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Abstract

We propose a generalised version of configuration spaces defined by disallowing combinations of
simultaneous collisions among the n points determined by a family of forbidden partitions. In the case
where the underlying space is a finite graph, we construct a cubical complex with the same homology as
this configuration space.
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1. Introduction

The ordered configuration space, introduced in [6], models the possible arrangements
of n particles in an underlying space X, where two particles are not permitted to
occupy the same position simultaneously. The notion can be broadened to allow for
certain collisions but not others. The no-k-equal configuration space (see for example
[3, 5]) allows up to k − 1 particles to occupy the same position at one time. In a
coloured configuration space (the ‘exotic’ configuration spaces in [2, 8]), each particle
is assigned a colour, and a collision is allowed or disallowed based on the colour
composition of the particles involved. In these variations, it is still always the case
that a configuration is disallowed due to a single collision, meaning a set of particles
occupying one position.

In this note, we generalise these ideas with a version of configuration space in
which a specific arrangement of particles can be disallowed based on the presence and
compositions of separate simultaneous collisions. For example, this new version allows
us to define a no-k-collision configuration space, where an arrangement is disallowed if
it includes k or more pairs of colliding particles. More generally, if a collision between
certain particles introduces some amount of interference, the configurations may be
limited by the total amount of interference in the entire system.
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2 J. Dover [2]

Any collection of simultaneous collisions induces a partition on the set of particles.
Our generalised configuration space is defined by specifying an appropriate collection
of forbidden partitions. The space consists of all arrangements where the collisions do
not conform to any of these forbidden partitions.

After defining this new forbidden partition configuration space, we will consider the
case where the underlying space is a finite graph. Here, we adapt the approach used in
[5] to construct a cubical complex as a discrete model for the homology, generalising
the models of [1] for the nth configuration space and [5] for the no-k-equal space.

For n ∈ N, let N = {1, . . . , n}. A partial order on the partitions of N is given by the
rule: P ≤ Q if and only if, for all i, j ∈ N, we have (i ∼P j⇒ i ∼Q j).

LetP be a collection of partitions of N such that, for partitions P and Q of N if P ∈ P
and P ≤ Q, then Q ∈ P. We say P is an upper set of partitions and always assume it
does not contain the discrete partition {{1}, {2}, . . . , {n}}.

Let X be a topological space. For any configuration x = (x1, . . . , xn) ∈ Xn, there is
an induced partition of N, P = π(x), given by i ∼P j if and only if xi = xj.

We define Confn(X,P) := {x ∈ Xn | π(x) � P}, the P-configuration space of X.

EXAMPLE 1.1 (No-k-equal configurations). For a given k ≥ 2, let P be the collection
of partitions P such that there exists i ∈ N with |[i]P| ≥ k. Then, Confn(X,P) is the
no-k-equal space of X.

EXAMPLE 1.2 (Coloured configurations). Assign to each point indexed by N one of m
colours and, for a subset A ⊆ N, let c(A) ∈ Nm denote the vector counting the number
of points with indices in A having each colour. Let I be an ideal of colour count
vectors in permitted collisions. Define P as the collection of partitions P such that
there exists i ∈ N with c([i]P) � I. Then, Confn(X,P) gives the coloured configuration
space from [2].

EXAMPLE 1.3 (Mass configurations). If xi represents the location in X of a particle
with nonnegative mass mi, let M ≥ max{mi | i ∈ N}. Define P as the collection of
partitions P such that there exists i ∈ N with

∑
j∈[i]P

mj > M. Then, Confn(X,P) gives
the space of configurations of n particles, where the total mass of particles located at
any point of X is at most M.

EXAMPLE 1.4. Let N = {1, 2, 3, 4} and P be the set of partitions {{1, 2}, {3, 4}} and
{{1, 2, 3, 4}}. Then, Conf4(X,P) consists of all (x1, x2, x3, x4) except those of the form
(a, a, b, b). In words, collisions are allowed as long as there is no collision of x1 with
x2 at the same time as x3 with x4.

EXAMPLE 1.5 (No-k-collision configurations). For a given k ≥ 1, let P be the collec-
tion of partitions P such that the number of parts in P is ≤ N − k. Then, Confn(X,P)
is the space of all configurations having fewer than k pairs of coincident points
xi = xj, i < j.

EXAMPLE 1.6 (Configurations with an interference threshold). For each pair i < j,
let fij ≥ 0 be the amount of interference created if xi coincides with xj. Let M > 0
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[3] Forbidden partition configuration spaces 3

be the maximum amount of interference allowed in the system. Let P be the
collection of partitions P such that

∑
i∼Pj fij > M. Then, Confn(X,P) gives the space

of configurations with an allowed level of interference.

In the remaining sections, we study the forbidden partition configuration space
Confn(Γ,P) of a graph Γ and introduce a cubical complexDn(Γ,P) as a discrete model.
We will define open covers for both that induce homological equivalence between the
two spaces via the associated Mayer–Vietoris spectral sequence (see [4]).

2. P-configuration space of a graph

Let N = {1, . . . , n} and P be an upper set of partitions of N.
Let Γ be a finite, connected graph with no loops and at least one vertex of degree

≥ 2. Each edge is given a length of 1, inducing the path metric d on Γ. We give Γn and
its subspace Confn(Γ,P) the metric δ(x, y) = max{d(xi, yi) | i ∈ N}.

An open star Vt in Γ consists of a single vertex vt of degree ≥ 2 (called the
central vertex) together with all of its incident edges, excluding their second vertices
if they also have degree ≥ 2. Let V = {V1, V2, . . . , Vs} be the collection of open stars
covering Γ. (As degree 1 vertices are considered part of the open star, we also consider
them part of the interior of an edge.)

We will now construct an open cover of the P-configuration space Confn(Γ,P). Let
σ be a choice of open star Vt for each i ∈ N. Let π(σ) be the partition of N induced
by σ: i ∼ j if and only if σ assigns i and j to the same open star. Choose a refinement
P ≤ π(σ) which is not in P. Choose a partial order ω of N that restricts to a total order
of the indices assigned by σ to each open star Vt and groups together members of
equivalence classes of P. (If a ∼ b and c is between a and b in the total order, then
a ∼ c.) We use ωt(i) (or simply ω(i) if t is understood) to denote the ith index in the
total order on the star Vt.

A condition is a choice λ of compatible σ, P and ω as above. A configuration
x = (x1, . . . , xn) ∈ Confn(Γ,P) conforms to λ = (σ, P,ω) if:

• for each i ∈ N, xi lies in the open star σ(i) = V with central vertex v;
• if xi and xj lie on the same edge of Γ and σ(i) � σ(j), then d(xi, v) < d(xj, v), where v

is the central vertex of σ(i);
• for a given open star V, if i < j, ω(i) �P ω(j) and xω(i) and xω(j) lie on the same edge,

then d(xω(i), v) < d(xω(j), v).

We note that, in a configuration conforming to λ, two points xi and xj are only
allowed to be equal if i and j are assigned to the same star and i ∼P j.

Let Uλ be the set of configurations conforming to λ, andU be the collection {Uλ}λ.

PROPOSITION 2.1. U is a finite, open cover of Confn(Γ,P).

PROOF. There are finitely many possible conditions λ, soU is finite.
Given any x ∈ Confn(Γ,P), we may define a condition λ as follows. Assign i to the

open star whose central vertex is closest to xi; if xi is at the midpoint of an edge between
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4 J. Dover [4]

two vertices of degree ≥ 2, choose either open star for i and for all j for which xj = xi.
Let P = π(x). Define the total order on the indices assigned to Vt by increasing distance
from vt; if multiple xj have the same distance from vt, choose any order for those indices
that groups together indices of coincident points. By construction, x ∈ Uλ.

We show that each Uλ is open. For x ∈ Uλ, define ε0 = min{d(xi, xj) | xi � xj}, and
define εt = min{d(xi, vt) | i �P ωt(1)} for each t ∈ {1, . . . s}. That is, for each open star
Vt, εt is the minimum distance to its central vertex of points in the configuration
which are not in the same part of P as the first index in the order ωt. Now let
ε = min{1, ε0, ε1, . . . , εs}. We show the open ball B(x, ε/3) is contained in Uλ. Let y
be a configuration with δ(y, x) < ε/3. Then, d(yi, xi) < ε/3 for all i ∈ N. We need to
show that y conforms to λ.

Since d(yi, xi) < ε/3 < 1, then yi and xi must lie on the same edge or on two edges
that share a vertex. If they lie on the same edge, then yi lies in the same open star
σ(i) as xi. If they lie on two edges that share the central vertex of σ(i), then yi lies in
σ(i). Assume that they lie on two adjacent edges that do not share the central vertex
of σ(i). Then, they share a vertex with degree ≥ 2 which is the central vertex vt of
some open star Vt � σ(i). Since i is not assigned to Vt by σ, i cannot be in the same
part of P as ωt(1), as P is a refinement of π(σ). Therefore, d(xi, vt) ≥ εt. However,
d(yi, xi) ≥ d(xi, vt) since the shortest part between yi and xi passes through vt. This
contradicts d(yi, xi) < ε/3. Therefore, yi lies on σ(i).

Assume yi and yj lie on the same edge of Γ and σ(i) � σ(j). Then, xi � xj, so
d(xi, xj) ≥ ε and consequently d(yi, yj) > ε/3. If xi is not on this same edge, it must
be on another edge of Vt, so d(yi, vt) < ε/3. (If the two edges share both of their
vertices and the shortest path between xi and yi were to pass through the other vertex,
we would have d(xi, yi) > ε, which is a contradiction.) Meanwhile, d(yj, vt) > 2ε/3
because d(xj, vt) ≥ εk ≥ ε. Therefore, yi is strictly closer to the central vertex of σ(i)
than is yj. If xj is not on the same edge as yj and yi, then by a similar argument, yj must
be closer to the other vertex of the edge than is yi, so therefore, yi is strictly closer to vt
than is yj. The final case is that xi and xj are both on this edge, and since σ(i) � σ(j) and
x conforms to λ, it must be the case that d(xi, vt) < d(xj, vt). Since they are on the same
edge, d(xi, xj) = d(xj, vt) − d(xi, vt) ≥ ε. We have d(yi, vt) < d(yi, xi) + d(xi, vt) < ε/3 +
d(xi, vt) and d(xj, vt) < d(yj, vt) + ε/3, so d(yj, vt) > d(xj, vt) − ε/3 > d(xi, vt) + ε/3 >
d(yi, vt). Thus, yi is strictly closer to the central vertex of σ(i) than is yj.

Finally, for an open star Vt, let i < j with ω(i) �P ω(j). Suppose yω(i) and yω(j) lie on
the same edge. If xω(i) and xω(j) lie on this same edge, then by a similar argument as
above, d(xω(i), vt) < d(xω(j), vt). We know ω(j) �P ω(1). Therefore, xω(j) and yω(j) must
lie on the same edge as the distance from xω(j) to any vertex of degree ≥ 2 is at least ε,
so d(yω(j), vt) > 2ε/3. If xω(i) is on a different edge from yω(i), then d(yω(i), vt) < ε/3,
which means d(yω(i), vt) < d(yω(j), vt).

Therefore, y conforms to λ, so Uλ is open. �

For a set Λ of conditions, let UΛ =
⋂
λ∈ΛUλ. Given a nonempty Λ, let Q be the

common refinement of the partitions Pλ, λ ∈ Λ: i ∼Q j if and only if i ∼Pλ j for all
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[5] Forbidden partition configuration spaces 5

λ ∈ Λ. For points in UΛ, xi = xj implies i ∼Q j. Also, note that if xi = vt, where vt is a
vertex with degree ≥ 2, σλ(i) = Vt for all λ ∈ Λ, and if j �Q i, then there exists λ ∈ Λ,
where either σλ(j) � Vt or j comes after i in the total order induced by ωλ. Therefore,
in UΛ, the only points allowed to move onto a central vertex vt are those xi where
i ∼Q ωλt (1) for all λ ∈ Λ. We call these points which are allowed to move onto a central
vertex Type 1 under Λ.

If σλ(i) = Vt for all λ ∈ Λ but i �Q ωλt (1) for some λ ∈ Λ, then xi is called Type 2
under Λ. Within UΛ, such a point is not allowed to move onto the central vertex and
cannot leave the open star Vt so is restricted to a single edge within any connected
component of UΛ.

Lastly, if σλ(i) � σμ(i) for some λ, μ ∈ Λ, then xi is called Type 3 under Λ. Within
UΛ, such a point must remain in the interior of an edge connecting vt and vu, the central
vertices of σλ(i) and σμ(i), respectively, and it must remain strictly between the Type-2
points assigned to Vt and Vu.

THEOREM 2.2. For nonempty Λ, each connected component of UΛ is contractible.

PROOF. Let A be a connected component of UΛ. Within A, the only points that are
able to move between edges are Type 1. We construct a homotopy in two stages. First,
we move all Type-1 points onto the central vertex of their designated open star via
straight-line homotopy. This is possible because i ∼Q ωλ(1) for all λ ∈ Λ, so xi is not
obstructed by any xj with i �Q j. Denote by B the resulting subspace of A. Within B,
each Type-1 point must remain on its vertex, and no point can enter or leave any edge.

Consider an edge e of an open star Vt and assume that at least one point of the
configurations in B lies on e. There are two cases to consider.

In the first case, the other vertex of e has degree 1. Then, the only points on e are
Type 2. Let m be the number of equivalence classes of Q that are represented by the
Type-2 points lying on e. These equivalence classes are ordered by the distance of
their closest representative to vt, since ωλ groups members of equivalence classes of
Pλ together in its total order. Let ye be the configuration of points on e where the points
of the kth equivalence class of Q lie together at a distance of k/m away from vt.

In the second case, e connects vt to another central vertex vu. There may be points of
Type 2 which are assigned to Vt, points of Type 2 which are assigned to Vu and points
of Type 3 which lie in between. As before, the equivalence classes of Q represented
by points on e can be ordered by the distance of their closest representative to vt.
(Here, we use the facts that d(xi, vt) = 1 − d(xi, vu) and equivalence classes represented
by Type-2 points assigned to Vu can be ordered by their distances from vu.) Let
m1, m2 and m3 denote the numbers of equivalence classes of Q represented by the
points of Type 2 assigned to Vt, Type 3 and Type 2 assigned to Vu, respectively, and
m = m1 + m2 + m3. Now define the configuration ye of points on e where the points
of the kth equivalence class of Q lie together at a distance of k/(m + 1) away from vt.
(Note that this will give the same configuration ye when defined for the open star Vu,
since the kth equivalence class from vt is the (m − k + 1)th equivalence class from vu.)
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6 J. Dover [6]

Now let y be the configuration of points that restricts to ye on each edge e of Γ (and
all Type-1 points lie on their designated central vertex). Use a straight-line homotopy
to move the configurations of B to y. If xi and xj lie on the same edge with i �Q j
with d(xi, vt) < d(xj, vt), then d(yi, vt) < d(yj, vt), so the straight-line homotopy will not
create any collisions of points which are not in the same class of Q. �

3. The discrete model

Next, we define a finite cubical complex which will serve as our discrete model
Dn(Γ,P) for the P-configuration space.

First, subdivide each edge e of Γ between two vertices of degree ≥ 2 into n + 1
segments of length 1/(n + 1), and subdivide each edge having a vertex of degree 1 into
n segments of length 1/n. We will call this subdivided graph Γ′. To avoid confusion, we
will refer to the cells τi of Γ′ as ‘nodes’ and ‘segments’, and reserve the terms ‘vertices’
and ‘edges’ for the cells of Γ. So, ‘central vertices’ still refer only to original vertices
of Γ and the ‘open stars’ refer to the original stars of Γ, which are now subdivided
in Γ′. The subdivision gives a cubical structure to Γn with (closed) cells of the form
τ = (τ1, . . . , τn) with τi ∈ V(Γ′) ∪ E(Γ′). We now define the subcomplex

Dn(Γ,P) =
{
τ

∣∣∣∣∣∀P ∈ P,∃j ∈ N,
⋂
i∈[j]P

τi = ∅
}
.

Let Dλ = Dn(Γ,P) ∩ Uλ and DΛ =
⋂
λ∈ΛDλ.

Let F be the face poset of Dn(Γ,P) and let FΛ be the subposet of cells with
nonempty intersection with DΛ.

THEOREM 3.1. The geometric realisation of the order complex ΔFΛ is a deformation
retract of DΛ.

PROOF. SinceDn(Γ,P) is a regular cell complex, it is homeomorphic to the geometric
realisation of ΔF. The 0-simplices of ΔF correspond to the elements of F (which are
cells of Dn(Γ,P)). A k-simplex is a chain of k + 1 cells ordered by inclusion, and
the points of the simplex are convex combinations of its vertices. A homeomorphic
inclusion of |ΔF| into Dn(Γ,P) is obtained by choosing a point in the interior of a
cell τ for the 0-simplex corresponding to τ. This map is then defined linearly on the
simplices.

For each cell τ = (τ1, τ2, . . . , τn) ∈ FΛ, we show that DΛ ∩ τ is convex. Suppose
x, y ∈ DΛ ∩ τ. Let xi, yi ∈ τi, so zt

i = (1 − t)xi + tyi ∈ τi for any t ∈ [0, 1], so zt ∈ τ. If
τi and τj lie on the same edge e with vertex v of Γ and i �Q j, then d(xi, v) < d(xj, v)
implies d(yi, v) < d(yj, v) since both x and y conform to all λ ∈ Λ. Therefore, d(zi, v) =
(1 − t)d(xi, v) + td(yi, v) < (1 − t)d(xj, v) + td(yj, v) = d(zj, v). (If i �Q, and τi and τj lie
on two edges ei and ej that meet at v with τi containing v, then if either xi or yi on v,
then i is Type 1 and assigned to v under Λ, and neither xj nor yj is allowed to be on v
since j �Q i.) Therefore, for all t ∈ [0, 1], zt

j must lie in the interior of ej and zt
i is either

on ei or at v. Therefore, zt conforms to all λ ∈ Λ.
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[7] Forbidden partition configuration spaces 7

Since DΛ ∩ τ is convex, it must lie in a connected component A of UΛ, so every
Type-2 and Type-3 point is restricted to one edge of Γ. Type-1 points might be able to
move between edges within an open star. For each edge e of Γ, let me be the number
of equivalence classes of Q whose points could lie on e in the connected component
A of UΛ. These equivalence classes are ordered along e. (The Type-1 class assigned
to the initial vertex of e first, then Type-2 classes assigned to the initial vertex, then, if
the terminal vertex is also a central vertex of Γ, Type-3 classes, and Type-2 and Type-1
classes assigned to the terminal vertex.)

For each τ, we will choose a point in the interior of τ that lies in DΛ. Each τi is
either a node or a segment of Γ′. If τi is an original vertex from Γ of degree ≥ 2, then
i must be of Type 1 in Λ. For points xi of Types 2 and 3 under Λ, τi must be a segment
or an interior node on an edge e (possibly an original vertex of degree 1). We will now
define a configuration xτ in the interior of τ in DΛ.

• If τi is a node, put xτi at that node.
• If τi is a segment on edge e and i belongs to the kth of the me classes, put xτi at

k/(me + 1) along the length of τi from its initial node (the direction consistent with
the direction chosen for e).

As defined, xτi is contained in the interior of τi, so xτ ∈ τ. Also, if xτi = xτj , then i ∼Q
j, and the order of the equivalence classes along each edge of Γ have been preserved,
so xτ conforms to all λ ∈ Λ. Therefore, xτ ∈ DΛ.

We will first define a continuous map f : DΛ → |ΔFΛ| and then create a straight-line
homotopy from the identity map to f. For x ∈ DΛ, let τ be the minimal cell of FΛ
containing x. For each xi, we will define a point yi ∈ τi and then define f (x) = y =
(y1, . . . , yn) ∈ |ΔFΛ|.

We note that, if τ ∈ FΛ and τi is a segment from node a to node b, then the face of
τ with τi replaced with a is only in FΛ if i is in the first equivalence class on τi (or
Type 1 and assigned to a if a is a degree ≥ 2 vertex of Γ). Likewise with b and the last
equivalence class on τi. Furthermore, if i is in the first class on τi and j is in the last
class on the preceding segment τj, then the face obtained by replacing both τi and τj
with a is only in FΛ if i ∼Q j. Therefore, a configuration y ∈ τ is only in |ΔFΛ| if each
of its points yi either lies at xτi or strictly between xτi and a node of τi that i is free to
occupy (in which case, i has ‘claimed’ that node, preventing any yj with j �Q i from
also claiming it).

If τi is a node, then xi = xτi and we define yi = xi.
Suppose τi is a segment with initial node a and terminal node b. If i is a member of

an equivalence class of Q which is neither the first nor last with representatives in τi,
then define yi = xτi .

We now suppose i is a member of the first of multiple equivalence classes of Q with
representatives in τi.

In the case that a is an original vertex of Γ with degree ≥ 2, if i is of Type 1 and
assigned to a, then define yi to be the point closer to a out of xi and xτi , and if i is not
of that type, define yi = xτi .
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8 J. Dover [8]

If a is not an original vertex of Γ, then the segment τi has a preceding segment on its
edge. If other members of [i]Q are assigned to that preceding segment or if it contains
no points at all in its interior, then define yi to be the point closer to a out of xi and xτi .

Finally, suppose the last equivalence class with representatives assigned to that
preceding segment is [j]Q, where j �Q i.

Let di = min{d(xi, a)/d(xτi , a), 1} and let d[i] = min{dk | k ∈ [i]Q, τk = τi}. Similarly,
define dj and d[j]. Set M = max{d[i], d[j]}. If di ≥ d[j], set yi = xτi . If di < 1 = d[j], set
yi = xi. Otherwise, we have di < d[j] = M < 1, and we set yi = (di/M)xτi + (1 − di/M)a.

If i is a member of the last of multiple equivalence classes of Q in τi, yi can be
defined symmetrically. (If τi is a segment whose terminal node b is a degree-1 vertex
of Γ, then set yi to be the point closer to b out of xi and xτi .)

The last possibility is if all points in τi belong to the same equivalence class (so it is
both the first and the last class on τi). Then, if xi lies before xτi , define yi according to
the rules for the first equivalence class on a segment, and if it lies after, use the rules
for the last equivalence class. If xi = xτi , both rules agree that yi = xτi .

We set f (x) = y = (y1, y2, . . . , yn). Then, f is continuous on each intersection
DΛ ∩ τ, so f is continuous. Furthermore, f fixes each point of |ΔFΛ|. The homotopy
H : DΛ × [0, 1]→ DΛ given by H(x, t) = (1 − t)x + t f (x) is therefore a deformation
retraction of DΛ onto |ΔFΛ|. �

We will employ the notion of Morse matchings from [7] applied to simplicial
complexes. For a simplicial complex K, let M be a collection of pairs (ρ,ψ), where
ρ < ψ ∈ K with ρ a codimension-1 face of ψ, such that no simplex of K appears in
more than one pair. A path is a sequence ρ1 < ψ1 > ρ2 < ψ2 > · · · > ρt−1 < ψt−1 > ρt,
with t ≥ 2, where for each i, (ρi,ψi) ∈ M and ρi a codimension-1 face of ψi−1 not equal
to ρi−1. If for all such paths, ρt � ρ1, then M is acyclic and is called a Morse matching
on K.

We will prove that each connected component of DΛ is contractible by showing
that each connected component of the simplicial complex ΔFΛ collapses to a point
by defining Morse matchings that collapse it onto a sequence of subcomplexes, using
the following lemma (a more general version for cell complexes can be found in [9,
Theorem 11.13]).

LEMMA 3.2. Let K be a finite simplicial complex with a Morse matching whose critical
simplices form a subcomplex L. Then, K collapses simplicially to L.

In preparation for the Morse matchings, we will define some important terminology.
First, we choose a direction on every edge of Γ. Assume any degree-1 vertex is the
terminal vertex of its edge.

Let K be a connected component of ΔFΛ. Since (the realisation of) K lies within a
connected component of UΛ, each member of a Type-2 or Type-3 equivalence class of
Q is restricted to a single edge, while a member of a Type-1 class may lie on any edge
in its open star. As before, the equivalence classes that may intersect e are ordered by
their distance from the initial vertex v. We write C ≺ C′ if C and C′ are equivalence
classes on e with C closer to the initial vertex.
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[9] Forbidden partition configuration spaces 9

Let e be a fixed edge with r > 0 equivalence classes having members that may lie
on e in this connected component of UΛ. Suppose C is such an equivalence class with
qC members that may lie on e. We will define a zone ZC on e by specifying a collection
of consecutive nodes in e and the zone consists of those nodes and all segments in e
that are incident to them.

If C is the only class on e and Type 1, define ZC by the qC + 1 consecutive nodes (and
their incident segments) starting at the vertex to which the class has been assigned.
Otherwise, if C is the first class on e and Type 1, define ZC by the first qC + 1 nodes of
e starting at the initial vertex. If there is no Type-1 class assigned to the initial vertex,
designate the initial vertex and its incident segments as a zone Z for an ‘empty’ first
class. For k < r, if C is the kth class on e, define ZC to be the qC nodes immediately
following the last node of the (k − 1)st zone. For the rth (last) class C on e, if C is
not Type 1 and assigned to the terminal vertex of e, define ZC the same way as the
previous zones; if C is Type 1 and assigned to the terminal vertex of e, define ZC to be
the last qC + 1 nodes of e (including the terminal vertex). There are enough nodes on
e to define these zones, but there may be some nodes which are not assigned to a zone
(either after the rth class’s zone or between the zones for the (r − 1)st and rth classes).
We will consider this set of consecutive nodes (and their incident segments) to be
another zone for another ‘empty’ class. The zones are ordered in the same way as the
classes on e (with ‘empty classes’ inserted in the appropriate place). We write ZC ≺ ZC′

if C ≺ C′. Note that each pair of consecutive zones share only a single segment.
For a segment α on e, denote its initial and terminal nodes by α(0) and α(1), respec-

tively. The cells (nodes and segments) of e are totally ordered by their distance from
the initial vertex of e, with the understanding that α(0) ≺ α ≺ α(1) for a segment α.

Let τ ∈ FΛ. Suppose τi lies on e. We say that an interior node a on e with a � τi is
unobstructed for i if a ∩ τj = ∅ for any τj � τi. Likewise, an interior node a on e with
a ≺ τi is unobstructed for i if a ∩ τj = ∅ for any τj ≺ τi. If a and τi = b are adjacent
nodes joined by the segment α and a is unobstructed for i, then we can define a new
cell τ′ ∈ FΛ by setting τ′j = τj for all j with τj � b and choosing τ′j ∈ {b,α} for each j
with τj = b.

THEOREM 3.3. For nonempty Λ, each connected component of DΛ is contractible.

PROOF. By the previous theorem, each connected component of DΛ has a connected
component of |ΔFΛ| as a deformation retract. We will show each connected component
of ΔFΛ is contractible.

Let J be a connected component of ΔFΛ. For an edge e of Γ, we will now
define a Morse matching M1

e on the simplices of J. A k-simplex ρ in J is a chain
τ0 ⊂ τ1 ⊂ · · · ⊂ τk, where each τj = (τj

1, . . . τj
n) ∈ FΛ. We will create pairs ρ ⊂ ρ′,

where ρ′ is a (k + 1)-simplex.
For ρ = τ0 ⊂ · · · ⊂ τk, consider the maximal cell τk. Let C = C(ρ) be the last

equivalence class with τk
i ∈ ZB for some i ∈ C and B ≺ C. Let β = β(ρ) be the last node

or segment on e with i ∈ C and τk
i = β such that there exists an interior node a � τk

i
in ZC, which is unobstructed for i. Let I = I(ρ) be the set of all i ∈ C with τk

i = β.
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Note that, since no class after C has members in any zone before its own, then if ZB is
the first zone occupied by members of C, no zone after ZB up to and including ZC can
contain any members of classes other than C. Since at least one member of C is in ZB,
there is at least one node in ZC that is unobstructed for at least one i ∈ C with τk

i lying
before it.

If β is a node α(0), we define ρ′ by adding τk+1 to the end of the chain, where
τk+1

i = α for all i ∈ I and τk+1
i = τk

i for all i � I. This new cell τk+1 is still in FΛ because
β is the last cell with an unobstructed node in ZC after it, implying that α(1) must
be unobstructed for i ∈ I. Note that C(ρ′) = C(ρ), replacing α(0) with α cannot cause
the class to leave a zone, and β(ρ′) = α. Similarly, if β = α is a segment and there exist
i ∈ C with τk

i = α(0), we may define τk+1
i = α for such i, and τk+1

i = τk
i for all other i,

and add this τk+1 to the end of ρ to produce ρ′.
If β = α is a segment and there are no i ∈ C with τk

i = α(0), find the last τj in ρ such
that τj

i = α(0) for some i ∈ I. Define τ′ by setting τ′i = α for all i ∈ I with τj
i = α(0) and

τ′i = τ
j
i for all other i. We obtain ρ′ by inserting τ′ in the chain immediately after τj.

(If τj+1 = τ′ already, then ρ is paired by this rule with the (k − 1)-simplex obtained by
removing τj+1.) Note that τ′ is in FΛ: τ′ ⊆ τj+1 ∈ F, so τ′ ∈ F, and τ′ has all the same
cells as τj except for a subset of one class C which changed from a node to an incident
segment, so τ′ still has nonempty intersection with DΛ.

If β = α is a segment and no τ
j
i = α(0) for any i ∈ I, instead find the first τj in ρ

with τj
i = α for some i ∈ I. Define τ′ by setting τ′i = α(1) for all i ∈ I and τ′i = τ

j
i for

all other i. Then, ρ′ is obtained by inserting τ′ immediately before τj (or removing it if
τj+1 = τ′). Note that τ′ ∈ FΛ: α(1) ⊂ α, so τ′ ∈ F, and since only cells for members of
C are being changed from α to α(1) and C must be the last equivalence class on α, τ′

has nonempty intersection with DΛ.
Note that if ρ ⊂ ρ′ is a pair, C(ρ) = C(ρ′) and I(ρ) ⊆ I(ρ′). If β(ρ) = α(0), then

β(ρ′) = α. Otherwise, if β(ρ) = α, then β(ρ′) = α. In every case, β(ρ) � β(ρ′).
Note also, the cell τ′ advances some members of C(ρ) one step along e from their

position in τj (replacing a node α(0) with its succeeding segment α, or replacing a
segment α with its terminal node α(0)), and all other coordinates remain in the same
position.

Also, if τ1 ⊂ τ2, then any τ1
i ⊆ τ2

i .
Next, we consider how C may change for ρ obtained by deleting the maximal cell

τmax(ψ) from a chain ψ. Note that τmax(ρ) is a face of τmax(ψ) obtained by replacing
some segments with nodes. The zone in which a given coordinate i is located can
only change if τmax(ψ)i is a segment α, where two zones overlap and τmax(ρ)i is one
of its nodes. That coordinate switches from lying in both zones to lying in only one.
Therefore, if τmax(ψ)i does not lie in any zone prior to Z[i], then neither does τmax(ρ)i.
If τmax(ψ)i is the first segment of Z[i] and τmax(ρ)i is its terminal node, then i has exited
the lower zone. Thus, C(ρ) � C(ψ).

Now assume C(ρ) = C(ψ) = C. There are a few ways that β and I could change. A
segment in ZC appearing in τmax(ψ) could be replaced in τmax(ρ) by its terminal node,
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causing its initial node to become unobstructed for its preceding segment and node
(appearing in τmax(ρ)), in which case β(ρ) would be that preceding segment or node,
β(ρ) � β(ψ) and I(ρ) ∩ I(ψ) = ∅. If β(ψ) = α is a segment, all of its appearances
in τmax(ψ) could be replaced with α(0) in τmax(ρ), in which case, β(ρ) = α(0) and
I(ψ) ⊆ I(ρ). If some of its appearances are replaced with α(1) in τmax(ρ), then
β(ρ) � α(1). Now, α(1) may or may not have unobstructed nodes of ZC ahead of it.
If it does, β(ρ) = α(1) and I(ρ) = I(ψ). If it does not, β(ρ) � α(0) and there exists at
least one coordinate i ∈ I(ψ) such that i � I(ρ).

Note that if ρ is obtained from ψ by deleting its maximal cell, I(ψ) � I(ρ) implies
τmax(ρ) assigns a node a to a coordinate i for which τmax(ψ)i = α with α(1) = a. If ρ
and ψ have the same maximal cell, then I(ψ) = I(ρ).

We now show M1
e is acyclic. Suppose we have a path

ρ1 < ψ1 > ρ2 < ψ2 > · · · > ρt−1 < ψt−1 > ρt,

where t ≥ 3, and for 1 ≤ r ≤ t − 1, ρr is paired with ψr in the matching, and ρr+1 is a
codimension-1 face of ψr not equal to ρr.

The chain ψr is obtained from ρr by inserting some τ′(r) based on the maximal
cell τmax(ρr) which determines the class C(ρr), cell β(ρr), and coordinate set I(ρr) for
the pairing. Here, ρr+1 is obtained by removing some cell other than τ′(r) from ψr.
Therefore, τ′(r + 1) � τ′(r).

Suppose the path is a cycle, meaning ρ1 = ρt. Recall that C(ρr) = C(ψr) and
C(ψr) � C(ρr+1) for all 1 ≤ r ≤ t − 1. Therefore, since the path is a cycle, we must
have C(ψr) = C(ρr+1) for all 1 ≤ r ≤ t − 1.

Suppose I(ψr) � I(ρr+1) for some 1 ≤ r ≤ t − 1. Then, ρr+1 must be obtained by
removing τmax(ψr) from the chain, and there is a coordinate j such that τmax(ρr+1)j
is the terminal node α(1) of the segment α = τmax(ψr)j. Therefore, τj = α(1) for all
cells τ in ρr+1. The matching cannot introduce a preceding segment in a coordinate, so
there is no way to regain τmax(ψr), which contradicts the path being a cycle. Therefore,
we may assume I(ψr) ⊆ I(ρr+1). We also know I(ρr) ⊆ I(ψr) for all 1 ≤ r ≤ t − 1. Since
we have a cycle, we can conclude that I(ρr) = I(ψr) = I for all 1 ≤ r ≤ t − 1.

Now, for all i ∈ I and 1 ≤ r ≤ t − 1, we must have β(ρr) = τmax(ρr)i and β(ψr) =
τmax(ψr)i. We have β(ρr) � β(ψr), and β(ψr) must be a segment αr. If β(ψr) � β(ρr+1),
then ρr+1 is obtained by removing τmax(ψr) and β(ρr+1) = τmax(ρr+1)i = αr(0). This
forces the conclusion that τmax(ψr) = τ′(r), so it could not have been removed from ψr
in a valid path. Therefore, β(ψr) � β(ρr+1). Since we have a cycle, this means β must
be the same segment α for all chains in the path.

We know τ′(1) is obtained by replacing α(0) with α if any τj in ρ1 includes α(0)
in any of its coordinates, or by replacing α with α(1) otherwise. In the first case, ρ2
must be obtained from ψ1 by removing the predecessor to τ′(1), a cell with α(0) in at
least one coordinate i, where τmax

i = α, because any other removal would result in ρ2
being paired with the lower dimensional chain obtained by removing τ′(1). Such a cell
cannot be regained later in the path because every cell in the chain has β = α, so any
new cell will replace all α(0) of an existing cell with α or α with α(1). Likewise, in the
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second case, ρ2 must be obtained from ψ1 by removing the successor to τ′(1), a cell
with α in at least one coordinate i, where τ′i = α. Such a cell cannot be regained later
in the path because α(0) does not appear in any coordinate, so any new cell introduced
by the matching will be replacing all α in an existing cell with α(1). Therefore, the
path cannot be a cycle.

Thus, M1
e is a Morse matching. The only simplices in J which are unpaired in M1

e
are those chains ρ = τ1 ⊂ · · · ⊂ τk, where no zone ZB on e contains any τk

i with [i] � B.
These simplices form a subcomplex K: the order complex of cells τ ∈ J0 such that no
τi in e lies in a zone ZB of e with [i] � B.

We can define a similar Morse matching M2
e on K, where we consider the maximal

cell τk of a simplex ρ. Let C = C(ρ) be the first equivalence class such that τk
i ∈ ZB

for some i ∈ C and C ≺ B, and β = β(ρ) be the first node or segment on e with i ∈ C
and τk

i = β such that there exists an interior node a ≺ τk
i in ZC which is unobstructed

for i, and let I = I(ρ) be the set of all i ∈ C with τk
i = β. As before, no zone before

ZB down to and including ZC can contain any member of a class other than C. From
here, the matching M2

e may be defined similarly to M1
e , and it is similarly acyclic. Its

critical simplices are those chains in K of cells τ for which no τi in e lies in a zone ZB
with [i] ≺ B. However, since these chains are already in K, that means each τi on e lies
in Z[i]. This forms a subcomplex L to which K now simplicially collapses.

The pairings M1
e and M2

e are determined by and only affect the τi in e. Therefore,
if f is another edge of Γ that contains points in UΛ, the matchings M1

f and M2
f induce

matchings on the resulting subcomplex L to which J collapses. Collapsing via the two
matchings for one edge of Γ one at a time, we arrive at a subcomplex H consisting of
chains of cells τ for which, if τi lies on an edge e, then τi lies in zone ZB if and only if
i ∈ B.

We will use Z(i) to refer to the (closed) zone associated to i. If i belongs to a class B
which is not Type 1, then Z(i) is the interval from the first node to the last node of ZB on
the edge containing xi in UΛ. If i belongs to a Type-1 class B, then Z(i) is the union of
the intervals from the central vertex to the last node of ZB on each edge of the open star.

Now, if τ ∈ H0, each τi belongs to Z(i). Conversely, we will show that any cell τ
such that each τi belongs to Z(i) is in H0.

Since Z(i) ∩ Z(j) = ∅ if i �Q j, if
⋂

i∈C τi � ∅, then C must be a subset of a class of
Q. Suppose there exists a partition P such that

⋂
i∈C τi � ∅ for all classes C of P. Then,

P is a refinement of Q. Since Q � P, we have P � P, so τ is a cell of Dn(Γ,P). Since
the zones are ordered in accordance with the orders of classes on each edge dictated
by Λ, τ has nonempty intersection with UΛ. Therefore, τ ∈ FΛ, and thus it is in H0

since it is unpaired in all of the Morse matchings.
It follows that H is the order complex of the face poset of the cubical complex

{(τ1, . . . , τn) | τi ∈ Z(i)}, which is contractible as the product of contractible zones. �

4. The equivalence

Finally, we will show that Confn(Γ,P) andDn(Γ,P) have isomorphic homology by
using Mayer–Vietoris spectral sequences associated to an open cover of a space.
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Let X be a topological space with a countable open coverW. Let Λ = {λ1, . . . , λp}
be a collection of indices such that WΛ =

⋂p
i=1 Wλi � ∅. For such Λ, we denote

by Cq(WΛ) the singular q-chains in WΛ. We can then define the double complex
E0

p,q =
⊕
|Λ|=p Cq(WΛ). The vertical differentials are given by the usual boundary

operator ∂. The horizontal differential δ : E0
p,q → E0

p−1,q is induced by inclusion. For
Λ′ ⊂ Λ, if cΛ is a q-chain in WΛ, denote by cΛ′ its inclusion in CΛ′ . Then, for
Λ = {λ1, . . . , λp}, define

δ(cΛ) =
p∑

i=1

(−1)i−1cΛ−λi .

We now restate without proof the relevant result [5, Proposition 2.1.9] for the
Mayer–Vietoris spectral sequence associated to the open coverW of X.

PROPOSITION 4.1. The double complex E1
p,q =

⊕
|Λ|=p Hq(WΛ) for p, q ≥ 0 with

d1 = δ∗ : E1
p,q → E1

p−1,q

forms a spectral sequence converging to H∗(X).

We have open covers {Dλ} andU = {Uλ} ofDn(Γ,P) and Confn(Γ,P), respectively,
indexed by the same conditions λ.

THEOREM 4.2. The inclusion of DΛ into UΛ induces a homotopy equivalence for allΛ.

PROOF. We have seen that both UΛ and DΛ are disjoint unions of their connected
components which are all contractible via deformation retraction. Each component of
DΛ is contained in one component of UΛ. Within such a component of UΛ, there
is a path between the two retract points. We therefore need to show a one-to-one
correspondence between the connected components of UΛ and DΛ.

As described previously, the choice of Λ determines which points are designated
as Type 1, 2 and 3. Type-1 points are permitted to lie on their designated vertex,
while Types 2 and 3 cannot move between edges. Furthermore, within each edge,
points must remain ordered by equivalence class. We will therefore argue that the
connected components of both spaces are in one-to-one correspondence with the
possible assignments of Type-2 and Type-3 points to edges permissible by Λ.

In the proof of Theorem 2.2, we showed that each connected component deforma-
tion retracts to a configuration where each point of Type 1 lies on its assigned vertex
and points of Type 2 and Type 3 coincide with their equivalence class members on
each edge, with the classes ordered in accordance with Λ. Within UΛ, any two such
configurations can be joined by a path, so there is only one connected component for
each assignment.

In the proof of Theorem 3.3, we showed that each component deformation retracts
to a cubical complex of ‘zones’. The zones are determined by the edge assignments, so
there is only one connected component for each permissible assignment. �
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THEOREM 4.3. H∗(Confn(Γ,P)) is isomorphic to H∗(Dn(Γ,P)).

PROOF. We have the spectral sequence associated to the open coverU of Confn(Γ,P)
which converges to H∗(Confn(Γ,P)), and we have the spectral sequence associated
to the open cover {Dλ} of Dn(Γ,P) which converges to H∗(Dn(Γ,P)). Since DΛ is
homotopically equivalent to UΛ, for every set Λ, by the inclusion map and the d1
differentials are induced by inclusion, we have an isomorphism for each p, q between
the E1

p,q entries in the two spectral sequences commuting with d1. The two sequences
are therefore equivalent, so H∗(Confn(Γ,P)) is isomorphic to H∗(Dn(Γ,P)). �
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