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ON THE SCATTERING OF WAVES BY NEARLY HARD OR SOFT
INCOMPLETE VERTICAL BARRIERS IN WATER OF INFINITE
DEPTH
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Abstract

In this paper the scattered progressive waves are determined due to progressive waves
incident normally on certain types of partially immersed and completely submerged vertical
porous barriers in water of infinite depth. The forms are approximate only, and are obtained
using perturbation theory for nearly hard or soft barriers having high and low porosities
respectively. The results for arbitrary porosity are difficult to obtain, in contrast to the well
known hard limit of impermeable barriers.

1. Introduction

Two problems that have received considerable attention in the theory of surface waves
involve progressive waves incident normally on impermeable incomplete vertical bar-
riers in water of infinite depth and extent, the barriers being either partially immersed
or completely submerged with a single tip in the water at a specified depth. The
effect of the barriers is to partly reflect and partly transmit the incident waves, without
loss of energy if surface tension is ignored. The linearized solutions for the velocity
potentials in these two transmission problems were obtained long ago by Ursell [6],
using Havelock’s [3] classical wave-maker theory to set up integral equations for the
unknown horizontal velocity in the gap below or above the barrier; they may also be
solved by complex variable techniques. The scattered waves (only) were obtained by
an integral equation method in Williams [8] after a reformulation.

If the barriers are no longer impermeable but porous, comparable results with loss
of energy are difficult to obtain by any of these methods. A number of resuits involving
porous walls or barriers extending throughout the depth of water have been obtained
recently by Chakrabarti and Sahoo [1] and Rhodes-Robinson [5] to extend known
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impermeable results in simpler problems, but this does not seem possible here.

To make some progress, we consider herein the two asymptotic situations when
the barriers are nearly impermeable (‘hard’) or completely porous (‘soft’) and set up
suitable perturbation solutions involving certain hard and soft limit solutions. The
former are known from Ursell [6], Evans [2] and Rhodes-Robinson [4] to an extent
that enables the scattered waves (only) to be found to the first order; the latter are
classical and the full first-order solution is obtainable. The corresponding scattered
amplitude and energy ratios are calculated, and tabulated numerical values given for
the expansion coefficients. Two new Bessel function integrals arise for the nearly
hard barriers, and these are fully investigated also.

2. General formulation

Water occupies the region of infinite depth y > 0 and contains a single fixed vertical
barrier along part of x = 0 that has its tip (0, ¢) at depth ¢ below the equilibrium free
surface y = 0; the barrier is either partially immersed or completely submerged, and
the remainder of x = 0 forms a gap either below or above the barrier. The barrier is
porous—in fact is assumed to have fine pores—and has porosity constant k > 0; in
the familiar case of an impermeable (hard) barrier x = 0, and for a completely porous
(soft) barrier k —> oo (this barrier has no effect on waves so is removable). The effect
of surface tension is omitted in this investigation so that the wave motion is under the
action of gravity alone with acceleration g. The usual tip singularity is allowed for
and there is no motion at infinite depth.

The infinitesimal motion is harmonic in time ¢ with angular frequency o and
may be described by a velocity potential of the form Re[¢(x, y)e™°'], where ¢ is
complex-valued. The scattered motion to be investigated is due to incident pro-
gressive waves with potential e ¥*~/K*where the wave number is K = o2/g. If
¢ =¢ (x >0), ¢ = ¢ (x < 0), the potentials ¢, ¢, are given by the linearized
coupled boundary-value problem in the region of water

V2¢| =0= V2¢2,
Koy +¢,=0=Kp,+¢;, on y=0,
$1,¢,—>0 as y— oo,
1 = —ik(¢y — ¢;) = ¢» on Dbarrier,
¢ =¢, in gap,
r[1x1? + 161,17], 7 [162)* + |¢2y]?]  are bounded as r — O,

¢ — e KK L Re~KyHEY 55 x - 00, ¢, — Te ¥k a5 x - —o0,

where r = [x2 4 (y — ¢)?]*/? is the distance from the tip and the reflected and
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transmitted amplitude constants R, T are part of the solution that involves two non-
dimensional parameters K¢, kc. More details on the barrier conditions are given in
Rhodes-Robinson [5].

A reformulation reduces this transmission problem if the incident waves are sub-
tracted out by putting ¢ = @ + e~ ¥¥~/%*; then the potential ® is antisymmetric about
the gap and in x > 0 satisfies the boundary-value problem

Vo =0,
Kdé+d,. =0 on y=0, b -0 as y-— oo,
&, +2ikd =iKe ™ on barrier, & =0 in gap,
r[1®.* +|®,*] isboundedas r — 0,

P — Re K¥HKs a5 x — o0,

where R is part of the solution and it should be noted that the barrier condition is
linear in both k and k~'.
Note also due to the antisymmetry that ¢, ¢, are related by

¢ (x, ¥) + ¢r(—x, y) = 2 ¥ cos K x
and in particular
R4+T=1. 2.1

The above problem has been solved in full by Ursell [6] when & = O for the two
barriers envisaged, but now such an achievement seems difficult and is not attempted
herein. Instead nearly hard or soft perturbation solutions are sought corresponding to
small or large values respectively of the parameter kc, with coefficients depending on
the parameter K c; the linear form that these expansions should have is indicated by
that of the barrier condition noted above. Emphasis is placed on the determination of
the scattered amplitude constants R, T in order to calculate the scattered amplitude
ratios | R|, | T| and energy ratios |R|?, |T|>. Note that |R|*> + |T|* < |1, since energy is
lost with a porous barrier.

3. Perturbation formulation for nearly hard barriers

First suppose that € = kc is small and look for a perturbation solution to the above
problem of the linear form

¢=¢0+6¢| (3])
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to the first order in €, where ®g, @, are hard limit (k — () potentials that involve K¢;
also let

R=R0+€R|, T=T0+€T| (32)
and note that
R0+T0:], R|+T|=O (33)

from (2.1).
The perturbation potential ®q in x > 0 satisfies the boundary-value problem

Vid, =0,
K®y+ P, =0 on y=0, P, >0 as y— oo,
&y, =iKe™® on barrier, ®,=0 in gap,
r [|Docl® + |Pgy*] isboundedas r — 0,

by — Rpe X'HEx a5 x > 00

(unperturbed problem), where Ry is part of the solution; this is of course the familiar
transmission problem referred to above for a hard barrier with the incident waves
subtracted out. Note that |Ry|? + |Tp|*> = 1 as no energy is lost here.

The perturbation potential &, in x > 0 satisfies the boundary-value problem

V2o, =0,
K¢, +®,=0 on y=0, b, -0 as y— oo,
o, = —(2i/c)D(0,y) on barier, &, =0 in gap,
r [|<I>,,(|2 + |d>|_\,|2] isboundedas r — 0,

d, —> Re HEx a5 x > 0

(first-order correction problem), where R, is part of the solution; this is a familiar
hard wave-maker problem for a special normal velocity depending on the previous
solution. Once Ry, R, and therefore T, = 1 — Ry, T, = —R, are obtained from (3.3),
the scattered amplitude ratios are calculated using (3.2) as

IR| = ap — €ay, IT| = by — €b, (3.4)
to the first order in €, where

re[RoR,] re[ToT;]
ap = | Rol, by = |To|, a|=-‘ﬁ, 1= - |7?||
(i} 0
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and then the scattered energy ratios as
IRI> = ¢ — €cy, ITP = dy — €d (3.5)
likewise, where
Cco = ag, dy = b(z), ¢y = 2aa;, d, = 2byb,.

Note also from (3.5) that |R|> + |T|*> = 1 — e€(c, +d,) as ¢ + dp = 1, and the loss of
energy is €(c; + d,).

The expansion coefficients aq, ay, bo, b1, co, €1, do, d; in (3.4), (3.5) all depend
on K¢ and we now obtain these for partially immersed and completely submerged
barriers, for which &, Ry and R, are known or may be found.

4. Solution for nearly hard partially immersed barrier

This barrier occupies x = 0, 0 < y < a so that ¢ = a and the parameters are
Ka, ¢ =ka.
The full unperturbed solution was obtained in Ursell [6] as

® Ji(ua)e™*

Q0= [nl.(Ka)e"‘-"+”‘*+/0 2Tk W cosuy—Ksinuy)du] @.1)
(x > 0) so that
0=7r1.(Ka), OziKl(Ka) (42)
B, (Ka) Bi(Ka)

from (3.3), where I, J;, K,(z) are Bessel functions and B, (z) = nI,(z) + i K,(z).
The first-order correction outgoing waves are obtained using the formula determ-
ined in Evans [2] for the amplitude constant as
(—2i)? ¢ YeX!

Y
R, = > O, —st dY
! a’By(Ka) J, (a? - YH)!/2 ’/(; 0(0, s)e 5

__ 4 ‘ Y sinh K'Y * J(ua) .
N aZB,Z(Ka)/0 (@ — Y22 [”Il(Ka) X /0 msmquu] dyY
from (4.1)
-2 13K oo J2
- 2” mli( a)+/ ,(ua)du
aB;(Ka) K o u2+ K2
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on interchanging the order of integration and noting the integral representations

2 ' vsinh 2 ! i
11(2)2_/ AL j](z)=_f VSN o
0 0

b4 (1 —v)'2 b4 (1 —v?)l2
thus
o (Ka o (Ka
k) _ a(ka) “3)
Bi(Ka) Bi{(Ka)
from (3.3), where «,(z) = 2n([m If(z) + 8,(2)}/z and
® Jizv)
= dv. 4.4
$1@) fo ol 4.4)
Hence the expansion coefficients in (3.4) are
. FhiKa) _ Ki(Xa)
" DiKa)’ °” Di(Ka)’
o = nli(Ka)a,(Ka) _ K\ (Ka)a,(Ka)
'T  D¥3Ka) 'T T D¥Ka)
and in (3.5)
n?I}(Ka) K (Ka)
o= —F > 0= T o
Di(Ka) Di(Ka)
o 221 (Ka)a (K a) _ 2K}(Ka)a,(Ka)
' D*(Ka) ’ T D%Ka)

from (4.2), (4.3), where D\ (z) = |B,(2)| = [721}(2) + K}()]'/%.

Numerical values of the expansion coefficients for 0 < K, < 2.5 calculated to 4
decimal place accuracy are given in Appendix 1 (Table 1), together with their limits as
Ka — 0, 00; this accuracy is not sufficient for Ka > 2.5 to produce non-zero values,
but higher accuracy can be achieved to extend the range if necessary. The expansions
obtained using these values in (3.4), (3.5) are suitable for all Ka > 0 due to the finite
limits of all coefficients.

Calculations of the integral S; in (4.4) involved in these are given in Appendix 2
(Table 3); the integral cannot be evaluated explicitly, although asymptotic forms can
be derived.

5. Solution for nearly hard completely submerged barrier

This barrier occupies x = 0, y > b so that ¢ = b and the parameters are Kb,
€ = kb.
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The full unperturbed solution was also given in Ursell [6] as

. [eo] J b ~ux
Ko(Kb)e—K_\'+1KX+/ %(u cosuy — K sinuy) du] G
0 U

q,oz;[_
By (K b)

(x > 0) so that

_iKo(Kb)’ I, = mIy(Kb) (5.2)
By(Kb)

°= Bo(Kb)

from (3.3), where Iy, Jo, Ko(z) are Bessel functions and By(z) = m Ip(2) — i Ky (2).
The first-order correction outgoing waves are obtained using the formula given in
Rhodes-Robinson [4], Section 5 for the amplitude constant as

—4i o0 ekY o )
R, = (0. 5)e-* dsdy
1 bBy(KDb) /b (Y2 — b2)|/2 [/ 0(0 s)e Ky
4 00 1 e—KY © Jub) .
- Ko(Kb)— vl ay
ng(Kb)/” (Y2 — b2l [ T +./o g g2 SnuY du
from (5.1)

2 K2(Kb © J2
- it )H/ Bwb)
bBXKb) | K o w2+ K2

on interchanging the order of integration and noting the integral representations

KO(Z)=/ _e_.__w_dv, Jo(z)=£/ S 4y @ > 0):
o ( mJi (

p2 — )12 v? — 1)i2
thus
ao(Kb ao(Kb
B;(Kb) B;(Kb)
from (3.3), where a(z) = 2[K(2) + 7 So(2)]/z and
(o] JZ(Z'U)
So(z) = ¢ dv. .
o) /0 L 0y (5.4)
Hence the expansion coefficients in (3.4) are
Ko(Kb) mly(Kb)
ag = ——=, by = ———=,
Dy (K b) Dy (K b)
_ Ko(Kb)ay(K b) b = 7 lo(K b)ag (K b)
'T DiKb) ' D3(Kb)
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and in (3.5)
. _ Kb _ m22(Kb)
T Dikkp)y T Dikb)
o _ 2K3(Kb)ay(Kb) _ 217 (Kb)ag(Kb)
' Di(Kb) ' D (K b)

from (5.2), (5.3), where Dy(z) = |Bo(2)| = [721}(z) + K2(D)]'%.

Numerical values of the expansion coefficients for 0 < Kb < 2.5 calculated to 4
decimal place accuracy are given in Appendix 1 (Table 2), together with their limits
as Kb — 0, oo; similar comments pertain on accuracy here for Kb > 2.5 as before.
The expansions obtained using these values in (5,6) becomes less suitable for smaller
K b due to the infinite limits of some coefficients, being then valid only for smaller
€ = kb.

Calculations of the integral Sy in (5.4) involved in these are also given in Appendix 2
(Table 3); again the integral cannot be evaluated explicitly, although asymptotic forms
can be derived.

6. Perturbation formulation for nearly soft barriers

Now suppose that kc is large sothat § = (kc)™' is small and look for a perturbation
solution to the problem in Section 2 of the linear form

to the first order in §, where @,, @, are soft limit (k — o0) potentials that involve K¢
again; also let

R=R0+8Rl, T=T0+8T| (62)
and note again that
R0+T0=1, R|+T|=O (63)

from (3.1).
The perturbation potential ®g is now trivially obtained as

q)o = O (6.4)
(unperturbed solution) for any soft (removable) barrier so that

R():O, T0=l—R0=l (65)
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from (6.3).
The perturbation potential @, in x > 0 satisfies the boundary-value problem
Vz(bl = 0,
K&, +®,=0 on y=0, ®, >0 as y— o0,

1
<I>.=-2—Kce'K" on barrier, ®, =0 in gap,

r (|19 +19,,1’] isboundedas r — 0,

&, > Rie ¥HKx a5 x 5 o0

(first-order correction problem), where R, is part of the solution; the full solution is
obtained for any barrier similarly as in Havelock’s [3] classical wave-maker problem.
Note that R, is always found to be real and positive.

Once R, and therefore T, = — R, are obtained from (6.3b), the scattered amplitude
and energy ratios are easily calculated using (6.2) after noting (6.5) as

|R| = 8R;, IT| =1-8R, (6.6)
and
[R|> =0, IT|?=1—26R, 6.7

in terms of R, to the first order in §; the loss of energy is 26R, from (6.7). The
expansion coefficients in (6.6), (6.7) depend on K ¢ again.
To conclude we obtain &, and R, for the two particular barriers described earlier.

7. Solutions for nearly soft barriers

For the partially immersed barrier 8 = (ka)~'. The full first-order solution is

Ka ® e~ sinua .
D, = —e'K“/ —————(ucosuy — K sinuy) du

b4 u?+ K?
1 )
+ 5Ka(l _ e—ZKa)e—Ky-HKX (7.1)
(x > 0) so that
1
R, = 5Ka(l — e 2Kay, (7.2)

Numerical values of R, for 0 < Ka < 2.5 (again, say) can easily be calculated
from this exact formula and the limit is infinite as Ka — oo. The expansions (6.6),
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(6.7) obtained using these become less suitable for larger K a due to the infinite limit
of some coefficients, being then valid only for smaller § = (ka)™'.
For the completely submerged barrier § = (kb)~'. The full first-order solution is

Kb _ % e4rsinub .
q>] =_-7r_e Kbv/o\ m—(ucosuy—KSlnuy)du
1 .
+ 5l<be—2Kbe—Ky+le (73)
so that
1 —2Kb
R = EKbe : (7.4)

Numerical values of R, for 0 < Kb < 2.5 can again be calculated from this exact
formula and the limit is zero as Kb — 0o0. The expansions (6.6), (6.7) obtained using
these are now suitable for all Kb > 0 due to the finite limits of the coefficients.
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Numerical values calculated to 4 decimal place accuracy are given in Tables 1, 2,
together with their limits.

TABLE 1. Values of expansion coefficients for a nearly hard partially immersed barrier.

Ka ap aj by b Co Cy do d,

0 0 0 1 0 0 0 1 0
0.1 0.0160 0.0005 0.9999 0.0301 0.0003 0.0000 0.9997 0.0603
0.2 0.0660 0.0093 0.9978 0.1403 0.0044 0.0012 0.9956 0.2801
03 0.1541 0.0572 09881 0.3670 0.0237 0.0176 0.9763 0.7253
04 0.2816 0.2134 09595 0.7271 0.0793 0.1201 0.9207 1.3954
0.5 0.4394 05620 0.8983 1.1489 0.1931 0.4938 0.8069 2.0642
0.6 0.6033 1.0911 0.7975 14423 0.3640 1.3164 0.6360 2.3006
0.7 07437 1.6173 0.6685 1.4540 0.5530 24055 0.4470 19441
0.8 0.8447 1.9493 0.5353 1.2353 0.7135 3.2931 0.2865 1.3225
0.9 0.9089 2.0564 0.4170 09435 0.8261 3.7381 0.1739 0.7869
1.0 09471 20143 0.3211 0.6829 0.8969 3.8153 0.1031 0.4385
1.1 09691 19020 0.2467 0.4841 0.9392 3.6865 0.0608 0.2388
1.2 09818 1.7679 0.1900 0.3422 09639 3.4714 0.0361 0.1301
1.3 09891 1.6351 0.1471 0.2432 09784 3.2347 0.0216 0.0716
1.4 09934 15129 0.1145 0.1744 0.9869 3.0059 0.0131 0.0399
1.5 09960 14038 0.0896 0.1263 0.9920 2.7962 0.0080 0.0226
1.6 09975 1.3075 0.0704 0.0923 0.9950 2.6084 0.0050 0.0130
1.7 09985 1.2228 0.0556 0.0681 0.9969 2.4418 0.0031 0.0076
1.8 09990 1.1481 0.0441 0.0507 0.9981 2.2941 0.0019 0.0045
1.9 09994 1.0821 0.0351 0.0380 0.9988 2.1629 0.0012 0.0027
2.0 09996 1.0235 0.0280 0.0286 0.9992 2.0461 0.0008 0.0016
2.1 09997 09710 0.0224 0.0217 09995 1.9416 0.0005 0.0010
2.2 09998 0.9239 0.0179 0.0166 0.9997 1.8475 0.0003 0.0006
2.3 09999 0.8813 0.0144 0.0127 0.9998 1.7625 0.0002 0.0004
2.4 0.9999 0.8427 0.0116 0.0098 0.9999 1.6853 0.0001 0.0002
2.5 1.0000 0.8074 0.0093 0.0075 0.9999 1.6148 0.0001 0.0001
lo'e} 1 0 0 0 | 0 0 0
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TABLE 2. Values of expansion coefficients for a nearly hard completely submerged barrier.

Kb ap aj bo b] Co Ci d() d|

0 1 00 0 00 1 0o 0 00
0.1 0.6104 8.0687 0.7921 10.4702 0.3726 9.8503 0.6274 16.5866
0.2 0.4835 2.6848 0.8753 4.8606 0.2338 2.5963 0.7662 8.5094
0.3 0.3929 1.2472 09196 29194 0.1543 0.9799 0.8457 5.3693
04 0.3227 0.6639 0.9465 1.9470  0.1042 0.4285 0.8958 3.6857
0.5 0.2667 0.3802 0.9638 1.3740  0.0711 0.2028 0.9289 2.6484
0.6 0.2210 0.2275 0.9753 1.0039 0.0489 0.1006 0.9511 1.9582
0.7 0.1835 0.1402 09830 0.7508 0.0337 0.0514 0.9663 1.4761
0.8 0.1525 0.0880 0.9883 0.5707 0.0232 0.0268 0.9768 1.1280
09 0.1267 0.0561 0.9919 0.4389 0.0161 0.0142 0.9839  0.8708
1.0 0.1053 0.0361 0.9944 0.3406 0.0111  0.0076 09889  0.6774
1.1 0.0874 0.0233 0.9962 0.2660 0.0076 0.0041 0.9924  0.5300
1.2 0.0726 0.0152 0.9974 0.2088 0.0053 0.0022 0.9947 0.4165
1.3 0.0602 0.0099 0.9982 0.1646 0.0036 0.0012 0.9964  0.3286
1.4 0.0499 0.0065 0.9988 0.1301 0.0025 0.0006 0.9975 0.2599
1.5 0.0413 0.0043 0.9991 0.1031 0.0017 0.0004 0.9983 0.2060
1.6 0.0342 0.0028 0.9994 0.0819 0.0012 0.0002 0.9988 0.1636
1.7 0.0283 0.0018 0.9996 0.0651 0.0008 0.0001 0.9992 0.1302
1.8 0.0233 0.0012 09997 0.0518 0.0005 0.0001 0.9995 0.1037
1.9 0.0193 0.0008 0.9998 0.0413 0.0004 0.0000 0.9996  0.0826
2.0 0.0159 0.0005 0.9999 0.0330 0.0003 0.0000 0.9997 0.0660
2.1 0.0131 0.0003 0.9999 0.0263 0.0002 0.0000 0.9998 0.0527
2.2 0.0108 0.0002 0.9999 0.0210 0.0001 0.0000 0.9999 0.0421
2.3 0.0089 0.0001 1.0000 0.0168 0.0001 0.0000 0.9999 0.0337
2.4 0.0073 0.0001 1.0000 0.0135 0.0001 0.0000 0.9999 0.0269
2.5 0.0060 0.0001 1.0000 0.0108 0.0000 0.0000 1.0000 0.0216
oo 0 0 1 0 0 0 1 0
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Appendix 2: Bessel function integrals

The integrals

*® J2(zv)
Si(2) = - d =0,1 A2.1
(z)/0v2+1v(n ) (A2.1)
are even in z (real) and positive in value, but cannot be evaluated analytically except
forz =0.

The asymptotic forms are

T ® ] — JXw) T 4z
S ~ = = — 0 Cdw==—- =,
oD~ 5 Zfo w2 VT2 7

oo g2 4
@~z T gy = 2
0

w? T 3n
as z — 0 from Watson [7]; and
1 1
So(z) ~ —(In8z + ), Si1(2)~—(Un8z+y —2)
mz b1 474

as 7z — oo, where y = 0.577216. .. is Euler’s constant. The latter forms are obtained
after converting (A2.1) to the alternative integral

1
S.(z) = % / e Q, 11 -2w’)dw (n=0,1) (A22)
0

in terms of Legendre functions, and using Watson’s lemma.

Numerical values of the integrals for 0 < z < 20 calculated to 6 decimal place
accuracy from either (A2.1) or (A2.2) are given in Table 3; only those for0 < z < 2.5
are used herein, however.
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TABLE 3. Values of Bessel function integrals.

4 So(z) $1(2) z So(2) S1(2)
0.0 1.570796 0.000000 5.0 0.272172 0.141899
0.1 1.450963 0.038731 5.1 0.268055 0.140426
0.2 1.344767 0.070839 5.2  0.264073 0.138982
0.3 1.250409 0.097374 53  0.260220 0.137567
0.4 1.166346 0.119222 54 0.256489 0.136181
0.5 1091253 0.137127 5.5 0.252875 0.134822
0.6 1.023992 0.151715 5.6  0.249371 0.133491
0.7 0.963580 0.163515 5.7 0.245973 0.132187
0.8 0909173 0.172971 5.8  0.242676 0.130908
0.9 0.860040 0.180458 5.9  0.239475 0.129655
1.0 0.815549 0.186292 6.0 0.236366 0.128427
1.1 0.775153  0.190740 6.1 0.233344  0.127223
1.2 0.738376 0.194027 6.2 0.230407 0.126042
1.3 0.704806 0.196341 6.3  0.227550 0.124884
1.4 0.674084 0.197843 6.4  0.224770 0.123749
1.5 0.645895 0.198669 6.5  0.222064 0.122635
1.6 0.619967 0.198931 6.6 0.219429 0.121542
1.7 0.596059 0.198727 6.7 0.216862 0.120470
1.8 0.573962 0.198137 6.8  0.214360 0.119418
1.9 0.553490 0.197229 6.9 0211920 0.118385
2.0 0.534481 0.196062 7.0  0.209542 0.117372
2.1 0.516792 0.194684 7.1 0.207221 0.116377
2.2 0.500297 0.193137 7.2 0.204956 0.115400
2.3 0.484883 0.191454 7.3 0.202745 0.114441
2.4 0470450 0.189665 7.4  0.200586 0.113499
2.5 0456911 0.18779%4 7.5 0.198476 0.112574
2.6 0.444187 0.185862 7.6  0.196415 0.111665
2.7 0.432208 0.183887 7.7 0.194401 0.110772
2.8 0.420910 0.18188l 7.8  0.192431 0.109894
29 0.410239 0.179859 7.9  0.190505 0.109031
3.0 0.400142 0.177828 80 0.188620 0.108183
3.1 0.390576 0.175799 8.1 0.186777 0.107350
3.2 0.381499 0.173777 82  0.184972 0.106530
3.3 0372874 0.171769 83 0.183205 0.105724
3.4 0.364668 0.169779 84  0.181475 0.104932
3.5 0.356850 0.167810 85 0.179780 0.104152
3.6 0.349394 0.165866 86  0.178120 0.103385
3.7 0342274 0.163949 8.7 0.176493 0.102630
3.8 0.335468 0.162061 8.8  0.174898 0.101888
3.9 0.328955 0.160204 89 0.173335 0.101157
4.0 0.322715 0.158377 9.0 0.171801 0.100437
41 0316732 0156583 9.1 0.170298 0.099729
4.2 0310989 0.154822 9.2  0.168823 0.099032
43 0.305473 0.153093 9.3  0.167375 0.098346
44 0300169 0.151397 94  0.165955 0.097670
4.5 0.295065 0.149734 9.5 0.164561 0.097004
4.6 0.290149 0.148103 9.6 0.163192 0.096348
4.7 0.285411 0.146505 9.7 0.161848 0.095702
4.8 0.280842 0.144938 9.8  0.160527 0.095066
4.9 0276431 0.143403 9.9  0.159231 0.094438
5.0 0.272172 0.141899 10.0  0.157957 0.093820

https://doi.org/10.1017/50334270000009401 Published online by Cambridge University Press

[14]


https://doi.org/10.1017/S0334270000009401

[1s]

On the scattering of water waves

z So(z) Si(@) z So(z) $1(2)
10.0 0.157957 0.093820 15.0 0.113877 0.071276
10.1 0.156705 0.093211 15.1 0.113262 0.070946
10.2 0.155474 0.092611 15.2 0.112655 0.070618
10.3  0.154265 0.092019 15.3 0.112055 0.070295
104 0.153076 0.091436 154 0.111461 0.069974
10.5 0.151907 0.090860 155 0.110875 0.069657
10.6 0.150757 0.090293 15,6 0.110295 0.069343
10.7 0.149626 0.089733 157 0.109722 0.069032
10.8 0.148514 0.089181 15.8 0.109155 0.068724
10.9 0.147419 0.088637 159 0.108594 0.068419
11.0  0.146342 0.088100 16.0 0.108040 0.068118
11.1 0.145282 0.087570 16.1 0.107492 0.067819
11.2  0.144239 0.087048 16.2 0.106950 0.067523
11.3  0.143212 0.086532 16.3 0.106414 0.067230
11.4 0.142200 0.086023 164 0.105883 0.066940
11.5 0.141205 0.085520 16.5 0.105358 0.066652
11.6 0.140224 0.085024 16.6 0.104839 0.066368
11.7 0.139258 0.084535 16.7 0.104326 0.066086
11.8 0.138307 0.084052 16.8 0.103818 0.065807
11.9 0.137369 0.083574 169 0.103315 0.065530
12.0 0.136446 0.083103 17.0 0.102817 0.065256
12.1  0.135535 0.082638 17.1  0.102325 0.064984
12.2  0.134638 0.082178 17.2 0.101838 0.064715
123  0.133754 0.081725 17.3  0.101356 0.064449
12.4 0.132883 0.081276 17.4 0.100878 0.064184
12.5 0.132024 0.080833 17.5 0.100406 0.063923
12.6 0.131176 0.080396 17.6  0.099938 0.063663
12.7 0.130341 0.079964 17.7 0.099475 0.063406
12.8 0.129517 0.079537 17.8 0.099017 0.063152
129 0.128704 0.079115 17.9 0.098563 0.062899
13.0 0.127903 0.078698 18.0 0.098114 0.062649
13.1 0.127112 0.078285 18.1 0.097669 0.062401
13.2 0.126332 0.077878 18.2 0.097229 0.062155
13.3 0.125562 0.077475 18.3 0.096792 0.061912
13.4 0.124802 0.077077 18.4 0.096361 0.061670
13.5 0.124053 0.076684 18.5 0.095933 0.061431
13.6 0.123313 0.076295 18.6 0.095509 0.061193
13.7 0.122582 0.075910 18.7 0.095089 0.060958
13.8 0.121861 0.075530 18.8 0.094674 0.060725
13.9 0.121149 0.075154 18.9 0.094262 0.060493
14.0 0.120446 0.074782 19.0 0.093854 0.060264
14.1 0.119752 0.074414 19.1 0.093450 0.060037
14.2  0.119067 0.074050 19.2  0.093050 0.059811
143 0.118390 0.073690 19.3  0.092653 0.059587
144 0.117722 0.073334 19.4 0.092260 0.059366
14.5 0.117061 0.072982 19.5 0.091871 0.059146
14.6 0.116409 0.072633 19.6 0.091485 0.058928
14.7 0.115764 0.072289 19.7 0.091103 0.058711
14.8 0.115128 0.071948 19.8 0.090724 0.058497
14.9 0.114498 0.071610 19.9 0.090348 0.058284
15.0 0.113877 0.071276 20.0 0.089976 0.058073
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