(µ) > 0, hence µ′(M) > 0.
Now if we choose δ0 � 1, then since δ′(M) > 0 and M(t) satisfies (4.10) we obtain

that δ(t) � 1 for every t > 0. Hence

−∆z � δ(t)f(z) for every t > 0, (4.11)

provided that ν is chosen such that

ν � inf
M>M(0)

(
1 − KG(M)√

δ(M)

)
, (4.12)

and M(0) � 1 (see also the comments after the definition of v(x; µ, ν, δ)). This choice is
possible since G(M)/

√
δ(M) → 0 as M → ∞ (see below).

Thus

zt − ∆z − λf(z)
(
∫

Ω
f(z) dx)2

= zMṀ(t) − ∆z − λf(z)
(
∫

Ω
f(z) dx)2

� zMṀ(t) + δ(t)f(z) − λf(z)
(
∫

Ω
f(z) dx)2

due to (4.11)

� zMṀ(t) +
[λ∗ − λ]f(z)
(
∫

Ω
f(z) dx)2

= zM

(
λ − λ∗

(
∫

Ω
f(z) dx)2

inf
x∈Ω

{
f(z)
zM

}
+

[λ∗ − λ]
(
∫

Ω
f(z) dx)2

f(z)
zM

)

=
zM (λ − λ∗)

(
∫

Ω
f(z) dx)2

[
inf
x∈Ω

{
f(z)
zM

}
− f(z)

zM

]
� 0,

since δ(t) � λ∗/(
∫

Ω
f(z) dx)2 holds for M(0) sufficiently large, which results from (∗),

(4.18) and the definition of z(x, t). Hence, if M(t) satisfies (4.10), then z(x, t) is a lower
solution of problem (4.1)–(4.3) for sufficiently large initial conditions. In the following we
show that (4.10) also permits us to deduce blow-up for the lower solution z(x, t).

First we notice that

inf
x∈Ω

{
f(z)
zM

}
= min

{
f(M), inf

d(x,∂Ω)<µ/
√

νδ

{
f(z)
zM

}}
,

where

inf
d(x,∂Ω)<µ/

√
νδ

{
f(z)
zM

}
= inf

y∈(0,µ)

{
f(V (y; µ))
VM (y; µ)

}
=

1
supy∈(0,µ){VM (y; µ)/f(V (y; µ))} .

Since

VM (y; µ) = 1
2y

δ′(M)
δ(M)

∂V

∂y
+

∂V

∂µ
µ′(M),
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then

sup
y∈(0,µ)

{
VM (y; µ)

f(V (y; µ))

}
� 1

2
δ′(M)
δ(M)

sup
y∈(0,µ)

{
Vy(y; µ)y
f(V (y; µ))

}
+ sup

y∈(0,µ)

{
Vµ(y; µ)µ′(M)

f(V (y; µ))

}

� 1
2

δ′(M)
δ(M)

G(µ(M))µ(M) + sup
y∈(0,µ)

{
Vµ(y; µ)

f(V (y; µ))

}
µ′(M). (4.13)

But

µ(M)/
√

δ(M) � 1 as M → ∞ (4.14)

and

G(µ(M))/
√

δ(M) � 1 as M → ∞ (4.15)

hold. The former follows from the relation (4.8):

µ(M) =
1√
2

∫ M

0
[F (s) − F (M)]−1/2 ds

� 1√
2

∫ M

0
[(M − s)f(M)]−1/2 ds

=

√
2M

f(M)
� M√

f(M)
=

√
δ(M) as M → ∞.

Now, taking into account the monotonicity of f we notice that

f2(M)(F (V ) − F (M))/f2(V ) � (M − V )f2(M)/f(V ) � (M − V )f(M) � Mf(M),

which implies

G(µ(M)) = sup
V ∈(0,M)

√
2(F (V ) − F (M))

f(V )

�
√

2M

f(M)

� M√
f(M)

=
√

δ(M) as M → ∞.

Moreover,

sup
y∈(0,µ)

{
Vµ(y; µ)

f(V (y; µ))

}
� Vµ(µ; µ)

f(V (µ; µ))
=

M ′(µ)
f(M)

, (4.16)

since
∂2V (y; µ)

∂µ∂y
= −

∫ y

0
f ′(V (s; µ))Vµ(s; µ) ds +

∂2V (0; µ)
∂µ∂y

� 0.
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Now relation (4.13) using (4.14), (4.15) and (4.16) takes the form

sup
y∈(0,µ)

{
VM (y)

f(V (y))

}
< 1

2δ′(M) +
1

f(M)
∼ 1

2δ′(M) for M � 1,

since

lim
M→∞

2/δ′(M)
f(M)

= lim
M→∞

2
2M − (M2f ′(M)/f(M))

= 0.

Thus

inf
x∈Ω

{
f(z)
zM

}
� min

{
f(M),

2
δ′(M)

}
∼ 2

δ′(M)
for M � 1.

Consequently, in view of relation (4.10) we obtain

Ṁ(t) � λ − λ∗

(
∫

Ω
f(z) dx)2

2
δ′(M)

∼ 2(λ − λ∗)/δ′(M)
|Ω|2f2(M)

=
(λ − λ∗)

|Ω|2[2Mf(M) − M2f ′(M)]
, M � 1,

since
∫

Ω
f(z) dx ∼ f(M)|Ω| as M → ∞ due to (4.14) and the definition of z(x, t). The

latter implies that M(t) → ∞ as t → t∗1, where

t∗1 � |Ω|2
(λ − λ∗)

∫ ∞

M(0)
[2σf(σ) − σ2f ′(σ)] dσ < ∞, (4.17)

provided that f also satisfies the condition∫ ∞

M(0)
[2σf(σ) − σ2f ′(σ)] dσ < ∞, (4.18)

i.e. the lower solution z(x, t) blows up in finite time t∗1, provided that M(0) � 1.
Thus the solution u(x, t) of problem (4.1)–(4.3) blows up in finite time t∗ � t∗1, i.e.

‖u(· , t)‖∞ → ∞ as t → t∗, for large enough initial conditions. It can be proven, using
the same arguments as in the Neumann problem, that blow-up is global. Moreover, the
upper bound of blow-up time given by relation (4.17) is of the same form with the upper
estimate obtained in [18] for the Robin problem and in the one-dimensional case. We
can prove, using the same arguments as in [20], that blow-up is also uniform (flat) in
this case. Actually, if we consider the problem

vt = ∆v + h(t)f(N), x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = 0, x ∈ Ω.

where N = N(t) = maxx∈Ω u(x, t) and h(t) = λ/(
∫

Ω
f(u(x, t)) dx)2, then v(x, t) is a

lower solution of problem (4.1)–(4.3) since f(s) is decreasing. We can write the solu-
tion of the above problem as v(x, t) = θ(x, t) + V (t), where V (t) is the solution of the
problem

dV (t)
dt

= h(t)f(N), V (0) = 0,
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whereas θ(x, t) should satisfy

θt = ∆θ, x ∈ Ω, t > 0,

θ(x, t) = −V (t), x ∈ ∂Ω, t > 0,

θ(x, 0) = 0, x ∈ Ω,

and so has the integral representation

θ(x, t) =
∫ t

0
V (τ)

∫
∂Ω

∂G(x, s, t − τ)
∂ν

ds dτ.

Here G(x, y, t) is the Green function for the heat equation in Ω with Dirichlet boundary
conditions. Thus

v(x, t) = V (t) +
∫ t

0
V (τ)

∫
∂Ω

∂G(x, s, t − τ)
∂ν

ds dτ, (4.19)

and for any fixed x ∈ Ω the second term on the right-hand side of (4.19) is much smaller
than the first as t → t∗, due to the contribution of the Green function term, and so
v(x, t) ∼ V (t) as t → t∗ for x ∈ Ω. Hence N(t) � u(x, t) � V (t) as t → t∗ for x ∈ Ω and,
since

dN(t)
dt

� h(t)f(N) =
dV (t)

dt
,

we obtain N(t) � V (t) � N(t) as t → t∗. So it follows that V (t) ∼ N(t), and consequently
we deduce u(x, t) ∼ N(t) as t → t∗− for every x ∈ Ω (uniform blow-up). �

Remark 4.2. Relation (4.18) is satisfied by f(s) = e−s as well as by f(s) = 1/(1 +
s)1+k, for k > 1.

Remark 4.3. In the case where f(s) = 1/(1 + s)1+k for 0 < k < 1, (4.18) is not
satisfied and in order to prove blow-up we may choose δ(M) = (1 + M)2(1+q) where
k > q > k/2. Then, following the same steps as in the general decreasing case we obtain
that ‖u(· , t)‖∞ → ∞ as t → t∗, where now

t∗ � (1 + q)
p(λ − λ∗)Mp(0)

for p = 2(k − q).

Remark 4.4. Our construction of exploding lower solution z(x, t) is still valid in the
case of a bending bifurcation diagram considering again sufficiently large initial data.
Indeed, we impose the condition that M(t) satisfies

Ṁ(t) :=
dM

dt
=

λ − λ∗
(
∫

Ω
f(z) dx)2

inf
x∈Ω

{
f(z)
zM

}
> 0 for t > 0, (4.20)
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for λ∗ < λ < λ∗, where λ∗ = lims→0(s) > 0. Consequently, we get

zt − ∆z − λf(z)
(
∫

Ω
f(z) dx)2

= zMṀ(t) − ∆z − λf(z)
(
∫

Ω
f(z) dx)2

� zMṀ(t) + δ(t)f(z) − λf(z)
(
∫

Ω
f(z) dx)2

due to (4.11)

� zMṀ(t) +
[λ∗ − λ]f(z)
(
∫

Ω
f(z) dx)2

= zM

(
λ − λ∗

(
∫

Ω
f(z) dx)2

inf
x∈Ω

{
f(z)
zM

}
+

[λ∗ − λ]
(
∫

Ω
f(z) dx)2

f(z)
zM

)

=
zM (λ − λ∗)

(
∫

Ω
f(z) dx)2

[
inf
x∈Ω

{
f(z)
zM

}
− f(z)

zM

]
� 0,

since δ(t) � λ∗/(
∫

Ω
f(z) dx)2 holds for M(0) sufficiently large, which results from (∗),

(4.18) and the definition of z(x, t). Following the same steps as above it can be proven
that M(t) blows-up in finite time

t∗1 � |Ω|2
(λ − λ∗)

∫ ∞

M(0)
[2σf(σ) − σ2f ′(σ)] dσ < ∞,

provided again that f satisfies (4.18). Hence, it follows that u(x, t) blows up globally and
uniformly in finite time t∗ � t∗1.
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