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ABSTRACT. A tomography-based methodology for the mass transport characterization of snow is

presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-

dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used

in direct pore-level simulations to numerically solve the governing mass and momentum conservation

equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer

coefficient. The extension to the Dupuit–Forchheimer coefficient is useful near the snow surface, where

Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are

also examined. The methodology presented allows for the determination of snow’s effective mass

transport properties, which are strongly dependent on the snow microstructure and morphology. These

effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models

such as strongly layered samples with macroscopically anisotropic properties.

NOMENCLATURE

A0 Specific surface (m–1)

c0, c1 Constants in Equation (2)

d Grain diameter (m)

FDF Dupuit–Forchheimer coefficient (m–1)

K Permeability (m2)

k4, k5 Constants in Equation (6)

lREV Length of cubic REV

p Pressure (Nm–2)

Re Reynolds number

uD Darcean velocity (superficial volume-averaged
velocity) (m s–1)

V Volume (m3)

" Porosity

m Dynamic viscosity (kgm–1 s–1)

�pg Dimensionless pressure gradient

� Density (gm–3)

� Half-bandwidth for REV determination

Subscripts

ex Experimentally measured

num Numerically calculated

Abbreviations

CFD Computational fluid dynamics

CT Computed tomography

dh Depth hoar

DPLS Direct pore-level simulations

ds Decomposing snow

mI Metamorphosed snow I

mII Metamorphosed snow II

REV Representative elementary volume

ws Wet snow

RMS Root mean square

mCT Micro-computed tomography

INTRODUCTION

Snow, a sintered porous material made of ice grains, has a
complex porous microstructure that continuously changes
with time and external conditions. Its effective mass
transport properties, strongly dependent on the complex
microstructure, are relevant for investigating a wide range of
environmental processes.

Permeability has a direct effect on snow–air exchange
processes with an impact on atmosphere chemistry (Grannas
and others, 2007; Clifton and others, 2008), on snow
metamorphism (Albert and others, 2004) and on water flow
through snow (Waldner and others, 2004). Bader (1939) gave
the first quantitative data of snow permeability. Shimizu
(1970) and Sommerfeld and Rocchio (1993) parameterized it
in relation to density and grain size, and a permeameter for
field measurements was developed by Conway and Abra-
hamson (1984). The experimental characterization of the
effective transport properties is difficult, in part due to the
rapid change of the snow’s microstructure with temperature
and temperature gradient (Albert and Schultz, 2002). Lately,
permeability and specific surface area were used to develop
a new textural characterization of snow (Arakawa and others,
2009). The Dupuit–Forchheimer coefficient is taken into
account at a higher Reynolds number, when inertial effects
become important (Kaviany, 1995).

Theoretical and empirical correlations for the determin-
ation of permeability have been developed for simplified
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two-phase media such as capillary drag and the Carman–
Kozeny models (Ergun, 1952; Dullien, 1979; Macdonald
and others, 1979; Kaviany, 1995) for fibrous beds (Davies,
1952; Chen, 1955) and cellular foams (Moreira and others,
2004). No previous studies on the Dupuit–Forchheimer
coefficient of snow were found; correlations were proposed
for other porous materials (Dullien, 1979; Kaviany, 1995).

Direct pore-level simulations (DPLS) have become a
powerful tool for the characterization of a wide range of
porous materials. In previous studies (Fredrich and others,
2006; Petrasch and others, 2008; Haussener and others,
2009, 2010), micro-computed tomography (mCT) was
applied to obtain the precise digital three-dimensional
(3-D) geometrical representation of complex porous media,
such as reticulate ceramic foams, porous rocks and packed
beds of opaque or semi-transparent particles, and subse-
quently used in DPLS to calculate the effective transport
properties. Recently, DPLS has been applied for the
characterization of polar firn (Courville and others, 2010)
and shown to describe with good accuracy morphological
properties as supported by experimental validation. A
fundamental advantage of DPLS compared with direct
measurements is that stratigraphically complex snow sam-
ples with thin layers can also be characterized, leading to

different properties for each layer, whereas an experimental
measurement would yield only an average over the whole
sample. In the present paper, mCT is applied to obtain the
3-D digital geometry of seasonal snow types. The governing
mass and momentum conservation equations are numeri-
cally solved at the pore scale (DPLS) by the finite-volume
method, allowing for the determination of the permeability
and Dupuit–Forchheimer coefficient.

MORPHOLOGICAL CHARACTERIZATION

Five different snow samples are considered: decomposing
snow (ds), metamorphosed I (mI), metamorphosed II (mII),
depth hoar (dh) and wet snow (ws). They correspond to the
grain shape classifications: DFdc, RGsr/DFdc, RGsr, DHcp
and MFcl (International Classification for Seasonal Snow on
the Ground (ICSSG; Fierz and others, 2009)). Tomographic
scans were carried out with a Scanco mCT 80 desktop X-ray
tomographic set-up (Kerbrat and others, 2008). The voxel
sizes were 10 mm for the ds, mI and mII snow samples, and
18 mm for the dh and ws samples, with a scanned volume of
600� 600�400 voxels, corresponding to 144mm3 and
840mm3, respectively. As an example, Figure 1 depicts the
3-D surface rendering of the snow sample (ws) with fluid
flow streamlines.

Table 1 summarizes the morphological characteristics by
experimental methods (Kerbrat and others, 2008) and by
computation of the two-point correlation function and
opening size distribution with spherical structuring elements
on the mCT scans (Haussener, 2010). The pore and particle
sizes must be read with care as they describe the smallest
dimension of the pore and particle spaces, which might not
characterize well the size of complex, non-spherical pores
and particles.

The representative elementary volume (REV), i.e. the
smallest cubic volume that can be considered as a
continuum, is determined by calculating a continuum
property of the sample on subsequently growing volumes
until it reaches a constant value within a band of ��, with
�<1. Figure 2 shows an example of the convergence value of
the length of cubic REV calculated based on porosity for the
wet snow sample with � = 0.05. The lengths of cubic REV
based on porosity for the five snow samples are listed in
Table 1 and are 2.4 –13.8 times larger than the calculated
pore and particle diameter, respectively. dh needs a
relatively small REV while ws needs a relatively large REV
compared with their characteristic lengths.

Fig. 1. 3-D surface rendering of the wet snow sample (ws, as listed
in Table 1) with fluid flow streamlines.

Table 1. Morphological characterization of snow samples. Grain shape classification (Fierz and others, 2009), measured snow density (�ex)
and voxel size (Kerbrat and others, 2008), porosity ("num), specific surface area (A0), grain size (dgrain,num), pore size (dpore,num) (Haussener,
2010) and edge length of cubic REV (lREV) for five characteristic snow samples: decomposing snow (ds), metamorphosed I (mI),
metamorphosed II (mII), depth hoar (dh) and wet snow (ws)

Sample ICSSG �ex Voxel size "num A0,num dgrain,num dpore,num lREV

g cm–3 mm m–1 mm mm mm

ds DFdc 0.11 � 0.01 10 0.854 8178 0.05 0.24 0.69
mI RGsr(DFdc) 0.15 � 0.01 10 0.845 6450 0.08 0.27 0.83
mII RGsr 0.19 � 0.03 10 0.805 5488 0.13 0.32 1.11
dh DHcp 0.31 � 0.02 18 0.670 2777 0.40 0.75 1.81
ws MFcl 0.56 � 0.03 18 0.384 3016 0.66 0.41 2.68
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REV calculated based on pressure drop – and conse-
quently on permeability and Dupuit–Forchheimer coeffi-
cient – is also shown in Figure 2, which indicates that larger
REVs are required. The need for larger REV based on heat
transfer properties was previously discussed (Haussener and
others, 2010).

METHODOLOGY

The pressure drop over a spatially averaged isotropic porous
medium is given by the extended Darcy’s law (Petrasch and
others, 2008; Haussener, 2010):

rp ¼ � �

K
uD � FDF�uD uDj j, ð1Þ

where K is the permeability, FDF is the Dupuit–Forchheimer
coefficient, � is the fluid density, � is the dynamic viscosity

of the fluid and uD is its superficial velocity, j�uDj ¼ 1
v

R
v u dV ,

with volume V larger than or equal to REV. The first term is
the result of viscous effects, predominant at low Reynolds
numbers, whereas the second term describes the inertial
effects, which become important at higher fluid velocities
(Re>1) (Petrasch and others, 2008). Non-dimensionalization
of Equation (1) for the one-dimensional case yields:

rpd2

�uD
¼ �pg ¼ � d2

K
� FDFdRe ¼ �c0 � c1Re, ð2Þ

where d is a characteristics length scale, p is the pressure, c0
and c1 are constants and the normalized pressure drop �pg is

linearly dependent on Reynolds number Re. The character-
istic length scale, d, used throughout this study is the
numerically calculated pore diameter (see Table 1). A linear
least-square-fitting method was used to fit the numerically
calculated Re-dependent�pg, allowing for the determination

of K and FDF. DPLS of fluid flow across the five characteristic
snow samples was performed. An in-house tetrahedron-
based mesh generator was used to create the computational
grid directly on the mCT scans. A commercial CFD code
(ANSYS, 2009) based on the finite volume technique was
used to solve the continuity and Navier–Stokes equations.

The computational domain, shown in Figure 3, consists of a
square duct containing a sample of the porous material.
The boundary conditions are: uniform inlet velocity and
temperature and outlet pressure, no-slip and constant wall
temperature at the solid–fluid interface, and symmetry at the
lateral duct walls.

Preliminary calculations were carried out for various
sample sizes and mesh element sizes of the subset to
elucidate the trade-off between computational time and
accuracy. A representative sample size of 600�600� 200
voxels (10.8� 10.8�3.6mm3) with a largest mesh element
size of 225 mm was chosen for ws and dh samples. For
ds and mI samples, the chosen sample size was
600� 600�300 voxels (6� 6�3mm3) with a largest mesh
element size of 125 mm. For the mII sample, the sample size
was 600�600� 200 voxels (6�6� 2mm3) with a largest
mesh element size of 125 mm. Convergence was achieved
for a termination residual root mean square (RMS) of the
iterative solution below 9� 10–5. The sample sizes were
chosen with a relative difference in which the highest
possible size was 1.7–6.2%, whereas the largest mesh
element sizes were chosen with a relative difference in
which the smallest possible mesh element was 2.8–10.3%.
These differences were obtained by calculating the pressure
drop for each mesh and sample size.

RESULTS AND DISCUSSION

The dimensionless pressure gradient �pg is plotted as a

function of Re in Figure 4 for the five snow samples. The
calculated permeability K and Dupuit–Forchheimer coeffi-
cients FDF are plotted in Figure 5 versus the pore diameter;
their values and the goodness of fit are listed in Table 2.

K is lowest and FDF highest for the ws sample, as its
density is highest and porosity lowest. On the other hand, K
increases with ds, mI, mII and dh samples because of the

Fig. 2. Solid lines: porosity for growing cubic volumes around 20
random points for the wet snow sample. The two horizontal lines
indicate the tolerance bandwidth � = 0.05. The vertical line
indicates the chosen REV length. Dashed line: pressure drop for
growing vertical length of the wet snow sample.

Fig. 3. Computational domain of the DPLS.

Table 2. Values of K and FDF obtained by DPLS, calculated using the
pore size

ds mI mII dh ws

K (m2) 2.73�10–9 2.73�10–9 3.27�10–9 1.01�10–8 8.49�10–10
FDF (m

–1) 1.94�103 1.60�103 1.49�103 2.40�103 3.48�104
RMS 2.53 2.80 4.61 9.11 18.45
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increasing pore size, which reduces pressure loss and leads
to a higher K and a smaller FDF (Haussener and others,
2010). The unexpected decrease of ws in K and increase in
FDF highlights that one morphological characteristic (e.g.
dpore) does not describe sufficiently well the microstructure
and supports the importance of the CT-based determination
of the effective mass transport properties.

The values of K and FDF of Table 2 are compared with
theoretical and empirical models using simplified micro-
structure. The models are listed in Table 3.

The K and FDF of the five characteristic snow samples,
calculated by the CT-based DPLS method (Table 2) and by
the simplified models of Equations (3–10), are shown in
Figures 6 and 7, respectively. The conduit flow model,
Equation (3), compares well with DPLS for mI, mII, dh and
ds, particularly for dh (relative difference from DPLS of
17%). DPLS gives results close to those of the fibrous bed

model for all types of snow (relative difference from DPLS
from 18% for ws to 77% for ds). Equation (7) (Shimizu,
1970) gives values comparable to DPLS for all types of snow,
but with a higher relative difference for most of them (from
41% for ds to 97% for ws). Equations (4) and (6) give results
far from DPLS, with relative differences up to 4300% and
6000%, respectively. It has been shown that the Carman–
Kozeny model does not fit to experimental data when the
porous medium has high porosity, its particles are far from a
spherical shape, or the porous medium is consolidated
(Mauran and others, 2000), which is the case for snow.

Equation (8) compares well with FDF values found with
DPLS, in particular for mI, dh and ds, for which relative
differences from DPLS are only 7%, 10% and 9%, respect-
ively. The values obtained from Equation (9) compare well
with that of DPLS, in particular for ws (relative difference of
14%). Finally, Equation (10) gives results comparable to
DPLS for ws (relative difference from DPLS of 46%), but not
for the other types of snow.

Fig. 5. Permeability and Dupuit–Forchheimer coefficient versus
pore diameter.

Fig. 4. Calculated (symbols) and fitted (curves) dimensionless
pressure gradient as a function of Re for the five characteristic snow
samples (see Table 1).

Table 3. Theoretical and empirical models for permeability and Dupuit–Forchheimer coefficient of porous media

Equation Description Equation Source

(3) Conduit flow model for a Hagen–
Poiseuille flow

K ¼ "d2
pore

32 Dullien (1979); Kaviany (1995)

(4) Hydraulic radius model based on the Car-
man–Kozeny equation

K ¼ "3

5ð1�"Þ2A2
0

Dullien (1979); Kaviany (1995)

(5) Empirical models for fibrous beds by Davies K ¼ d2
grain

64ð1�"Þ3=2ð1þ56ð1�"Þ3Þ Davies (1952); Dullien (1979)

(6) Empirical models for fibrous beds by Chen K ¼ �d2
grain lnðk5=ð1�"Þ2Þ

4k4
"

ð1�"Þ, with k4 = 6.1,
k5 = 0.64

Chen (1955); Dullien (1979)

(7) Shimizu function K ¼ 0:077d2
grainexp �0:0078�ð Þ Shimizu (1970)

(8) Extension of hydraulic radius theory of
Carman–Kozeny

FDF ¼ 1:8 1�"
"3

1
dpore

Ergun (1952); Macdonald and others,
(1979)

(9) Empirical correlation for cellular foams FDF ¼ 1:8�104ð1�"Þ
"3d�0:24pore

Moreira and others (2004)

(10) Model relating the Dupuit–Forchheimer co-
efficient to the permeability

FDF ¼ 0:55ffiffiffi
K

p Kaviany (1995)
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The permeability obtained by DPLS can also be
compared to lattice Boltzmann modeling of permeability
in firn (Courville and others, 2010). However, these results
have to be taken cautiously, as the samples analyzed do not
come from the same snow. Firn has generally higher grain
sizes than those studied here; however, ws can be similar to
small-grained firn. Permeability of ws is compared with
lattice Boltzmann results in Table 4. Results are similar,
however, for similar grain diameter; specific surface area is
much higher in firn than in ws. This could explain the higher
firn permeability. Again, this difference in specific surface
area shows the high differences in microstructure.

Experimental data on the permeability of snow are scarce
because handling and precise measurements are difficult.
This is especially true for the more permeable snow types
(e.g. depth hoar). For these snow types, DPLS will possibly
become the method of choice because mCT of samples
casted with diethyl phthalate has become possible (Heggli
and others, 2009). Snow is often anisotropic at different
scales. Even a homogeneous sample may be anisotropic in
permeability at the pore level, which is accounted for in
Equation (1) when introducing a permeability tensor K
(Kaviany, 1995). The technique applied in this study is able
to capture effects as previously shown for porous ceramic

structures (Haussener, 2010). At a larger scale, snow is
highly layered at the mm scale (Pielmeier and Schneebeli,
2003), therefore pore-level anisotropy is usually masked
when measuring anisotropy in the field. DPLS is able to
detect these effects and would therefore be advantageous to
experimental techniques.

SUMMARY AND CONCLUSIONS

Mass transfer properties, namely permeability (K) and
Dupuit–Forchheimer coefficient (FDF), were determined for
five characteristic snow samples. The methodology involved
first obtaining the complex 3-D geometrical representation
of the snow microstructure by computer tomography. The
mCT scans were digitalized and used in direct pore-level
simulations (DPLS). An in-house tetrahedron-based mesh
generator was used to create the computational grid directly
on the mCT data. Mass and momentum conservation
equations were numerically solved at the pore scale by the
finite-volume method. Pressure drop over the snow sample
was determined and fitted to Darcy’s law extended by the
Dupuit–Forchheimer term, allowing for the determination of
K and FDF. A larger pore size led to higher K, except for wet
snow, for which a large pore size was compensated by a low
porosity and high density.

As expected, the low K of wet snow led to a high FDF. The
values of K and FDF computed by DPLS were compared with
those obtained by analytical and empirical models of porous
media with simplified microstructure. The conduit flow
model compared particularly well with DPLS for four types
of snow. Shimizu’s prediction gave reasonable agreement.
The extension of the hydraulic radius theory for FDF yielded
particularly good results compared with DPLS for three types
of snow. The applied methodology is able to accurately
account for the complex snow microstructure, which cannot
be described by only a few morphological characteristics
such as porosity, pore or particle size. Furthermore, it can be
applied to investigate anisotropy on multiple scales. The
calculated effective transport properties can be readily
applied in volume-averaged (continuum) models of snow-
pack for a wide range of environmental applications.

Fig. 6. Permeability (dimensionless, K/d 2
grain) as a function of snow

density for CT-based DPLS and for theoretical and empirical
models.

Fig. 7. Dupuit–Forchheimer coefficient as a function of snow
density for CT-based DPLS and for theoretical and empirical
models.

Table 4. Comparison of ws permeability calculated from DPLS with
firn permeability obtained by lattice Boltzmann modeling (Cour-
ville and others, 2010)

A0 � dgrain K Difference
of K with ws

m–1 mm m2 %

ws 3016 0.384 0.66 8.49� 10–10

7143 0.43 1.20 1.19� 10–9 40.2
5882 0.43 1.31 1.67� 10–9 96.7
7143 0.58 0.59 1.13� 10–9 33.1
5882 0.57 0.83 2.60� 10–9 206.2
6667 0.53 0.79 1.66� 10–9 95.5
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