CONVEX POLYHEDRA WITH REGULAR FACES
NORMAN W. JOHNSON

1. Introduction. An interesting set of geometric figures is composed of
the convex polyhedra in Euclidean 3-space whose faces are regular polygons
(not necessarily all of the same kind). A polyhedron with regular faces is
uniform if it has symmetry operations taking a given vertex into each of the
other vertices in turn (5, p. 402). If in addition all the faces are alike, the
polyhedron is regular.

That there are just five convex regular polyhedra—the so-called Platonic
solids—was proved by Euclid in the thirteenth book of the Elements (10, pp.
467-509). Archimedes is supposed to have described thirteen other uniform,
“‘semi-regular’’ polyhedra, but his work on the subject has been lost. Kepler
(12, pp. 114-127) showed that the convex uniform polyhedra consist of the
Platonic and Archimedean solids together with two infinite families—the
regular prisms and antiprisms. [t was Kepler also who gave the Archimedean
polyhedra their generally accepted names.

It is fairly easy to show that there are only a finite number of non-uniform
regular-faced polyhedra (11; 13), but it is no simple matter to establish the
exact number. However, it appears that there are just ninety-two such solids.
Some special cases were discussed by Freudenthal and van der Waerden (8),
and a more general treatment was attempted by Zalgaller (13). Subsequently,
Zalgaller et al. (14) determined all the regular-faced polyhedra having one or
more trivalent vertices and all those having only pentavalent vertices. Griin-
baum and Johnson (9) proved that the only kinds of faces that a regular-faced
solid, other than a prism or an antiprism, may have are triangles, squares,
pentagons, hexagons, octagons, and decagons.

A regular n-gon is conveniently denoted by the Schlifli symbol {n}. Thus
{3} is an equilateral triangle, {4} a square, {5} a regular pentagon, etc. An
edge of a regular-faced polyhedron common to an {m} and an {#n} will be said
to be of type (m-n). The sum of the face angles at a vertex of a convex poly-
hedron must be less than 360°. If the faces are regular, it follows that no more
than five can meet at any vertex; in other words, each vertex of a convex poly-
hedron with regular faces must be trivalent, tetravalent, or pentavalent. Various
combinations of faces give rise to many different types of vertices. For example:

(4-6-8)—a square, a hexagon, and an octagon;
(3-4-3-6)—a triangle, a square, a triangle, and a hexagon;
(32-4-6)—two triangles, a square, and a hexagon;
(34-5)—four triangles and a pentagon.
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The symbol (4-6-8) could also be written (6-8-4), (4-8-6), etc. Note, however,
that (3-4-3-6) and (3%:4:6) are not equivalent, since the two triangles are
separated in the one case but adjacent in the other.

2. Uniform polyhedra. Since a uniform polyhedron is completely charac-
terized by the faces that surround one of its vertices, the vertex-type symbol,
without parentheses, may be used as a symbol for the polyhedron (2, pp. 107,
130ff.; 3, p. 394; 7, pp. 56-57). The triangular prism, for example, is 3-4%
However, an extension of the Schlifli symbol devised by Coxeter (3, pp.
394-395; 5, pp. 403-404) reveals more clearly the relationships between
polyhedra. In this notation,

{m,n} is the regular polyhedron whose faces are {m}’s, n surrounding
each vertex, i.e., the polyhedron whose vertices are of type (m"):

{3, 3} is the tetrahedron;
{3, 4} is the octahedron;
{4, 3} is the cube;
{3, 5}
{5, 3}

is the icosahedron;
is the dodecahedron.

b

1

If we let

_ 4m N, = 2mn
T4 —m—-2n—2)" ' T 4a—(m—2)(n—2)’

Ny

_ 4n
T4 —(m—2)(n —2)

(4, p. 13), then {m, n} has N, vertices, N; edges, and N, faces.

N,

{Z} is the quasi-regular polyhedron with N, faces {m}, N, faces {n},

2N, edges {(m-n), and N, vertices (m-n-m-n):

-

{i} is the cuboctahedron;

is the truncated tetrahedron;
is the truncated octahedron;
is the truncated cube;

is the truncated icosahedron;
is the truncated dodecahedron.

1

’

’

{2} is the icosidodecahedron.
{
}
}
}
}
}

?
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r{m} has N, square faces, N, faces {m}, N, faces {n}, and 2N; vertices
(m-4-n-4):

SHESHE
3 4) "’
r{i} is the rhombicuboctahedron;

r{i} is the rhombicosidodecahedron.

t{m} has N; square faces, N, faces {2m}, N, faces {2n}, and 4N, vertices
" (4-2m-2n):

3l _ .
t{gJ t{3, 4};

t{ i} is the truncated cuboctahedron;

t{‘;’} is the truncated icosidodecahedron.

s{m} has 2N, triangular faces, N, faces {m}, N, faces {n}, and 2V, vertices
" (32-m-3-m):

5{3} = {3,5};

3
s{i} is the snub cuboctahedron;

s{‘z} is the snub icosidodecahedron.

{ } X {n} has n square faces separating two {n}’s, and 27 vertices (42-n):

{} X {4} = {4,3};
{1} X {n} (n=3,5,6,...) is the n-gonal prism.

h{ }s{n} has 2n triangular faces separating two {n}’s, and 2 vertices (3%-n):

hi}s{3} = {3,4};
h{ }s{n} (n = 4,5, 6, ...) is the n-gonal antiprism.

The prefix ‘‘rhomb(i)-"" in the names for r{i} and r{g} derives from the
fact that the former has 12 square faces whose planes bound a rhombic
dodecahedron, the solid dual to {i}, while the latter has 30 squares lying in

the face-planes of a rhombic triaconiahedron, the dual of 2 .

Some persons object to the names ‘‘truncated cuboctahedron” and ‘‘trun-
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cated icosidodecahedron’ on the ground that actual truncations of {i} or {2}

would have rectangular faces instead of squares. For this reason 4-6-8 is
sometimes called the ‘‘great rhombicuboctahedron,” with 3-4% then being
known as the ‘‘small rhombicuboctahedron,” and similarly for 4-6-10 and
3:-4-5-4 (2, p. 138; 7, p. 94). But this nomenclature is subject to the more
serious objection that the words ‘‘great’” and ‘‘small’”’ have an entirely different
connotation in connection with star polyhedra, as in the names of the Kepler—
Poinsot solids (2, pp. 143-145; 5, p. 410; 7, pp. 83-93).

It should also be pointed out that s{i} and s } are more commonly known

5
as the ‘“‘snub cube’” and the ‘“‘snub dodecahedron,” respectively, the names
given them by Kepler. But it is clear that they are related just as closely to
the octahedron and the icosahedron, and I have renamed them accordingly
(cf. 2, p. 138, or 3, p. 395).

It is sometimes useful to consider the prisms and antiprisms as being derived

”

from the fictitious polyhedra {2, #} and { } Thus, for n > 3,

2 = el2 = () x ), d2 oo, S2 = nitsta,

where, in the case of r{i} and s{i}, digonal ‘‘faces’ are to be disregarded
(cf. 5, p. 403). Also,

{2} {4,3} and {2} {3,3}.

All the vertices of a uniform polyhedron are necessarily of the same type.
However, the fact that a regular-faced solid has cnly one type of vertex does
not guarantee that the solid is uniform, as is shown by the existence of a
non-uniform polyhedron which, like the rhombicuboctahedron, has vertices
all of type (3-4?%). This solid, depicted in Fig. 1, was discovered by J. C. P.

FIiGure 1
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Miller sometime before 1930 (2, p. 137). More recently, Askinuze (1) claimed
that it should be counted as a fourteenth Archimedean polyhedron.

3. Cut-and-paste polyhedra. If a uniform polyhedron has a set of
non-adjacent edges that form a regular polygon, then it is separated by the
plane of this polygon into two pieces, each of which is a convex polyhedron
with regular faces. This can be done with the octahedron and the icosahedron,
the cuboctahedron and the icosidodecahedron, the rhombicuboctahedron and
the rhombicosidodecahedron. In this manner or by using uniform polyhedra
and pieces of uniform polyhedra as building blocks, eighty-three non-uniform
regular-faced solids can be constructed.

An n-gonal pyramid Y, (n = 3, 4, 5) has n triangular faces and one {n},
n vertices (32-#) and one (3"). A triangular pyramid is, of course, a tetrahedron.
A square pyramid is half of {3, 4}, and a pentagonal pyramid is part of {3, 5}.

An n-gonal cupola Q, (n = 3, 4, 5), obtainable as a fraction of r{i}, is a

polyhedron having # triangular and # square faces separating'an {n} and a
{2n}, with 2z vertices (3:4-2n) and » vertices (3-4:n-4).

A pentagonal rotunda Rj, half of {2}, has 10 triangular and 5 pentagonal

faces separating a {5} and a {10}, 10 vertices (3-5:10) and 10 vertices
(3:5-3-5).

A pyramid, cupola, or rotunda is elongated if it is adjoined to an appropriate
prism (a pentagonal pyramid to a pentagonal prism, a pentagonal cupola or
rotunda to a decagonal prism, etc.) or gyroelongated if it is adjoined to an
antiprism.

Two pyramids can be put together to form a dipyramid; two cupolas, a
bicupola; a cupola and a rotunda, a cupolarotunda; and two rotundas, a
birotunda. In the last three cases, the prefix ortho- is used to indicate that one
of the two bases is the orthogonal projection of the other (as in a prism); the
prefix gyro- indicates that one base is turned relative to the other (as in an
antiprism). One of these polyhedra is elongated or gyroelongated when the
two parts are separated by a prism or an antiprism.

Two triangular prisms can be joined to form a gyrobifastigium.

Certain uniform polyhedra can be augmented by adjoining other solids to
them: square pyramids may be added to an #-gonal prism (n = 3, 5, 6),
pentagonal pyramids to {5, 3}, and n-gonal cupolas to t{n, 3} (» = 3, 4, 5).
Other uniform polyhedra can be diminished by removing pieces of them—

pentagonal pyramids from {3,5}, pentagonal cupolas from r{g} And

pentagonal cupolas in r can be rotated 36° to produce a gyrate solid.

5
Prefixes bi- and #ri- are used where more than one piece is added, subtracted,
or twisted. Where there are two different ways of adjoining, removing, or

https://doi.org/10.4153/CJM-1966-021-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-021-8

174

NORMAN W. JOHNSON

turning a pair of pieces, these are distinguished by the further prefixes para-
if the pieces are opposite each other and meta- if they are not.

To facilitate the description of regular-faced solids obtained from uniform
polyhedra, certain of the latter are given abbreviated symbols:

S: = Y; = {3,3} Ts = t{3, 3} Q:=Ps;=1{} X {3}

S; =Y = (3,4} Ty =t{4,3} P, = {1} X {n} (n >5)
P, = {4, 3} Ts = t{5, 3} S, =h{}s{n} (n >4
Is = {3, 5} _ 3
D, = ({5.3) D= r{s}

Each of the non-uniform regular-faced polyhedra can then be given a concise
symbol indicative of its structure. For example, the Miller-Askinuze solid,
the elongated square gyrobicupola, is g Q42Ps.

A convex polyhedron with regular faces is elementary if it contains no set of
non-adjacent edges forming a regular polygon, i.e., if it cannot be separated
by a plane into two smaller convex polyhedra with regular faces. The regular
polyhedra {n,3} (n = 3, 4, 5), nine of the Archimedean polyhedra, all the
prisms, and all the antiprisms except h{ }s{3} are elementary. Of the eighty-
three non-uniform regular-faced solids obtained from uniform polyhedra,
nine are elementary:

Y4y Yﬁy Q?n Q4y Q5y
The last three solids result from the respective removal of three pentagonal
pyramids from an icosahedron, of two opposite pentagonal cupolas from a
rhombicosidodecahedron, and of three pentagonal cupolas from a rhomb-
icosidodecahedron. The tridiminished icosahedron Y5315 is the vertex figure of
a uniform four-dimensional polytope, the snubd 24-cell s{3, 4,3} (4, p. 163).

All of these elementary polyhedra were listed by Zalgaller (13, pp. 7-8).

Rs, Y57%5, p-Qs2E;, Qs °Es.

4. Other non-uniform polyhedra. Freudenthal and van der Waerden
(8) enumerated all the convex polyhedra with congruent regular faces. In
addition to the five Platonic solids, these are the triangular dipyramid Y2,
the pentagonal dipyramid Y%, the gyroelongated square dipyramid Y 4*S,, the
triaugmented triangular prism Y 4*Ps;, and one other figure, which they call a
‘“‘Siamese dodecahedron.”

Unlike all the polyhedra discussed so far, this last solid cannot be obtained
by taking apart or putting together pieces of uniform polyhedra. It is, however,
related to a disphenoid—a tetrahedron regarded as a belt of four triangles

between two opposite edges—in the same way that s{i} and s{g} are related

wof3fena {3}

by the symbol s Ss. From the square antiprism there can be derived in a similar

. Consequently, it will be called the snub disphenoid and denoted

https://doi.org/10.4153/CJM-1966-021-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-021-8

CONVEX POLYHEDRA 175

manner the snub square antiprism s Sy, whose faces consist of 24 triangles and

2 squares. (Since S; = {3,4} = {g},sss = s{g} = {3,5}.)

Snub disphenoid

Snub square antiprism

FIGURE 2

Four other convex polyhedra all of whose faces are {3}’'s and {4}'s are the
sphenocorona Vo No, the sphemomegacorona Ve M,, the hebesphenomegacorona
U, M,, and the disphenocingulum Vi3*G,. If we define a lume as a complex
consisting of two triangles attached to opposite sides of a square, the prefix
spheno- refers to a wedgelike complex formed by two adjacent lines. The
prefix dispheno- denotes two such complexes, while hebespheno- indicates a
blunter complex of two lunes separated by a third lune. The suffix -corona
refers to a crownlike complex of 8 triangles, and -megacorona, to a larger such
complex of 12 triangles. The suffix -cingulum indicates a belt of 12 triangles.

Two polyhedra whose faces include pentagons are the bilunabirotunda
L.2R,? and the triangular hebesphenorotunda Uz R;. The former is regarded
as being composed of two lunes and two rotundas—a rotunda here being the
complex of faces surrounding a vertex of type (3:5-3-5). The latter is the
union of a complex consisting of three lunes separated by a hexagon with
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Sphenocorona

Sphenomegacorona

Hebesphenomegacorona

Disphenocingulum

FiGuURrE 3
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triangles attached to its alternate sides and a complex of three triangles and
three pentagons surrounding another triangle.
Top and bottom, or front and back, views of each of the polyhedra

SSz, SS4, V2N2, VzMz, U2M2, V22G2, L22R22, U3R3

are shown in Figures 2, 3, and 4. These solids are all elementary, bringing
the number of such non-uniform regular-faced polyhedra up to seventeen. In
addition, a non-elementary solid, the augmented sphenocorona Y4 V2 N, can
be formed by placing a pyramid on one of the square faces of V, No.

DX
&

Triangular hebesphenorotunda

Bilunabirotunda

FIGURE 4

5. Symmetry groups. Coxeter and Moser (6, pp. 33-40, 135) have given
abstract definitions for each of the finite groups of isometries in E2. The follow-
ing is a description of the individual groups, especially as they relate to
polyhedra.

The bilateral group [ ], of order 2, is generated by a single reflection R,
satisfying the relation

R? = E.
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The kaleidoscopic group [n] =2 D, (n > 2), of order 2m, is generated by
two reflections, R; and R, satisfying the relations

R12 = R22 = (R1 Rz)" = E

The cyclic group [n]t = €, (n > 2), of order %, is a subgroup of index 2
in [n]. It is generated by the rotation .S = R; R,, satisfying the relation

S* = E.

When # = 1, the above relations imply that R; = R, and that S = E; thus
the kaleidoscopic group of order 2 is the bilateral group [] = Dy, and the
cyclic subgroup is the identity group [ ]* = €,. When n = 2, the kaleidoscopic
group is the direct product of two bilateral groups:

RI=[1XT[]

For n > 3, [n]* is the rotation group of a right regular #z-gonal pyramid
(other than a regular tetrahedron), and [n] is the complete symmetry group
(including reflections).

For integers m and #, 2 < m < n, (m — 2)(n — 2) < 4, the group [m, n],
of order

8mn

AN = T =)

is generated by three reflections, R1, Rs, Rj3, satisfying the relations
R12 = Ry = R32 = (Rl R2)m = (R2 R3)n = (Rl R3)2 = E.

For m =2, Ny =n; for m = 3, Ny = 6n/(6 — n). The group [m, n]t, of
order 2N, is a subgroup of index 2 in [m, n]. It is generated by the rotations
S12 = Ri Ry and Ss3 = R R;, satisfying the relations

S18™ = So3" = (S12.523)% = E.

The group [2,2] =[] X [] X [], of order 8, is generated by reflections
Ri1, R, R; in three mutually perpendicular planes. Each reflection generates
a subgroup [ ], and each pair of reflections generates a subgroup [2]. Each
half-turn about a line of intersection of two planes generates a subgroup [2]t.
The rotational subgroup [2, 2]t =2 [2]t X [2]* is generated by any two of the
three half-turns. A subgroup [2, 2+] =2 [ ] X [2]* is generated by each reflection
together with the orthogonal half-turn, e.g., the reflection R, and the half-turn
S2s = R Rj, satisfying the relations

Ry? = Sp3? = (R1S23)? = E.

The subgroups [2], [2, 2], and [2, 2]* are isomorphic, and the whole group
can be obtained by adjoining to any of them one of the missing reflections:

[2,2]=[1X[2] =[] X [2,2*] =[] X [2, 2]
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The rotatory reflection Z = R; Rs R;is the central inversion, i.e., the “reflection”
in the point of intersection of the three planes. The subgroup of [2, 2] generated
by Z is the central group [2+, 2+] =2 G, defined by

Z? =E.
This gives two other ways of expressing [2, 2] as a direct product:
(2, 2] = [2+, 2%] X [2] = [2%, 2%] X [2, 2]*.

Since R;S2; = R1 Ry R3, the group [2, 2+] also contains the central inversion,
and

(2, 2+] = [2+, 2+] X [] = [2F, 2] X [2]*.

Note that the three groups [], [2]*, and [2%, 27], respectively generated by
a reflection, a half-turn, and the central inversion, are merely three different
geometric representations of the single abstract group of order 2, for which
D1 and §; are alternative symbols.
The dihedral group [2, n]t =2 D,, of order 2z, and the extended dihedral
group
2,n] =[] X ]=[]X [2 n]t

of order 4n, are respectively the rotation group and the complete symmetry
group of a regular n-gonal prism (other than a cube) for » > 3. When # is
even, the group [2,n] contains the central inversion in the form
Z = Rl(Rg Rg)nlz, so that

[2, n] =2 [2F, 2F] X [n] = [2+, 2] X [2, n]* (n even).

The group [2, n] contains a subgroup of index 2 generated by the reflection
R, and the rotation Ss3 = R Rj, satisfying the relations

R2 = Sy" = E, Ry .S = So3 Ry

This is the extended cyclic group [2,n*t] =[] X [#]*, of order 2n. The
rotational subgroup, generated by Sss, is the cyclic group [#]t. When # is
even, the group [2, #*] contains the central inversion in the form Z = R; Sp"/2,
and

[2, nt] =2 [2t, 2*] X [n]t (n even).

The group [2, 2n] contains a subgroup of index 2 generated by the half-
turn S12 = R1 R, and the reflection R;, satisfying the relations

S122 = R3? = (S12 R3)™ = E.

This is the group [2t, 2n] =< Dy, of order 4n, the complete symmetry group
of a regular n-gonal antiprism (other than a regular octahedron) for n > 3.
The rotational subgroup, generated by Si» and R3 S12 R, is [2, #n]t. When 7 is
odd, (Si2 R3)" is the central inversion Z, and
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[2%, 2n] = [2t, 2%] X [n] = [2t, 2%] X [2, n]* (n odd).
The groups [2F, 2n] and [2, 2#*] have a common subgroup of index 2, a
subgroup of index 4 in [2, 2n], generated by the rotatory reflection
T = S12R3 = R1S23 = Ri1 Ry Ry,
satisfying the relation
T = E,.

This is the group [2%, 2n*] = §,,, of order 2n. The rotational subgroup,
generated by 772 is [#]*. When 7 is odd, 7™ is the central inversion Z, and

[2%, 2nt] = [2t, 2+] X [n]* (n odd).
The groups [3, 3]%, [3, 4]*, and [3, 5]*, of orders 12, 24, and 60, being the
rotation groups of the regular polyhedra, are known as the tetrahedral,

octahedral, and icosahedral groups. They are isomorphic to symmetric or alter-
nating groups of degree 4 or 5 (4, pp. 48-50):

[31 3]+ = 914!
(3, 4]* = &,
[3, 5] = Us.

The extended polyhedral groups [3, 3], [3, 4], and [3, 5], of orders 24, 48,
and 120, are the complete symmetry groups of the regular polyhedra. The
extended tetrahedral group is the symmetric group of degree 4:

3,3l X &,

The extended octahedral group contains the central inversion in the form
Z = (Ry Ry R;)? and is obtained by adjoining this operation to either of the
isomorphic groups [3, 3] and [3, 4]*:

[3, 4] = [2+, 2%] X [3, 3] =2 [2+, 2] X [3, 4]*.

In the extended icosahedral group the central inversion occurs as
Z = (R1 R R3)% and

[3, 5] =2 [2+, 2] X [3, 5]*.

The group [3, 4] contains a subgroup of index 2 generated by the rotation
S12 = R; R, and the reflection Rj, satisfying the relations

S12® = Rs? = (S127'R; S12 Ry)? = E.

This is the pyritohedral group [3%, 4], of order 24, the complete symmetry
group of the crystallographic pyritohedron or of the figure consisting of a
cube inscribed in a regular dodecahedron. The central inversion occurs in
the form Z = (S12 R3)3, while the rotational subgroup, generated by S, and

https://doi.org/10.4153/CJM-1966-021-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-021-8

CONVEX POLYHEDRA 181

Rs 512 Ra, is [3, 3]+, SO that
[3+, 4] = [21, 2] X [3, 3]t.

The pyritohedral group is also a subgroup of index 5 in [3, 5], generated by
the rotation R; Ry R; R; and the reflection R,.
All the finite three-dimensional symmetry groups are listed in Table I.

TABLE I

FINITE GROUPS OF ISOMETRIES IN E?

Rotation groups Extended groups
Group Structure  Order Group Structure  Order
[ ] D1 2
¥
[1] [O51 1 { [2+, 2+] I 2
[n] D 2n
n]Y,m>2 Gn n [2%, 2n*] Gon 2n
[21 n+] D1 X Cn 2n
[2F, 2n] Dan 4n
+
[2,n]t,n > 2 D 2n { 2. ] D X D, in
3, 3] &4 24
+
[3, 3] Aq 12 { 3+ 4] 62 X % 24
[3, 41F 4 24 (3, 4] G2 X &4 48
[3, 5] As 60 [3, 5] G2 X As 120

Every rotation, other than the identity, that transforms a solid into itself
leaves invariant a unique line, called an axis of symmetry of the solid. If the
greatest period of any rotation about a given axis is #, the axis is said to be
an n-fold one. A solid whose rotation group is the identity has no axes. Other-
wise, the number of axes of symmetry for each finite rotation group is as follows:

[#]F: 1 n-fold;
[2, n]t: n twofold, 1 n-fold;
[3,3]*: 3 twofold, 4 threefold;
[3,4]*: 6 twofold, 4 threefold, 3 fourfold;
[3, 5]F: 15 twofold, 10 threefold, 6 fivefold.

Since these are the only finite rotation groups, it follows that a polyhedron
that has more than one threefold, fourfold, or fivefold axis must have tetra-
hedral, octahedral, or icosahedral symmetry and that no polyhedron can
have more than one #n-fold axis for » > 6.

Of the convex polyhedra with regular faces, the only ones that have tetra-
hedral, octahedral, or icosahedral symmetry are the Platonic and Archimedean
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solids. The only ones having an axis other than twofold, threefold, fourfold,
or fivefold are the n-gonal prisms and antiprisms (# > 6). Thus the rotation
group of a non-uniform regular-faced polyhedron is either the identity group
or one of the groups [#]* or [2, n]t (n = 2, 3, 4, 5).

If any of the symmetry operations of a solid are reflections or rotatory
reflections, then exactly half of them are, and the rotation group of the solid
is a subgroup of index 2 in its complete symmetry group. If not, the rotation
group is the whole group, and the solid occurs in two enantiomorphous forms,
mirror images of each other. There are seven regular-faced polyhedra of this
kind: the Archimedean snub cuboctahedron and snub icosidodecahedron and
the non-uniform figures

Q3256y Q42581 Q52Slﬂy Q5 R5 SlOv R52SIO-
On the other hand, four polyhedra have only bilateral symmetry:
m-g Qs Es, g20Q57'Es, g0Qs?E;, Y4 V2 Na.

The complete symmetry group of each of the remaining non-uniform solids is
one of the groups [n], [2, #], or [2t, 2n] (» = 2, 3, 4, 5). It is remarkable that
none of the known convex polyhedra with regular faces is completely asym-
metric, i.e., has a symmetry group consisting of the identity alone.

The vertices, edges, and faces of any symmetric polyhedron fall into various
equivalence classes. Two vertices, edges, or faces belong to the same equivalence
class if there is a symmetry operation of the polyhedron that takes one into
the other. The order of the equivalence class to which a particular vertex,
edge, or face belongs is equal to the index of the subgroup of the complete
symmetry group of the polyhedron that leaves the particular vertex, edge, or
face invariant.

The uniform polyhedra are just those regular-faced solids whose vertices
all belong to a single equivalence class. Besides the Platonic solids, the only
convex polyhedra with regular faces that have all their edges equivalent are
the cuboctahedron and the icosidodecahedron, and the only ones whose faces
are all equivalent are the triangular and pentagonal dipyramids.

Tables II and III list the different types of faces, edges, and vertices to be
found in each convex polyhedron with regular faces. Those edges or vertices
that are locally congruent, i.e., edges or vertices of the same type that form
equal dihedral angles, are grouped together. In each case the number of faces,
edges, or vertices in each equivalence class is indicated in roman type and the
number of equivalence classes of the same order in italic type.

Dihedral angles are given to the nearest second. Where minutes and seconds
are not shown, the given value is exact.

Some of the following references were supplied by Branko Griinbaum, for
whose interest and encouragement I am most grateful. I am also indebted to
the referee for several helpful suggestions.
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