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ABSTRACT

This paper addresses the Bayesian estimation of the shape parameter of Pareto
distributions, and its application to premium calculation of large claims excess
of loss (XL) reinsurance contracts. It studies the use of the generalized inverse
Gaussian (GIG) as a Pareto prior conjugate, a family that contains as a par-
ticular case the gamma distribution. An exact credibility formula is deduced
allowing the calculation of individual reinsurance premiums. These are pre-
miums suited to the excesses history of a sole portfolio. A family of predictive
distributions for the excesses is derived. We apply our exact credibility model to
a sample of excesses arisen in ten Spanish portfolios of liability motor insurance
from year 1992 to year 2001.

KEYWORDS

Reinsurance, XL premiums, large claims, extreme value modeling, Bayes, exact
credibility, Pareto distribution, generalized inverse Gaussian family.
AMS subject classification: 62P05, 60G70, 62F15.

1. INTRODUCTION

This paper addresses the Bayesian estimation of the shape parameter of Pareto
distributions, and its application to the pricing of large claims XL reinsurance
contracts. It is well known that modeling the tail of the claim severity distri-
bution is of the utmost importance when dealing with large claims. Extreme
value theory (EVT) gives clues for either determining a threshold defining the
class of large claims or imposing by means of an asymptotic argument, a dis-
tribution function to the excesses over that threshold (see for instance Beirlant,
Teugels, Vynckier (1996), Embrechts, Klüppelberg, Mikosch (1997), Reiss,
Thomas (2001), and McNeil (1997)). This facilitates the tail modeling through
a generalized Pareto distribution (GPD) making possible the subsequent rein-
surance premium calculations. We will only focus on the most dangerous case
when the GPD has a positive shape parameter z > 0, corresponding to a Pareto
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distribution. In this paper we will consider XL contracts with a priority equal
to the excess threshold and an unlimited cover. We will also distinguish among
two kinds of reinsurance premiums. A collective premium is calculated start-
ing from a sample obtained through the aggregation of the excesses occurred
in many portfolios (the collective information), while an individual premium
should be suited to the excesses history of a sole portfolio. Whenever it is pos-
sible to collect a large sample with a significant number of claim severities, it
will be plausible to apply EVT techniques, making feasible the calculation of
a collective premium. However, an individual premium is not so easy to obtain
because an individual sample produced by a portfolio will always be scarce or
even empty. It is at this point where the practitioner can find worth using
Bayesian estimation of the Pareto index a = 1/z, for it can give raise to exact
credibility models able to drive the collective premium to an individual one.
Therefore, the Bayesian methodology supports the idea that large claim sever-
ities arisen in different portfolios have not to be probabilistically identical
because the risk selection policies carried out by each company may result in
different probability tails.

The Bayesian estimation of the Pareto index has been a topic very often
addressed in the literature. Fürst (1964) applies it to XL reinsurance using the
gamma distribution as a Pareto prior conjugate family. Hill (1975) exploits the
same conjugate family for estimation purposes. Arnold and Press (1989) include
it in a more general conjugate model incorporating a scale parameter.
Rytgaard (1990) uses credibility formulae to calculate reinsurance premiums
corresponding to real world examples of fire and motor liability portfolios.
Hesselager (1993) calculates XL premiums and predicted moments on the basis
of this conjugate prior, working the same real world example as Rytgaard
(1990). Reiss, Thomas (1999) study the Bayesian estimation for both the index
and a scale parameter, using Rytgaard’s examples among others. General pre-
sentations about Bayesian methods in extreme value modeling are found in
Coles (1996, 2001) and Reiss, Thomas (2001). More recently, Pin-Hung Hsieh
(2004) analyzes a statistical model for record catastrophe losses founded also
on the Bayesian estimation of the Pareto index. Bühlmann, Gisler (2005) study
the gamma family as a Pareto conjugate prior. In summary, the use of the
gamma family as a prior when sampling a Pareto distribution has been fre-
quently addressed through the years.

The election of this family determines the way prior information can be
modeled. Reiss, Thomas (1999) point out that the lack of prior information
can be implemented with the help of the reference prior (see for example Berger
(1980)) p(a) = 1/a, ∀a > 0, which results in a posterior belonging to the gamma
family. Hesselager (1993) uses more precise prior information consisting in the
knowledge of both the mean and the coefficient of variation. Pin-Hung Hsieh
(2004) models different cases using a shifted gamma distribution.

It is also well known that the Pareto-gamma mixing produces an uncondi-
tioned distribution of a limited use because of its lack of finite moments. Some
authors (see for instance Reiss, Thomas (2001) chapter 12 coauthored by Radtke)
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try to cope with this conditioning the gamma in such a manner that the result-
ing unconditioned excess distribution has a previously fixed number of finite
moments (see also Pin-Hung Hsieh (2004)). A somewhat simpler approach
consists in substituting a point estimate of the index into the Pareto distribution
as will be done in the sequel.

In this article we will study the use of the generalized inverse Gaussian (GIG)
as a Pareto prior conjugate, and we will refer to Jorgensen (1982) as the basic
tool for deepening in this three parameter family. It contains the gamma and
other distributions able to represent prior beliefs on the Pareto index. We will
show how to calculate Bayesian estimates of this parameter using that conjugate
family. We will also see that the GIG produces a new family of unconditioned
distributions that suffers too from the non-existence of moments.

Besides, the GIG family also works as a prior conjugate when sampling a
Poisson distribution (see for example Tremblay (1992), Panjer, Willmot (1992),
Lemaire (1995)) with random Poisson parameter. Therefore, if we suppose the
conditioned number of excesses over the threshold as Poisson distributed, it
can also furnish Bayesian estimates of the mean number of those excesses.
Considering the total portfolio excesses modeled by means of a compound
Poisson-Pareto distribution, we will be able to calculate collective premiums and
also to write down an exact credibility formula that will open the way to the
calculation of the individual reinsurance premiums.

Finally, we will apply this general scheme to the Spanish liability motor
insurance case. For that purpose, we will study a sample consisting of 395 claims
occurred during the period 1992-2001 in ten portfolios, with a communication
level equal to 25 millions of pesetas (approximately 150,253.02€). We will
apply standard EVT techniques to determine a threshold defining the class of
large claims. We will then use our conjugate model to calculate Bayesian estimates
of the Pareto index. Finally, we will obtain XL reinsurance premiums for the
collective and for some of the individual portfolios aggregated in our sample.

2. ASSUMPTIONS

Let the random variables N and X stand for the claim number and the claim
severities respectively. The threshold being fixed at T > 0, we assume that pT =
P{X > T} > 0. Then two new random variables are defined, the number of
excesses over T (to be noted NT), and the excesses over T (X – T |X >T). As told
in the introduction, we suppose that the threshold is large enough, so that the
excesses can be considered nearly GPD distributed. Therefore, supposing a
Pareto type claim severity distribution, this GPD will fall in the Pareto case.
We will represent the total normalized excesses over the threshold as a compound
random variable

ST
i

i 1

T

=
=

N
Z! (ST = 0 when NT = 0) (2.1)
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where NT is the excess number in one year, and the random variables (Zi)
∞
i = 1

are the normalized excesses over the threshold:

>Z T
X T X T=

- (2.2)

Normalizing the excesses will avoid us any discussion derived from the con-
sideration of localization and scale parameters in the excess distribution.

We will assume the existence of an absolutely continuous random variable
LT > 0 (a.s.), independent of time with distribution function U(l) = P{LT # l}
and density function u(l), so that the number of excesses in different years are
supposed to be conditionally independent given LT,

∀k ∈ �, ∀n1, …, nk ∈ �0 : P{N1
T = n1, …, Nk

T = nk | LT} =

P
i

k

1=

% {Ni
T = ni | LT} (a.s.)

(2.3)

and conditionally Poisson distributed

∀i ∈ �, ∀n ∈ �0 : P{Ni
T = n | LT} = !n e

LT n

LT
-

b l

(a.s.) (2.4)

Thus the unconditioned numbers of excesses are mixed Poisson distributed:

∀i ∈ �, ∀n ∈ �0 : pn
T = Pr{Ni

T = n} = l-
n

!n e u dl
l l

0

3+

# ^ h (2.5)

We will also consider the Pareto shape parameter as an absolutely continuous
random variable Z > 0 (a.s.), independent of time and independent with respect
to the random parameter LT. Then the Pareto index will be its reciprocal A =

> 0Z
1 (a.s.). This last random variable is supposed to be distributed according
to P(a) = P{A#a}, with density function p(a). The random variables (Zi)i ∈ �

are conditionally independent given A, meaning in particular that

∀n ∈ �, ∀z1, …, zn ∈ � : P{Z1 # z1, …, Zn # zn | A} =

P
i

n

1=

% {Zi # zi | A} (a.s.)
(2.6)

and conditionally Pareto distributed

∀i ∈ �, ∀z > 0 : P{Zi # z | A} = A
z

1
1

1
-

+^ h

(a.s.) (2.7)

Under these assumptions, the unconditioned normalized excesses density function
is mixed Pareto:
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a 1+

a
a ah z

z
dp

10
=

+

3+

#^

^

^h

h

h (2.8)

Finally, we will assume independence of (N1
T,…, Nk

T, LT) and (Z1,…,Zn,A)
for all k, n ∈ �.

Given the independence between LT,A, their prior joint density can be writ-
ten as the product w(l,a) = u(l)p(a). Under this condition (see Reiss, Thomas
(2001) p. 204), once a number of excesses and a sample of normalized excesses
have been observed during k years

,n ni
i

k

1

=
=

! (z1,…, zn) (2.9)

the posterior joint density for the (LT,A )-random vector is:

w(l,a | n1,…, nk; z1,…, zn) = u (l | n1,…, nk) p(a | z1,…, zn) (2.10)

where

u (l | n1,…,nk) ∝ Pr{N1
T = n1, …,Nk

T = nk | LT = l}u(l)
(2.11)

p(a | z1,…, zn) ∝ g(z1,…, zn | A = a) p(a)

and g(z1,…,zn | A = a) is the Pareto likelihood.
Taking the squared error as a loss function, it is known that the Bayes esti-

mates for the two parameters are their posterior means

l (n1,…, nk) = E{LT | N1
T = n1, …, Nk

T = nk} = ul
0

3+

# (l | n1,…, nk)dl (2.12)

a (z1,…, zn) = E{A | z1,…, zn} = ap
0

3+

# (a | z1,…, zn)da (2.13)

Now, a formula for the reinsurance premium P can be set down substituting
the point estimates into the respective conditioned distribution functions, then
writing down the mean of the conditioned compound random variable (ST |
LT = l, A = a ):

,..., ; ,..., ,..., , ,...,

,..., ,...,

,...,
,...,

l a

l a

a
l

P n n z z E S n n A z z

E N n n E Z A z z

z z
n n

p

L

L

1

k n
T T

k n

T T
k n

n

k T

1 1 1 1

1 1

1

1

= = =

= = =

=
-

^ ^ ^

^ ^

^

^

h h h

h h

h

h

%

% #

/

/ - (2.14)
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(for a(z1,…,zn) > 1). Formula (2.14) is given in threshold units (T-units), while
expressing it in usual monetary units gives

,..., ; ,...,
,...,
,...,

a
l

P n n z z
z z
n n T

p
1k n

n

k T
1 1

1

1=
-

^
^

^
h

h

h
(2.15)

3. THE GENERALIZED INVERSE GAUSSIAN FAMILY

AS A PARETO PRIOR CONJUGATE

The generalized inverse Gaussian (GIG) family is a well known probabilistic
model (see for instance Jorgensen (1982)). It has been already applied in actu-
arial science to describe the portfolio heterogeneity (Tremblay (1992), Lemaire
(1995)) giving rise to some useful mixed Poisson distributions (Panjer, Willmot
(1992)). It is a three parameter family with density function:

b

/
,a a

K
ep

xc
c x

2

/

, ,
a

a

b x c

b
b

x
c

2
1

2
1

=
- - +

^
^

^ a
h

h

h k a > 0, b ∈ �, x,c > 0 (3.1)

where 

,y e dyw 2
1 y y

b
b w1

2
1

0

=

3
- - +

+

K #^
`

h
j b ∈ �, w > 0 (3.2)

is a Bessel function of the third kind (see for instance Panjer, Willmot (1992)).
The cases where xc = 0 are individually considered later, see (3.10) and (3.15).
The central moments and variance of the GIG are

,E A c
x

xc

xc/
j

j
j

b

b
2

=
+

K

K
d

^

^
n

h

h
% / xc > 0, j ∈ � (3.3)

,Var A c
x

xc

xc

xc

xc

b

b

b

b2 1
= -

+ +

2

2

K

K

K

K

^

^

^

^

h

h

h

h
R

T

S
S
SS

V

X

W
W
WW

" , xc > 0 (3.4)

Considering the normalized Pareto (2.7) as the sampling distribution we get
the following likelihood:

g(z1,…, zn | A = a) = an e
loga z1 1

i

n
1

1
- + +

=

!] ]g g (3.5)

Supposing the random parameter distributed according to a GIG(b, x,c) we get
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g(z1,…, zn | A = a) pb, x, c(a) ∝

∝ an + b – 1 exp log a
a

c
x

2
1 2 1i

i

n

1

- + + +
=

z! ^e h o

R

T

S
SS

V

X

W
WW

* 4 (3.6)

∝ pb�, x�, c�(a | z1,…, zn)

Thus the posterior distribution of Α is still a GIG with parameters:

b� = n + b

x� = x (3.7)

c� = log c2 1
i

n

i
1

+ +
=

z! ^ h

We apply (3.3) to express the posterior mean of the random Pareto index Α,
getting

,..., ,...,aE A z z c
x

x c

x c

�
�

� �

� �
n n

b

b
1 1

1
= =

+

�

�
z z

K

K
^

`

`

h
j

j

" , (3.8)

where b�, x�, c� are given by (3.7).

Whenever xc > 0, the unconditioned or predictive density function (2.8) is
given by (see details in the appendix)

1-

log

log

h z

z

z

z

c
x

xc

xc c

c

1 2 1

1

1 2 1

/

, ,b x c
b

b

b

1

1 2

2
1

=

+ +

+

+ +

+

-
+

K

K
J

L

K
K

^
^

^

^

^d

a

N

P

O
O

h
h

h

h

hn

k

< F

(3.9)

This distribution is not easy to handle for the variable z appears inside the
argument of the Bessel function. In fact, this expression is only tractable in a
number of cases some of which will be listed below.

In this paper we will illustrate the choice of a prior belonging to this family
through the use of the gamma, the inverse Gaussian, the reciprocal gamma and
the reciprocal inverse Gaussian distributions. Details about these probability
distributions are given hereafter.

Gamma (G): Choosing b > 0, x = 0, c > 0 we obtain as a limiting case of the
GIG family (3.1), a gamma( b, c/2) with density function
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b
/

,a a e
b

c
G

2
, ,

a
b c

b
0

1
c
2=

- -p ^
^

^
h

h

h
a > 0 (3.10)

This is the well known conjugate model gamma-Pareto-gamma, where the
predictive density is the log-Pareto distribution (see Reiss, Thomas (2001))
with density

1-
-

,logh z z z
c

b
c

2 1 2 1, ,b c

b b

0

1

= + + +

+

^ d ^ ^d

]

h n h hn

g

z > 0 (3.11)

The reference prior

p(a) = 1/a, a > 0 (3.12)

models the situation where no prior information is available. Therefore, when
considering it as the prior, the subsequent Bayesian analysis will only depend
in the objective information, that is to say, in the sample information. A sim-
ple calculation shows that in this case, the posterior distribution is a gamma

i 1=, logn z1 i
n

+! ^a hk . In an attempt to explain some numerical results to be
obtained in the next section, we must stress the importance of this last poste-
rior, for in this case the Bayes and the maximum likelihood estimators (MLE)
coincide (just look to the parameters of the posterior distribution). Additionally,
we know that since the threshold has been previously fixed equal to one of the
ordered data points, the MLE and Hill estimators share the same expression.
Therefore, if we calculate the Bayes estimate by means of the reference prior
(3.12), we will obtain a numerical result that could be simultaneously interpreted
in three ways.

Inverse Gaussian (IG): It corresponds to b = 2
1

- , x > 0, c > 0. Writing c = 2m

x

(m > 0) we obtain an IG (m, x) density function (see again Jorgensen (1982)) in
its more familiar form

2

/3 2-
2 ,a a ep p

x
2

a

a

m

mx
2=

-

^

]

h

g

a > 0 (3.13)

The unconditioned density (2.8) turns out to be (see the appendix)

/1 2

, >

logh z z z

e z

c
x

c1 1 2 1

0

, ,

/

(log z

x c

xc

1
1 2

1 1 1c

2
1

2

= + + +-

-
-

- + +

^ ^ ^d

_

h h hn

i9 C

(3.14)

412 J.L. VILAR-ZANON AND C. LOZANO-COLOMER

0345-07_Astin37/2_11  29-11-2007  09:09  Pagina 412

https://doi.org/10.2143/AST.37.2.2024074 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.2.2024074


Reciprocal gamma (RG): Considering b < 0, x > 0, c = 0, we get the reciprocal
gamma density

b

,a a ex bG
2

, ,xb
b

0
1 1

a

x
2= -

- - -p ^ d ^h n h a > 0 (3.15)

corresponding to the following unconditioned density function:

, >
log

logh z
z z

z z
b
x

x
G1

2
1

2 1 0, ,xb b0 1

b b
2

1
2

1

=
+ - +

++

+ -

K^
^

d
^ ^

^ah
h
n

h h
hk (3.16)

The central moments are

, <E A
k

k
x

b
b

b
G

G
2

k
k

=
-

- -
-d

^

^
n

h

h
% / (3.17)

Thus the mean and the variance are respectively

, <

, <

E A

Var A

b
x

b

x

b b
b

2 1
1

2 1 2

1 2
2

2

= -
+

-

= -
+ +

-

^

d
^ ^

h

n
h h

"

"

,

,

(3.18)

If we choose b ∈ [–2, –1) the variance will be equal to infinity. Therefore any
of these priors might be used as a representative of our lack of knowledge about
the parameter when we still have some belief about its mean value. In this case
we would only need to supply a subjective mean value m, the b, x, c parameters
of the prior being obtained then through:

x = – 2m ( b + 1), b ∈ [–2, –1), c = 0 (3.19)

Reciprocal inverse Gaussian (RIG): It corresponds to b = 2
1 , x > 0, c > 0. The

density function is

,a a ep
p

c
2, ,

/
/ a a

x c
x c

1 2
1 2

2
1 2

1 1

=
-

- +-

^
_

h
i a > 0 (3.20)

and the unconditioned density function is (see again the appendix) ∀z > 0:

/1 2

log log

h z z
e e

z z

c
x

c xc c

1

1 2 1 1 1 2 1

, ,

/

log z
x c

xc
xc 1 1

1 1 2

c

2
1

2

=
+

+ + + + +

- + +

- -J

L

K
K

^
]

^d ^dd

N

P

O
O

h
g

hn hnn

7 A

(3.21)
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Next we move to the Bayesian analysis of the number of excesses. In this case
the GIG density pb,x,c(a) will be renamed u d,n,t(l ). Under the hypothesis (2.3),
(2.4) and (2.5) we get, given a sample (n1, …, nk) of number of excesses occurred
during k years,

k1

i 1=

?

?

,..., ,...,Pru n N n N u

e

l l l

l

L , ,k k
T

n k

d n t

d
l
n t l

1 1

1 2i
k

2
1

= = =

+ - - + +

T Tn n

!

^ ^

]a

h h

g k

% /

(3.22)

Therefore the posterior distribution for the random variable LT is again a GIG
with parameters

d� = ,di
i

k

1

+
=

n! n� = n, t� = 2k + t (3.23)

This is the well known conjugate model where the Poisson mixed with the GIG
is called Sichel’s distribution (see Panjer, Willmot (1992) p. 280). Recalling (3.3),
the posterior mean number of excesses is

l (n1,…, nk) = E{LT | N1
T = n1, …, Nk

T = nk} = t
n

n t

n t

�
�

� �

� �

d

d 1

�

� +

K

K

`

`

j

j
(3.24)

This conjugate model contains the well known cases of the gamma and inverse
Gaussian mixing distributions. Using any of these distributions presupposes
some prior knowledge on the number of excesses phenomena, because it implies
the fixation of the first and second moments of the Poisson parameter LT.
This could be feasible only if the complete sample of the portfolio individual
losses had been available, so that the whole portfolio random parameter L
(and not only that of the excesses, LT) could be considered as GIG (d, n, t) dis-
tributed. Recalling that , pT = Pr{X > T} it can be proved that the Poisson
parameter LT is then distributed according to a GIG (d, pTn, p

t
T ) (this follows 

the way of reasoning that can be found in Straub (1971), and also in Patrick,
Mashitz (1989)). Nevertheless, being conscious that our sample consists just in
the claim costs over some communication level is far more realistic. This makes
the modeling of the whole portfolio structure impossible. In brief, any prior
assessment going further than the mean excess number would be hazardous and
hardly defensible. This justifies the modeling of the prior beliefs on the expected
number of excesses by means of a reciprocal gamma distribution with infinite
variance.

Finally, substituting the posterior means (3.8) and (3.24) into (2.14)
we obtain an exact credibility formula allowing the XL premium estimation
depending on the historical number of excesses and the excesses of a port-
folio.
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FIGURE 1: Exponential QQ-plot for the 395 claim data.

4. APPLICATION

The sample was collected from ten Spanish liability motor insurance portfo-
lios. It consists in 395 claims greater than 25 millions pesetas that aroused from
year 1992 to year 2001 (we recall the exchange rate 1€ = 166.386 Pts, which
approximately gives 6€ - 1,000 Pts and 150,253.02€ - 25 Millions Pts).

The lack of knowledge about the claim dates made impossible a deep analy-
sis of the time series. For that reason, the claims were deflated to year 2001,
trying that way to validate the stationarity property as explained in Bühlmann,
Gisler (2005). Next, a non parametrical Kruskal-Wallis test was applied to these
deflated claims, with the conclusion that we could not reject the hypothesis
that the ten yearly samples belong to the same population, at a 1% significance
level (see for instance Siegel S., Castellan N.J. (1988)). Consequently, we may
assume that all the claims are identically distributed. The last step consisted
in a conversion to Euros in an attempt to bring the foregoing calculations
nearer to the reader’s perception.

A threshold was fixed by means of standard graphical techniques (see for
instance Reiss, Thomas (2001), Beirlant, Teugels, Vynckier (1996), or Embrechts,
Klüppelberg, Mikosch (1997)). For this aim we have generated the exponen-
tial quantile-quantile plot (QQ-plot) and plotted the sample mean excesses
(figures 1 and 2).
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In figure 1 we can see a nearly linear plot denouncing the trace of an expo-
nential distribution over an interval of claim severities with left end point at
150,253.02€. Figure 2 allows us choosing as the threshold X *

395–18 = 888,310.66€

this value being the one where the mean excesses begin to increase. Once the
threshold has been fixed, we adjust by least squares a straight line to the first
377 data, obtaining

y = 218969.1049 x + 150253.0261 (4.1)

The linear correlation coefficient is .99753753 (figure 3).

Therefore we may model the claim sizes distribution between 150,253.0261€

and 888,310.6632€ by means of a shifted and truncated exponential distribu-
tion with estimated parameter q = .4566854308e – 5. For claim severities x >
150253.0261 the shifted exponential would be

f (x) = q exp{– q (x – 150253.0261)} (4.2)

According to (4.2), the cumulated probability in the interval [150253.0261,
888310.6632] is equal to .9656310486, while the tail probability is

pT = P{X > 888310.6632} = .0343689514

denouncing that about 3.5% of the claim severities greater than 150,253.02 €
will be above the threshold. Given a threshold fixed at X *

377 = 888,310.6632  the
claim severities above it consist in the eighteen data points whose distribution
through the portfolios and over the years is summarized in table 1.

Next, we calculate the Hill estimates a5 = 1/Hk,395 (see figure 4) where

logk
1

,k n
j

k

1

=
=

H ! (X*
n – j +1) – log(X*

n – k), k < n (4.3)

Corresponding to a number of excesses k = 18 we obtain

a5 = 1/H18,395 = 8.495929855 (4.4)

This estimation coincides with the MLE one since we are working in the case
where a threshold T = X *

395–18 = 888,310.6632 has been previously fixed, so the
two estimators result in the same expression (4.3).

We begin the Bayesian analysis of the Pareto index calculating its collec-
tive estimation. For this sake we can model the lack of prior information in
two ways. We may consider the reference prior (3.12) if we want to represent
a total default of information. Or we may use a reciprocal gamma distribution
(3.15) with infinite variance and finite mean to model vague prior belief about
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FIGURE 3: Line adjusted by least squares to the QQ-plot of the first 377 data.

FIGURE 2: Abscissas: ordered sample. Ordinates: sample mean excesses Ek,395, k = 1, …, 394.
The lowest point is attained at k = 18 with a size of 888,310.66€.
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the parameter expectation. Having in mind that a mean 2.5 has been generally
assumed in motor liability insurance (see the example worked out in Hesselager
(1993), Reiss, Thomas (1999)), we have considered m = 2.5 jointly with b = –2
in (3.19). The resulting calculations are summarized in table 2 where we have
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TABLE 1

THE EIGHTEEN CLAIMS ROUNDED TO THE NEAREST UNIT, OVER THE THRESHOLD X *
377 = 888.310.66€

(LAST COLUMN IN BOLD CHARACTERS), GROUPED BY PORTFOLIOS (COLUMNS A, C, E, F, H) AND YEARS

(ROWS 1992,…, 2001). NO CLAIM ABOVE THE THRESHOLD WAS COMMUNICATED EITHER IN THE OTHER

FIVE INSURANCE COMPANIES OR IN YEAR 2001.

A C E F H

1992 949,459 1,667,634

1993 905,909 1,119,830

1994 1,014,673

1995 978,507 949,494

1996 1,018,229
888,310
929,092

1997 894,461
903,656

1,038,262
1,088,642

1998
908,713

898,126
1,023,955

1999 918,619

2000 982,315

2001

TABLE 2

THE COLLECTIVE PARETO INDEX. ROWS: A 95% PROBABILITY a-INTERVAL, POSTERIOR MEAN,
STANDARD DEVIATION, COEFFICIENT OF VARIATION AND SKEWNESS. COLUMNS: SUCCESSIVE PRIORS ARE

CHOSEN AS RECIPROCAL GAMMA (MEAN = 2.5, STANDARD DEVIATION = ∞), GAMMA REFERENCE, INVERSE

GAUSSIAN (MEAN = 2.5, COEFFICIENT VARIATION = 0.3), RECIPROCAL INVERSE GAUSSIAN (MEAN = 2.5,
COEFFICIENT VARIATION = 0.3), AND GAMMA (MEAN = 2.5, COEFFICIENT VARIATION = 0.3).

Reciprocal Gamma Inverse Rec. inverse
Gamma

gamma reference Gaussian Gaussian

95% Prob. interval (4.5, 11.88) (3.94, 12.09) (2.52, 6.49) (2.54, 6.43) (2.92, 5.64)
m 7.714613 8.495929 4.736500 4.707062 4.435569
s 1.888458 2.002509 0.975273 0.959308 0.822091

s/m 0.244789 0.235702 0.205905 0.203802 0.185340
g 0.499636 0.471404 0.464210 0.464210 0.370681
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FIGURE 4: Inverses of the Hill estimates corresponding to the number of excesses k = 1, …, 395.
For k = 18 we get a5 = 1/H18,395 = 8.495929855. These could be considered as well as the MLE

in case of a previously fixed threshold T = X*
395–18 = 888,310.6632.

written in the first and second columns a 95%-probability A-interval followed
by its mean, standard deviation, coefficient of variation and skewness, all given
by the posterior distributions.

Another possibility is to assume some prior knowledge about the first and
second moments of a. While we choose the same value for the mean, we will
set the coefficient of variation equal to 0.3 as it has been established for motor
liability insurance in the references cited above. Then we can choose as a prior
some of the distributions reviewed in section 3. The same characteristics
calculated by means of their respective posterior distributions are quoted in the
third, fourth and fifth columns of table 2.

The next step is the estimation of the individual Pareto index for each of
the portfolios contributing to the sample of claim severities. For the sake of
concision, this will be done only for portfolios A, E and H (see table 1). The
estimation using no prior knowledge (gamma reference) or vague information
(reciprocal gamma) is summarized in table 3.

Assuming for the prior distribution (in each of the three cases gamma,
inverse Gaussian and reciprocal inverse Gaussian) a mean value of 2.5 and a
coefficient of variation of 0.3, we get the results listed in table 4.
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In table 2 we see that the probability A-intervals are wider in the cases of
no prior information than in the prior information ones (as could be expected).
The same observation applies for the individual Pareto indexes (compare
the intervals found in table 3 — no prior information — with those found in
table 4 — prior information). As an illustration, in figure 5 we can find the plots
of the posterior A-densities in the case of the reciprocal gamma prior.

In figure 6 we plot, for the collective normalized excesses, its sampling dis-
tribution together with the Pareto distributions resulting from substitution of
a by its Bayes estimations when choosing as a prior each one of the cases
reviewed in this paper. Even if the main foundation of our modeling lays on
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TABLE 3

THE POSTERIOR INDIVIDUAL PARETO INDEXES. ROWS: FOR EACH PORTFOLIO (A,E,H) WE CONSIDER THE

CASES OF VAGUE (RECIPROCAL GAMMA WITH MEAN = 2.5 AND STANDARD DEVIATION = ∞) AND NO PRIOR

KNOWLEDGE (GAMMA REFERENCE). COLUMNS: A 95% PROBABILITY a-INTERVAL, POSTERIOR MEAN, STANDARD

DEVIATION, COEFFICIENT OF VARIATION AND SKEWNESS.

Portf. a Prior 95% Prob. Interval m s s /m g

A
Rec. gamma (1, 17.70) 7.070347 4.973582 0.703442 1.690130
Gamma ref. (1, 28.46) 13.471733 7.777909 0.577350 1.154700

E
Rec. gamma (1,7.38) 4.238813 1.680509 0.396457 0.873800
Gamma ref. (1, 8.82) 5.210403 1.969347 0.377964 0.755928

H
Rec. gamma (1, 15.33) 6.137050 4.191834 0.680374 1.659250
Gamma ref. (1, 23.81) 11.215884 6.475493 0.577350 1.154700

TABLE 4

THE INDIVIDUAL PARETO INDEXES WITH SOME PRIOR KNOWLEDGE. COLUMNS: A 95% PROBABILITY

a-INTERVAL, POSTERIOR MEAN, STANDARD DEVIATION, COEFFICIENT OF VARIATION AND SKEWNESS.
ROWS: PORTFOLIOS A, E, H, WITH PRIORS GAMMA, INVERSE GAUSSIAN AND RECIPROCAL INVERSE GAUSSIAN.

ALL THESE CONSIDERED WITH MEAN 2.5 AND COEFFICIENT OF VARIATION 0.3.

Portf. a Prior 
95% Prob.

m s s /m g
Interval

Gamma (1.46 , 4.14) 3.023507 0.804878 0.266206 0.532413
A Inverse Gaussian (0.76, 4.65) 3.045151 0.875818 0.287610 0.793319

Rec. inverse Gaussian (0.80, 4.63) 3.043348 0.869265 0.285622 0.766482

Gamma (1.73 , 4.17) 3.129127 0.735276 0.234978 0.469956
E Inverse Gaussian (1.20, 4.57) 3.143024 0.792164 0.252038 0.647198

Rec. inverse Gaussian (1.23, 4.56) 3.142330 0.787341 0.250559 0.629559

Gamma (1.45 , 4.10) 2.994767 0.797227 0.266206 0.532413
H Inverse Gaussian (0.77, 4.59) 3.011321 0.862422 0.286393 0.790522

Rec. inverse Gaussian (0.80, 4.57) 3.010001 0.856504 0.284552 0.764241
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FIGURE 6: Excess distributions in the following cases (from left to right): sampling distribution
(continuous), and Pareto distributions obtained through substitution of the Bayes a-estimate

corresponding to the following priors: the reference prior (box), reciprocal gamma (circle), inverse
Gaussian (box), reciprocal inverse Gaussian (cross), gamma (diamond).
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FIGURE 5: Posterior A-densities when the prior is a reciprocal gamma:
portfolios A, H, E and the collective.
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FIGURE 7: Posterior l-densities for each portfolio and the collective.

an asymptotic argument (extreme value theory) that drive us to the assump-
tion that the severity distribution should be of Pareto type, we see it useful to
strengthen this assumption by conducting a goodness-of-fit test on the Pareto
family as a suitable model for our normalized excesses. For that aim we will
use the Pareto distribution were a has been substituted by the Bayes estimate
resulting from the reference prior. Remember that this case takes only into
account the sample information (there is no subjective one), and the three sta-
tistics (Bayes with quadratic loss function, MLE and Hill) result in the same
expression (see the comments after (3.12)).

Placing ourselves in the case where the Pareto index is unknown (Case II,
see D’Agostino, Stephens (1986) p. 134, 254) and considering the MLE esti-
mation a5 = 8.495929 (see table 2, second column) we obtain a Cramér-von-
Mises statistic equal to 0.03551, which is lower than 0.222 the critical value at
a 5% significance level. It follows that the Pareto family should not be rejected
as a model for our sample. If we try to conduct Goodness-of-fit tests for the
other mentioned Pareto distributions, the situation would be easier as we may
place ourselves in a Case 0 (see D’Agostino, Stephens (1986) p. 104-105) where
the distribution is fully specified. Then calculating the Cramér-von-Mises
statistic for each of the considered Pareto distributions, we would check that
the heavier is the subjective information used in the Pareto index estimation,
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the higher is the evidence for rejecting the model. This is not surprising as the
goodness-of-fit test relies only in the sample information, and it does not go
in the detriment of the usefulness of these distributions for we may look to them
as representatives of conservative models reflecting worse cases than the one
supported by the sample information. Nevertheless we have to point out that
the Pareto distribution coming from the Bayes estimation using the reciprocal
gamma prior (Case 0 with Pareto index a = 7.714613, see table 2, third column)
gives a Cramér-von-Mises statistic equal to 0.04873 still lower than 0.461, the
critical value at a 5% significance level.

We still need estimates of the posterior mean number of excesses to calcu-
late reinsurance premiums. Having in mind the comments made at the end of
section 3, this can be achieved modeling the prior knowledge of the mean
number of excesses as vague information, i.e. with the help of a reciprocal
gamma prior. This can be taken with a mean equal to 2 (see Hesselager (1993))
and infinite variance. Figure 7 draws the posterior L-densities corresponding
to the portfolios and the collective. The resulting Bayes estimations are listed
in the second column of table 5, where the case of a portfolio having not suf-
fered from any excess has been also included. In its third column we report 95%
probability L-intervals.
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TABLE 5

REINSURANCE PREMIUMS ROUNDED TO THE NEAREST UNIT (FOURTH COLUMN) CALCULATED WITH NO PRIOR

INFORMATION (GAMMA REFERENCE PRIOR) AND VAGUE PRIOR INFORMATION (RECIPROCAL GAMMA WITH

MEAN 2.5 AND INFINITE VARIANCE) ON THE PARETO INDEX. THE POSTERIOR MEAN NUMBERS OF EXCESSES

OVER THE THRESHOLD (SECOND COLUMN) HAVE BEEN CALCULATED SUPPOSING THE CASE OF VAGUE PRIOR

INFORMATION. THIS HAS BEEN MODELLED BY MEANS OF A RECIPROCAL GAMMA WITH MEAN 2 AND INFINITE

VARIANCE. A 95% PROBABILITY l-INTERVAL IS REPORTED FOR EACH PORTFOLIO IN THE THIRD COLUMN.
IN THE FIFTH COLUMN WE REPORT THE ESTIMATED EXPECTED SHORTFALL (CALCULATED AT A 50%-LEVEL).

ROWS: COLLECTIVE AND INDIVIDUAL PREMIUMS CORRESPONDING TO PORTFOLIOS A, E, H,
AND THE CASE OF A PORTFOLIO WITH NO EXCESS.

Portfolio Posterior l
95% Prob.

XL Premium
E.SF.

a Prior distribution
Interval 50% level

Collective 1.722697 (0.80, 2.44)
7,833 14,223 Reciprocal gamma
7,016 12,713 Gamma reference

A 0.524104 (0.04, 0.84)
2,636 5,192 Reciprocal gamma
1,283 2,530 Gamma reference

E 0.781445 (0.15, 1.22)
7,366 14,387 Reciprocal gamma
5,666 11,372 Gamma reference

H 0.524104 (0.04, 0.84)
3,115 6,244 Reciprocal gamma
1,566 3,145 Gamma reference

No excess 0.381603 (0.01, 0.61)
1,735 3,458 Reciprocal gamma
1,554 3,121 Gamma reference
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Now reinsurance premiums calculations can be achieved. These consist in
the substitution of the l and a estimates into formula (2.15). Tables 5 and 6
summarize the cases of inexistent, vague and precise prior knowledge respectively.
Portfolios lacking of excesses constitute a special case, because there is no infor-
mation giving raise to the a-posterior. We have performed the premium cal-
culation using each portfolio l-estimate together with the collective a-estimate.

In table 5 (fifth column) and table 6 (third column) we have calculated esti-
mations of the expected shortfall (E.SF.) to give an impression of the risk in
each case (see for instance Acerbi, Tasche (2002)). This could be useful when
adding a risk-dependent security margin to the net XL premium.

5. SUMMARY AND CONCLUSIONS

We have seen in the preceding sections how the generalized inverse Gaussian
family works as a Pareto prior conjugate and we have deduced Bayesian estimates
of the Pareto index for the collective and the individual portfolios. Knowing
that the GIG also works as a Poisson prior conjugate, we have written down
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TABLE 6

REINSURANCE PREMIUMS ROUNDED TO THE NEAREST UNIT IN THE CASE OF PRIOR BELIEFS ABOUT THE

PARETO INDEX MEAN (2.5) AND SECOND MOMENT (COEFFICIENT OF VARIATION 0.3) MODELLED BY MEANS OF

A GAMMA, INVERSE GAUSSIAN AND RECIPROCAL INVERSE GAUSSIAN DISTRIBUTIONS. POSTERIOR MEAN

NUMBER OF EXCESSES ARE THOSE LISTED IN THE SECOND COLUMN OF TABLE N°5. IN THE THIRD COLUMN

WE REPORT THE ESTIMATED EXPECTED SHORTFALL (CALCULATED AT A 50%-LEVEL).
ROWS: COLLECTIVE PREMIUMS AND INDIVIDUAL PREMIUMS CORRESPONDING TO PORTFOLIOS A, E, H,

AND A PORTFOLIO WITH NO EXCESSES OVER THE THRESHOLD.

Portfolio a Prior distribution E.SF. 50% level XL Premium

Gamma 28,204 15,309
Collective Inverse Gaussian 25,765 14,076

Reciprocal inverse Gaussian 25,771 14,188

Gamma 15,829 7,908
A Inverse Gaussian 15,666 7,824

Reciprocal inverse Gaussian 15,659 7,830

Gamma 22,486 11,205
E Inverse Gaussian 22,182 11,133

Reciprocal inverse Gaussian 22,748 11,136

Gamma 16,329 8,022
H Inverse Gaussian 15,836 7,955

Reciprocal inverse Gaussian 15,920 7,961

Gamma 6,729 3,391
No excess Inverse Gaussian 6,140 3,118

Reciprocal inverse Gaussian 6,387 3,143
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an exact credibility formula (2.14) (or (2.15)) filled with (3.8) and (3.24), to cal-
culate XL reinsurance premiums suited to the excesses history of one portfolio.
For this scheme to be successfully applied, we must have at hand a large sample
of excesses allowing the previous fixation of the threshold defining the class
of large claims. Ours consisted in the claim severities (greater than a commu-
nication level 150,253€) arisen in ten Spanish portfolios of liability motor
insurance from 1992 to 2001.

In our general Bayesian analysis the traditional use of a gamma prior
appears as a particular case among others, some of which have been reviewed.
These were the reciprocal gamma, the inverse Gaussian and the reciprocal
inverse Gaussian distributions.

The family (3.9) of predictive distributions for the excesses over the thresh-
old has been derived. This family contains as a particular case the log-Pareto
distribution (2.25) as well as many other distributions like for instance (3.14),
(3.16) and (3.21).

The reference prior (3.12) is useful when the only information available is
the one contained in the sample. This is an important case indeed, for the Bayes,
MLE and Hill statistics resume in the same expression, due in part to the fact
that the threshold was previously fixed in a data point of the original ordered
sample. Substituting the resulting Bayes estimation into the Pareto index,
we have obtained a model for the collective excesses with a fairly good fit,
confirming the previously assumed hypothesis of Pareto distributed excesses
over the threshold.

The reciprocal gamma distribution allows the modeling of vague prior
information. This happens when we are not able to assign a value to the sec-
ond moment of the Pareto index though we still want to introduce into the
Bayesian analysis some guess about its expectation. The Pareto distribution
obtained through substitution of the Pareto index by this Bayes estimation
also results in a good fit. This way, varying the prior A-mean would furnish
successive Pareto distributions (for the collective) the lower the prior mean the
more conservative the model, though still providing good fits.

The supposition of a deeper prior information resumes to the knowledge
of the mean and the coefficient of variation (equivalently the second moment)
of the prior distribution. Within this approach, a larger standard deviation
would correspond to gradually less confidence on the value chosen for the
mean. Complete prior information has been modeled by means of three dis-
tributions, namely the inverse Gaussian, the reciprocal inverse Gaussian and
the gamma, all belonging to the GIG family. As a general rule we find that the
A-estimations found in this case are lower than the ones corresponding to the
lackness or vague prior knowledge. This is caused by the prior information we
introduced, that was voluntarily chosen to prevent a more pessimistic real sit-
uation than the one squeezed out strictly from the sole sample (i.e. when using
the reference prior). Consequently, we conclude that trying lower A-means
with more narrow standard deviations (for the prior distribution) furnishes
lower posterior Bayes A-estimates, thus resulting in a more conservative Pareto
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distribution (once the substitution of the index by its estimation is done). Inside
this gradation, the extreme (more conservative) case is represented by the
gamma-Pareto-gamma scheme that gave the lowest A-estimations. From the
point of view of the fits (collective case), we recall that the evidence for reject-
ing the models grows as the prior knowledge gets more precise, shadowing the
objective information resumed in the sample.

Thus widening the Pareto prior family by using the GIG family has allowed
us to produce a variety of Pareto distributions for the excesses representative
of successively more conservative models. Correspondingly, we have been able
to obtain reinsurance premiums which are ranged from the lowest ones (cor-
responding to the lack of prior information) to the highest ones (where more
precise prior information is denouncing a lower Pareto index). This could be
useful for it could make possible the calculation of successively higher premiums
(either collective or individual) while knowing at the same time to what kind
of overview (mean and coefficient of variation) they may correspond.

Future research could focus on the study of the predictive distribution for
the excesses (3.9), a generalization of the well known log-Pareto distribution
(3.11). Some of its simplest particular cases have been already reviewed in
(3.14), (3.16) and (3.21). For instance, it could be interesting to introduce a
shift parameter denoting the practitioner’s prior belief on the number of finite
moments of the unconditioned excesses distribution.
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APPENDIX

We obtain the unconditioned distribution (3.9) substituting (3.1) into (2.8)
then integrating. First we reparametrize the GIG as follows:
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Recalling that (3.2) is the Bessel function of third kind we finally get
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Expressions (3.14) and (3.21) are straightforward considering (3.9) and the fol-
lowing two properties of the Bessel function of the third kind (see for instance
Panjer, Willmot (1992) pages 413, 414):
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Kb (w) = K–b (w), b ∈ �, w > 0

while (3.11) (respectively (3.16)) can be easily obtained filling (2.8) with (3.10)
(respectively (3.15)) then integrating it.
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