CONVEXITY CONDITIONS FOR NON-LOCALLY CONVEX LATTICES

by N. J. KALTON†

(Received 15 November, 1982)

1. Introduction. First we recall that a (real) quasi-Banach space X is a complete metrizable real vector space whose topology is given by a quasi-norm $x \to ||x||$ satisfying

$$||x|| > 0$$
 $(x \in X, x \neq 0)$ (1.1)

$$\|\alpha x\| = |\alpha| \|x\| \qquad (\alpha \in \mathbb{R}, x \in X) \tag{1.2}$$

$$||x_1 + x_2|| \le C(||x_1|| + ||x_2||)$$
 $(x_1, x_2 \in X),$ (1.3)

where C is some constant independent of x_1 and x_2 . X is said to be p-normable (or topologically p-convex), where 0 , if for some constant B we have

$$||x_1 + \ldots + x_n|| \le B(||x_1||^p + \ldots + ||x_n||^p)^{1/p}$$
 (1.4)

for any $x_1, \ldots, x_n \in X$. A theorem of Aoki and Rolewicz (see [18]) asserts that if in (1.3) $C = 2^{1/p-1}$, then X is p-normable. We can then equivalently re-norm X so that in (1.4) B = 1.

If in addition X is a vector lattice and $||x|| \le ||y||$ whenever $|x| \le |y|$ we say that X is a quasi-Banach lattice. As in the case of Banach lattices [13] we may make the following definitions.

We shall say that X satisfies an upper p-estimate if for some constant C and any $x_1, \ldots, x_n \in X$ we have

$$|||x_1| \lor ... \lor |x_n||| \le C \left(\sum_{i=1}^n ||x_i||^p \right)^{1/p}.$$
 (1.5)

We shall say that X is (lattice) p-convex if for some C and any $x_1, \ldots, x_n \in X$

$$\left\| \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{1/p} \right\| \leq C \left(\sum_{i=1}^{n} \|x_{i}\|^{p} \right)^{1/p}. \tag{1.6}$$

Here the element $(|x_1|^p + ... + |x_n|^p)^{1/p}$ (0 of X can be defined unambiguously exactly as for the case of Banach lattices (cf. [13, pp 40-41] and Popa [17]).

For 0 it is trivial to see that lattice p-convexity implies p-normability and p-normability implies the existence of an upper p-estimate. In the case <math>p = 1, lattice 1-c invexity is equivalent to normability (i.e. X is a Banach lattice). However Popa [17] of erves that for $0 , the space "weak <math>L_p$ " $L(p, \infty)$ of measurable functions on (0, 1)

† Supported by NSF grant MCS-8001852.

Glasgow Math. J. 25 (1984) 141-152.

such that

$$||f|| = \sup_{0 < t < \infty} tm(|f| > t)^{1/p} < \infty$$

is p-normable but not lattice p-convex.

In this note we introduce the class of *L*-convex quasi-Banach lattices. We say that X is *L*-convex if there exists $0 < \varepsilon < 1$ so that if $u \in X_+$ with ||u|| = 1 and $0 \le x_i \le u$ $(1 \le i \le n)$ satisfy

 $\frac{1}{n}(x_1+\ldots+x_n)\geq (1-\varepsilon)u,$

then

 $\max_{1 \le i \le n} \|x_i\| \ge \varepsilon.$

Roughly speaking, X is L-convex if its order-intervals are uniformly locally convex.

It turns out that most naturally arising function spaces are L-convex lattices (e.g. the L_p -spaces, Orlicz spaces, Lorentz spaces including the spaces $L(p,\infty)$ introduced above). However we shall give examples of non L-convex lattices. We shall show that X is L-convex if and only if X is lattice p-convex for some p>0. If ℓ_∞ is not lattice finitely representable in X then X is necessarily L-convex. We also show that if X is a quasi-Banach lattice linearly homeomorphic to a subspace of an L-convex lattice then X is again L-convex.

L-convex lattices behave similarly to Banach lattices in many respects. For example if X is L-convex and satisfies an upper p-estimate, then X is lattice r-convex for any r < p (compare [13], p. 85] and results of Maurey and Pisier [14], [16]). Also for 0 , if <math>X is L-convex and satisfies an upper p-estimate, then X is p-normable. This is false for p = 1; $L(1, \infty)$ is a counter-example. However an analoguous result for 1 involving type due to Figiel and Johnson is given in [13, p. 88]. By contrast, in general if a quasi-Banach lattice satisfies an upper <math>p-estimate, then it is q-normable, where $q^{-1} = p^{-1} + 1$ and this result is best possible.

2. L-convexity. Before proving our basic lemma, it will be convenient to introduce some terminology. Suppose X is a quasi-Banach lattice and $u \in X_+$ with $u \neq 0$. Then if we set $Y = \bigcup_{n=1}^{\infty} [-nu, nu] Y$ is a sublattice of X; if we select [-u, u] as the unit ball of Y then Y is an abstract M-space, and by a well-known theorem of Kakutani ([13, p. 16], [19, p. 104]) there is a compact Hausdorff space Δ so that Y is isometrically lattice isomorphic to $C(\Delta)$. Thus we can induce a lattice homomorphism $J: C(\Delta) \to X$ so that J maps the unit ball of $C(\Delta)$ onto the order interval [-u, u]. We call J the Kakutani map associated to u.

LEMMA 2.1. Let X be an L-convex quasi-Banach lattice satisfying an upper pestimate. Then

(a) if $0 , there is a constant M so that if <math>x_1, \ldots, x_n \in X$ we have

$$\left\|\left(\sum |x_i|^r\right)^{1/r}\right\| \leq M\left(\sum \|x_i\|^p\right)^{1/p}.$$

(b) If 0 < r < p there is a constant M so that if $x_1, \ldots, x_n \in X$ we have

$$\left\|\left(\sum |x_i|^r\right)^{1/r}\right\| \leq M\left(\sum \|x_i\|^r\right)^{1/r}.$$

Proof. We shall suppose $C < \infty$ and $0 < \varepsilon < 1$ are chosen as in (1.5) and (1.7). Without loss of generality in both parts (a) and (b) we may assume $x_i \ge 0$ $(1 \le i \le n)$ and that ||u|| = 1, where $u = (\sum |x_i|^r)^{1/r}$. Let $J: C(\Delta) \to X$ be the Kakutani map associated to u. Let $Jf_i = x_i$ where $0 \le f_i \le 1$. Choose $\tau > 0$ so that

$$1 - \exp(-\tau^{-r}) \ge 1 - \frac{1}{4}\varepsilon.$$

Let (Ω, P) be some probability space and let $(\xi_i : 1 \le i \le n)$ be independent positive random variables on Ω so that for each i

$$P(\xi_i > t) = t^{-r} \qquad (t \ge 1).$$

If $s \in \Delta$ and if $\max f_i(s) \le \tau$ then

$$P(\max \xi_{i}f_{i}(s) > \tau) = 1 - \prod_{i=1}^{n} P(\xi_{i} \leq \tau f_{i}(s)^{-1})$$

$$= 1 - \prod_{i=1}^{n} (1 - \tau^{-r}f_{i}(s)^{r})$$

$$\geq 1 - \prod_{i=1}^{n} \exp(-\tau^{-r}f_{i}(s)^{r})$$

$$= 1 - \exp(-\tau^{-r})$$

$$\geq 1 - \frac{1}{4}\varepsilon. \tag{2.1}$$

Here we use the fact that $J((\sum f_i^r)^{1/r}) = (\sum |x_i|^r)^{1/r} = u = J1$, so that $\sum f_i(s)^r = 1$ for $s \in \Delta$. Now (2.1) holds trivially if we suppose max $f_i(s) > \tau$. Thus we conclude

$$\int_{\Omega} \max_{i \le n} \left(\min(\xi_i(\omega) f_i(s), \tau) \right) dP(\omega) \ge \tau (1 - \frac{1}{4}\varepsilon). \tag{2.2}$$

For each $k \in \mathbb{N}$ we define ξ_{ik} $(1 \le i \le n)$ by

$$\xi_{ik}(\omega) = \left(\frac{2^k}{m}\right)^{1/r} \left(\frac{2^k}{m}\right)^{1/r} \le \xi_i(\omega) < \left(\frac{2^k}{m-1}\right)^{1/r}$$

for $m=1,2,\ldots,2^k$. Then $\lim_{k\to\infty}\xi_{ik}=\xi_i$ a.e. and for each $k\in\mathbb{N}$ the random variables $(\xi_{ik}:1\leq i\leq n)$ are independent and generate a finite algebra \mathcal{A}_n in Ω with 2^{kn} atoms each of probability 2^{-kn} . Set

$$g_{k}(s) = \int_{\Omega} \max_{i \leq n} \left(\min(\xi_{ik}(\omega) f_{i}(s), \tau) \right) dP(\omega).$$

Then $g_k \in C(\Delta)$ and the sequence g_k is monotone increasing. From (2.2) we deduce that

$$\lim_{k\to\infty} g_k(s) \ge \tau(1-\tfrac{1}{4}\varepsilon).$$

Now, by Dini's theorem, there exists $k \in \mathbb{N}$ so that $g_k(s) \ge \tau (1 - \frac{1}{2}\varepsilon)$ for every $s \in \Delta$. Suppose $A \in \mathcal{A}_k$ and $P(A) \le \frac{1}{2}\varepsilon$; then

$$\int_{\Omega\setminus A} \max_{i\leq n} \left(\min(\xi_{ik}(\omega)f_i(s), \tau)\right) dP(\omega) \geq \tau(1-\varepsilon).$$

This implies that $(1-\varepsilon)u$ is dominated by an average of the finitely many distinct values of $\left(\tau^{-1}\max_{i\leq n}\xi_{ik}(\omega)x_i\right)\wedge u$. Thus

$$\max_{\omega \in \Omega \setminus A} \left\| \max_{i \le n} \xi_{ik}(\omega) x_i \right\| \ge \tau \varepsilon$$

from the definition of L-convexity (equation (1.7)). Hence

$$P\left(\left\|\max_{i\leq n}\xi_i(\omega)x_i\right\|\geq \tau\varepsilon\right)\geq \frac{1}{2}\varepsilon.$$

Since X satisfies an upper p-estimate,

$$P\left(\left(\sum_{i=1}^{n} \left|\xi_{i}(\omega)\right|^{p} \left\|x_{i}\right\|^{p}\right)^{1/p} \geq C^{-1} \tau \varepsilon\right) \geq \frac{1}{2} \varepsilon.$$

Now we consider two cases. In case (a) if 0 then

$$\int_{\Omega} \sum_{i=1}^{n} |\xi_i(\omega)|^p ||x_i||^p dP(\omega) \ge \frac{1}{2} C^{-p} \tau^p \varepsilon^{p+1}$$

and

$$\int_{\Omega} |\xi_i|^p dP = B < \infty.$$

Hence

$$\sum_{i=1}^{n} \|x_i\|^p \ge \frac{1}{2} B^{-1} C^{-p} \tau^p \varepsilon^{p+1}$$

so that (a) follows.

In case (b) pick $\alpha > 1$ so that $r\alpha > p$. Let $\eta_i = \xi_i^{p/\alpha}$ so that $P(\eta_i > t) = t^{-r\alpha/p}$ for $t \ge 1$. By Lemma 1.f.8 of [13, p. 86] there is a constant B so that

$$\int_{\Omega} \left(\sum a_i^{\alpha} \eta_i^{\alpha} \right)^{1/\alpha} dP \leq B \left(\sum |a_i|^{(r\alpha)/p} \right)^{p/r\alpha}$$

for $a_1, \ldots, a_n \ge 0$. Now, for δ depending only on C and ε ,

$$\int_{\Omega} \left(\sum_{i=1}^{n} |\eta_{i}(\omega)|^{\alpha} (||x_{i}||^{p/\alpha})^{\alpha} \right)^{1/\alpha} dP \ge \delta$$

and so

$$B\left(\sum \|x_i\|^r\right)^{p/r\alpha} \geq \delta.$$

Thus (b) follows.

The next theorem should be compared with the Banach lattice case (Theorem 1.f.7 of [13, p. 85]).

THEOREM 2.2. Let X be a quasi-Banach lattice satisfying an upper p-estimate. Then the following conditions on X are equivalent:

- (i) X is L-convex
- (ii) X is lattice r-convex for some r>0.
- (iii) X is lattice r-convex for every r, 0 < r < p.
 - (i) \Rightarrow (iii): This is simply Lemma 2.1 (b).
- $(iii) \Rightarrow (ii)$: This is immediate.
- (ii) \Rightarrow (i): We assume r < 1. Suppose $0 \le x_i \le u$ where ||u|| = 1 and that

$$\frac{1}{n}(x_1+\ldots+x_n)\geq \frac{1}{2}u.$$

Then

$$(x_1 + \ldots + x_n) \le u^{1-r}(x_1^r + \ldots + x_n^r),$$

where the right-hand side is well-defined in X, cf. [12, pp. 41-43]. Hence

$$\frac{1}{2}nu \le u^{1-r}(x_1^r + \ldots + x_n^r)$$

and so

$$(x_1^r + \ldots + x_n^r)^{1/r} \ge (\frac{1}{2}n)u$$

Thus

$$(\frac{1}{2}n)^{1/r} \le C\Big(\sum ||x_i||^r\Big)^{1/r}$$

so that

$$\max_{i \le n} ||x_i|| \ge (\frac{1}{2})^{1/r} C^{-1}.$$

If $r \ge 1$ the argument is simpler, since

$$(x_1^r + \ldots + x_n^r)^{1/r} \ge n^{1/r-1}(x_1 + \ldots + x_n).$$

THEOREM 2.3. Let X be a quasi Banach lattice satisfying an upper p-estimate where 0 . Then

- (i) X is q-normable where 1/q = 1/p + 1;
- (ii) if 0 and X is L-convex, then X is p-normable;
- (iii) if 1 and X is L-convex, then X is a Banach lattice.

Proof. (i) We suppose (1.5) holds. Suppose $x_1, \ldots, x_n \in X_+$ and $u = x_1 + \ldots + x_n$. Let $\sigma = (\|x_1\|^q + \ldots + \|x_n\|^q)^{1/q}$ and observe that

$$\|u\| \le \left\| \max_{i \le n} \sigma^{q} \|x_{i}\|^{-q} x_{i} \right\|$$

$$\le C \left(\sum_{i=1}^{n} \sigma^{pq} \|x_{i}\|^{-pq} \|x_{i}\|^{p} \right)^{1/p}$$

$$= C \sigma^{q} \left(\sum_{i=1}^{n} \|x_{i}\|^{q} \right)^{1/p} = C \sigma^{q+q/p} = C \sigma.$$

- (ii) This is simply Lemma 2.1 (a) with r = 1
- (iii) By Theorem 2.2 X is lattice 1-convex i.e. a Banach lattice.

EXAMPLE 2.4. Let \mathscr{A} be an algebra of subsets of some set Ω and let $\phi: \mathscr{A} \to \mathbb{R}$ be a normalized submeasure, i.e. ϕ is a set-function satisfying $\phi(\varnothing) = 0$, $\phi(A) \le \phi(A \cup B) \le \phi(A) + \phi(B)$ for $A, B \in \mathscr{A}$ and $\phi(\Omega) = 1$. From ϕ we can construct a quasi-Banach lattice $L_p(\phi)$ satisfying an upper p-estimate for $0 . If <math>f: \Omega \to \mathbb{R}$ is a simple \mathscr{A} -measurable function we define

$$||f||_p = \left(\int_0^\infty \phi(|f| \ge t^{1/p}) dt\right)^{1/p}.$$

Then $\|\cdot\|_p$ is a quasi-norm; indeed

$$||f+g||_p^p = \int_0^\infty \phi(|f+g| \ge t^{1/p}) dt$$

$$\leq \int_0^\infty \phi(|f| \ge \frac{1}{2}t^{1/p}) dt + \int \phi(|g| \ge \frac{1}{2}t^{1/p}) dt$$

$$\leq 2^p (||f||_p^p + ||g||_p^p)$$

so that

$$||f + g||_{p} \le 2^{1/p} (||f||_{p} + ||g||_{p}) \qquad (0
$$||f + g||_{p} \le 2(||f||_{p} + ||g||_{p}) \qquad (1 \le p < \infty).$$$$

The completion of the simple functions $S(\mathcal{A})$ with this quasi-norm is a quasi-Banach lattice $L_p(\phi)$ satisfying an upper p-estimate.

Suppose now ϕ is pathological ([3], [4]), that is so that whenever $0 \le \lambda \le \phi$ and λ is additive then $\lambda = 0$. Then for any $\varepsilon > 0$ there exist $E_1, \ldots, E_n \in \mathcal{A}$ so that $\phi(E_i) \le \varepsilon$ but $1/n \sum_{i=1}^n 1_{\Omega_i} ([3])$. It follows quickly that $L_p(\phi)$ is not L-convex.

Furthermore (Talagrand [20]) ϕ can be chosen so that for every n there exist $E_1, \ldots, E_n \in \mathcal{A}$ with $\phi(E_i) \leq n^{-1}$ and $1/n \sum 1_{E_i} \geq \frac{1}{2} 1_{\Omega}$. Suppose $L_p(\phi)$ is q-normable. Then

$$\frac{1}{2} \leq \frac{C}{n} \left(\sum_{i=1}^{n} \| 1_{E_i} \|_p^q \right)^{1/q} = C n^{1/q - 1/p - 1} \qquad (n \in \mathbb{N}).$$

Hence $1/q \ge 1/p + 1$ so that Theorem 2.3 (a) is best possible.

By way of contrast we observe that the space $L(p, \infty)$ is L-convex for 0 . In fact if <math>0 < r < p, $L(p, \infty) = \{f : |f|^r \in L(pr^{-1}, \infty)\}$ and $L(pr^{-1}, \infty)$ is a Banach lattice, i.e. is locally convex (see [5]). Hence $L(p, \infty)$ is lattice r-convex for 0 < r < p. As $L(p, \infty)$ satisfies an upper p-estimate, it is p-normable (see [8]).

3. Some applications of a theorem of Bennett and Maurey. In this section we show how a deep factorization theorem of Bennett and Maurey ([1], [2], [15]) can be used to extend a result of Krivine [12] on operators between Banach lattices (cf. [13, p. 93]). This

latter result is of considerable importance in studying operators between function spaces (see [10]).

We start by stating that Bennett-Maurey theorem (see [1] or [2] for this statement).

THEOREM 3.1. Let 0 be fixed. Then there is a constant <math>C = C(p) so that whenever $m, n \in \mathbb{N}$ and $T: \ell_p^m \to \ell_p^n$ is a linear operator then there is a positive $D: \ell_p^n \to \ell_1^n$ given by $D(\xi_i) = (d_i \xi_i)$ so that $||DT|| \le ||T||$ and $\sum d_i^{(-p/1-p)} \le C$.

COROLLARY 3.2. Suppose 0 . Then there is a constant <math>B = B(p) so that if Δ , K are compact Hausdorff spaces, μ is a probability measure on K and $T: C(\Delta) \to L_p(K, \mu)$ is a bounded linear operator, then for $f_1, \ldots, f_n \in C(\Delta)$, we have

$$\left\| \left(\sum_{i=1}^{n} |Tf_i|^2 \right)^{1/2} \right\|_{p} \le B \|T\| \left\| \left(\sum_{i=1}^{n} |f_i|^2 \right)^{1/2} \right\|.$$

Proof. Exactly as step 2 of Theorem 1.f.14 of [1, p. 92] this can be reduced to consideration of a map $T: \ell_{\infty}^m \to \ell_p^n$. Now by Theorem 3.1 we can find $D: \ell_p^n \to \ell_1^n$ so that $||DT|| \le ||T||$ and $D(\xi_i) = (d_i \xi_i)$ where $\sum d_i^{(-p/1-p)} \le C$. Then

$$\begin{split} \left\| \left(\sum |Tf_{i}|^{2} \right)^{1/2} \right\|_{p}^{p} &= \left\| D^{-1} \left(\sum |DTf_{i}|^{2} \right)^{1/2} \right\|_{p}^{p} \\ &\leq \left(\sum d_{i}^{(-p/1-p)} \right)^{1-p} \left\| \left(\sum |f_{i}|^{2} \right)^{1/2} \right\|_{1}^{p} \\ &\leq C^{1-p} K_{G}^{p} \left\| \left(\sum |DTf_{i}|^{2} \right)^{1/2} \right\|_{\infty}^{p}, \end{split}$$

by Theorem 1.f.14 of [13]. Let $B = C^{1/p-1}K_G$.

THEOREM 3.3. Let Y be an L-convex quasi-Banach lattice. Then there is a constant A depending only on Y so that whenever X is a quasi-Banach lattice and $T: X \to Y$ is a bounded linear operator then for any $x_1, \ldots, x_n \in X$

$$\left\| \left(\sum_{i=1}^{n} |Tx_{i}|^{2} \right)^{1/2} \right\| \leq A \|T\| \left\| \left(\sum_{i=1}^{n} |x_{i}|^{2} \right)^{1/2} \right\|$$

Proof. First we observe that Y is lattice p-convex for some p > 0 and hence satisfies (1.6) for some C.

If $x_1, \ldots, x_n \in X$ let $v = (\sum |Tx_i|^2)^{1/2}$ and $u = (\sum |x_i|^2)^{1/2}$. We may suppose $u, v \neq 0$. Let $J_u : C(\Delta_u) \to X$ and $J_v : C(\Delta_v) \to Y$ be associated Kakutani maps. If $f_1, \ldots, f_m \in C(\Delta_v)$,

$$\left\| J_{v} \left(\sum_{i=1}^{n} |f_{i}|^{p} \right)^{1/p} \right\| \leq C \left(\sum_{i=1}^{n} \|J_{v}f_{i}\|^{p} \right)^{1/p}.$$

As J_v is positive this implies that for some $s \in K$

$$\left(\sum_{i=1}^{m} |f_i(s)|^p\right)^{1/p} \le C||v||^{-1} \left(\sum_{i=1}^{m} ||J_v f_i||^p\right)^{1/p}.$$

Now by a standard Hahn-Banach separation argument there is a probability measure μ on Δ_v so that for $f \in C(\Delta_v)$,

$$\int_{\Delta_n} |f|^p d\mu \le C^p ||v||^{-p} ||J_v f||^p.$$

For $x \in X_+$ define $Sx \in L_p(\Delta_v, \mu)$ by

$$Sx = \sup_{n} J^{-1}(x \wedge nv)$$

and extend S linearly. Then S is a lattice-homomorphism and $||S|| \le C||v||^{-1}$.

Now consider $STJ_u: C(\Delta_u) \to L_p(\Delta_v, \mu)$. By Theorem 3.2, if $f_1, \ldots, f_n \in C(\Delta_u)$ are chosen so that $J_u f_i = x_i$,

$$\left\| \left(\sum_{i=1}^{n} |STJ_{u}f_{i}|^{2} \right)^{1/2} \right\|_{p} \leq B \|STJ_{u}\| \left\| \left(\sum_{i=1}^{n} |f_{i}|^{2} \right)^{1/2} \right\|,$$

where B depends only on p.

Now, since S is a lattice-homomorphism,

$$\left\| \left(\sum |STJ_u f_i|^2 \right)^{1/2} \right\|_p = \left\| S \left(\sum_{i=1}^n |Tx_i|^2 \right)^{1/2} \right\| = \|Sv\| = 1.$$

On the other hand $(\sum |f_i|^2)^{1/2} = 1$ and so

$$1 \le B||STJ_u|| \le BC||v||^{-1}||T||||u||$$

so that

$$||v|| \leq A||T||\,||u||,$$

where A = BC.

Applying Theorem 3.3 in the case $X = \ell_{\infty}^{n}$ we obtain the following result.

COROLLARY 3.4. Suppose Y is an L-convex quasi-Banach lattice. Then there is a constant A so that if $y_1, \ldots, y_n \in Y$ then

$$\left\| \left(\sum_{i=1}^{n} |y_i|^2 \right)^{1/2} \right\| \le A \sup_{|a_i| \le 1} \|a_1 y_1 + \ldots + a_n y_n\|.$$

Proof. Apply the theorem to the map $T: \ell_{\infty}^n \to Y$ given by $Te_i = y_i$, where $\{e_i\}$ are the basis vectors in ℓ_{∞}^n .

EXAMPLE 3.5. We do not know whether the conclusions of Theorem 3.3 or Corollary 3.4 characterize L-convex lattices. However we can give an example to show that both are false without the L-convexity assumption.

Our example will be of the form of an ℓ_{∞} -product of spaces of the type $L_1(\phi_n)$, where each ϕ_n is a submeasure. We then need only produce ϕ_n to show that there is no uniform constant A valid for each n.

Let S^{n-1} be the unit sphere in \mathbb{R}^n i.e.

$$S^{n-1} = \{(\xi_1, \ldots, \xi_n) : \xi_1^2 + \ldots + \xi_n^2 = 1\}.$$

Let \mathcal{A} be the algebra of all subsets of S^{n-1} .

If $a \in \mathbb{R}^n$ and $a \neq 0$ let $B_a \in \mathcal{A}$ be defined by $B_a = \{\xi : a : \xi \neq 0\}$. For any set $a^{(1)}, \ldots, a^{(n-1)} \in \mathbb{R}^n \setminus \{0\}$ there exists $\xi \in S^{n-1}$ so that $a^{(1)} : \xi = \ldots = a^{(n-1)} : \xi = 0$ so that $\bigcup_{i=1}^{n-1} B_{a(i)} \neq S^{n-1}$. Define $\phi_n : \mathcal{A} \to \mathbb{R}$ by

$$\phi_n(A) = \frac{1}{n} \inf \left\{ k : A \subset \bigcup_{j=1}^k B_{a(j)} \right\}.$$

Then ϕ_n is a normalized submeasure.

Let $f_i(\xi) = \xi_j$. Then if $|a_i| \le 1$, $|a_1f_1 + \ldots + a_nf_n| \le \sqrt{n}1_{B_{(a)}}$. Hence

$$||a_1f_1+\ldots+a_nf_n|| \leq \sqrt{n} \cdot \frac{1}{n} = n^{-1/2}.$$

However $(f_1^2 + \ldots + f_n^2)^{1/2} \equiv 1$ and ||1|| = 1.

4. Further conditions for L-convexity. Our first result in this section shows that a wide class of quasi-Banach lattices are automatically L-convex. We say that ℓ_{∞} is lattice finitely representable in X if given $\varepsilon > 0$ and $n \in \mathbb{N}$ there exist $x_i \ge 0$ $(1 \le i \le n)$ so that $x_i \wedge x_j = 0$ $(i \ne j)$, $||x_j|| = 1$ $(1 \le i \le n)$ and whenever $a_1, \ldots, a_n \in \mathbb{R}$

$$||a_1x_1+\ldots+a_nx_n|| \le (1+\varepsilon) \max_{1\le i\le n} |a_i|$$

If ℓ_{∞} is not lattice finitely representable in X, then there exists c > 1 and $n \in \mathbb{N}$ so that for any sequence (x_1, \ldots, x_n) of disjoint elements we have

$$||x_1+\ldots+x_n|| \ge c \min_{1 \le i \le n} ||x_i||.$$

It then follows quickly by induction that for every d > 1 there exists $N \in \mathbb{N}$ so that for disjoint x_1, \ldots, x_N ,

$$||x_1 + \ldots + x_N|| \ge d \min_{1 \le i \le N} ||x_i||.$$

We remark that if F is an Orlicz function satisfying the Δ_2 -condition then ℓ_{∞} is not lattice finitely representable in the Orlicz space $L_F(0,1)$; equally ℓ_{∞} is not lattice finitely representable in the Lorentz space L(p,q) if $0 < q < \infty$ (cf. [5]).

THEOREM 4.1. Let X be a quasi-Banach lattice such that ℓ_{∞} is not lattice finitely representable in X. Then X is L-convex.

Proof. We can and do suppose X is p-normed; that is for suitable 0

$$||x_1 + \ldots + x_n|| \le (||x_1||^p + \ldots + ||x_n||^p)^{1/p},$$

for $x_1, \ldots, x_n \in X$.

Fix $N \in \mathbb{N}$ so that for any sequence of disjoint elements (x_1, \ldots, x_N) we have

$$||x_1 + \ldots + x_N|| \ge 6^{1/p} \min_{i \le N} ||x_i||.$$

Then fix ε , $0 < \varepsilon < 1$ so that $\varepsilon < \frac{1}{2}(\frac{1}{4})^{1/p}$ and $\varepsilon < (1/32)e^{-2}N^{-1}$. Suppose that $u \in X_+$, with $0 \le x_i \le u$ and $(1/m)(x_1 + \ldots + x_m) \ge (1 - \frac{1}{2}\varepsilon)u$.

Let $J: C(\Delta) \to X$ be the Kakutani map associated to u. We claim first that J is exhaustive; that is if $\{f_i: i \in \mathbb{N}\}$ is a uniformly bounded disjoint sequence in $C(\Delta)$ then $Jf_i \to 0$. This follows easily from the hypothesis on X. Now by a theorem of Thomas [29] (cf. also [7], [9]), there is a regular X-valued measure μ defined on the Borel sets β of Δ so that

$$Jf = \int f \, d\mu \qquad (f \in C(\underline{\Delta})).$$

We remark that co $\mu(\beta)$ is bounded and so there is no difficulty in defining the integral of any bounded Borel function. It is easy to see that $\mu(\Delta) = u$ and μ is monotone; that is $0 \le \mu(A) \le \mu(B)$ whenever $A \subseteq B$.

Let $\phi: B \to \mathbb{R}$ be defined by $\phi(A) = \|\mu(A)\|^p$. Then ϕ is a submeasure. We shall show that ϕ satisfies the hypotheses of [11, Lemma 3.1]. If A_1, \ldots, A_N are disjoint sets, then $\mu(A_1), \ldots, \mu(A_N)$ are disjoint in X and so

$$1 \ge \|\mu(A_1 \cup \ldots \cup A_N)\|^p \ge 6 \min \|\mu(A_i)\|^p$$

so that min $\phi(A_i) \leq \frac{1}{6}$.

Hence if A_1, \ldots, A_n are disjoint, then, as required,

$$\sum_{i=1}^{n} \phi(A_i) \le N + \frac{1}{6}n. \tag{3.1}$$

Choose g_i $(1 \le i \le m)$ so that $Jg_i = x_i$. Let $B_i = \{g_i \ge \frac{1}{2}\}$. Then

$$\frac{1}{m}\sum_{i=1}^{m}1_{B_i}\geq (1-\varepsilon)1_{\Delta}.$$

From Lemma 3.1 and Proposition 2.3 of [11] we deduce (taking r=3 in the statement of the lemma)

$$\frac{1}{m} \sum_{i=1}^{m} \phi(B_i) \ge 1 - 3 \cdot \frac{1}{6} - N(2e^2)^{1/2} \varepsilon^{1/2} \ge \frac{1}{4}$$

so that

$$\max_{1 \leq i \leq M} \phi(B_i) \geq \frac{1}{4}.$$

Hence

$$\max_{1 \le i \le m} \|x_i\| \ge \frac{1}{2} \left(\frac{1}{4}\right)^{1/p} \ge \varepsilon,$$

so that X is L-convex.

THEOREM 4.2. Let Y be an L-convex quasi-Banach lattice and let X be a quasi-Banach lattice linearly homeomorphic to a subspace of Y. Then X is L-convex.

Proof. We shall suppose Y is lattice p-convex for some p, 0 satisfying equation (1.6), i.e.

$$\left\|\left(\sum |y_i|^p\right)^{1/p}\right\| \leq C\left(\sum \|y_i\|^p\right)^{1/p}$$

for $y_1, \ldots, y_n \in Y$. We also suppose that the conclusion of Theorem 3.3 holds with constant $A < \infty$. Let $T: X \to Y$ be a linear operator so that

$$B^{-1}||x|| \le ||Tx|| \le B||x|| \qquad (x \in X),$$

for some constant $B < \infty$.

If X is not L-convex, then given $\delta > 0$ we can find $u \in X_+$ with ||u|| = 1 and $0 \le x_i \le u$ $(1 \le i \le n)$ so that (1/n) $(x_1 + \ldots + x_n) \ge (1 - \delta)u$ and $||x_i|| \le \delta$ $(1 \le i \le n)$.

Let $y_i = Tx_i$. Then

$$\left\|\left(\sum |y_i|^p\right)^{1/p}\right\| \leq C\left(\sum \|y_i\|^p\right)^{1/p} \leq CB\left(\sum \|x_i\|^p\right)^{1/p} \leq CBn^{1/p}\delta.$$

On the other hand

$$\left\| \left(\sum |y_i|^2 \right)^{1/2} \right\| \le A \left\| \left(\sum |x_i|^2 \right)^{1/2} \right\| \le A n^{1/2} \|u\| = A n^{1/2}.$$

Let
$$v_1 = \delta^{-1} n^{-1/p} (\sum |y_i|^p)^{1/p}$$
 and $v_2 = n^{-1/2} (\sum |y_i|^2)^{1/2}$. Let $\theta = p(2-p)^{-1}$. Then $\delta^{-\theta} n^{-1} \sum |y_i| \le v_1^{\theta} v_2^{1-\theta}$.

[This is easily seen by using a Kakutani map to represent the elements of Y as functions.] Hence

$$n^{-1} \sum |y_i| \le \delta^{\theta} (\theta v_1 + (1 - \theta) v_2) \le \delta^{\theta} (v_1 + v_2)$$

and so if C' is the constant occurring in equation (1.3) for quasi-norms,

$$||n^{-1}\sum |y_i|| \le \delta^{\theta}C'(A+CB).$$

Now

$$\left\|\sum |y_i|\right\| = \left\|\sum |Tx_i|\right\| \ge \left\|\left|T\left(\sum x_i\right)\right|\right\| \ge B^{-1}\left\|\sum x_i\right\|.$$

Hence

$$(1-\delta) \leq \delta^{\theta} BC'(A+CB).$$

For small enough δ this is a contradiction and so X is L-convex.

Conjecture. If Y is lattice p-convex where 0 , then X is lattice p-convex.

We remark that the conjecture is true for p=1 trivially and for $0 , if we assume <math>\ell_{\infty}$ is not lattice finitely representable in X. The proof of this latter statement is the

same as of Theorem 1.d.7 of [12, p. 51] (see also Johnson, Maurey, Schechtman and Tzafriri [6]).

REFERENCES

- 1. G. Bennett, An extension of the Riesz-Thorin theorem in Banach spaces of analytic functions. Lecture Notes in Mathematics No 604 (Springer-Verlag, 1977).
- **2.** G. Bennett, Lectures on matrix transformations of ℓ^p spaces, in *Notes in Banach spaces* (H. E. Lacey, ed.) (University of Texas Press, Austin, Texas, 1980).
- **3.** J. P. R. Christensen, Some results with relation to the control measure problem, in *Vector space measures and applications* II. Lecture Notes in Mathematics No 645 (Springer-Verlag, 1978).
- **4.** J. P. R. Christensen and W. Herer, On the existence of pathological submeasures and the construction of exotic topological groups, *Math. Ann.* **213** (1975), 203–210.
 - 5. R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), 249-274.
- 6. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. No. 217 (Providence, 1979).
- 7. N. J. Kalton, Topologies on Riesz groups with applications to measure theory, *Proc. London Math. Soc.* (3) 28 (1974), 253–273.
- **8.** N. J. Kalton, Linear operators on L_p for 0 , Trans. Amer. Math. Soc.**259**(1980), 319-355.
- 9. N. J. Kalton, Isomorphisms between spaces of vector-valued continuous functions, *Proc. Edinburgh Math. Soc.* 26 (1983), 29-48.
- 10. N. J. Kalton, Representations of operators between function spaces, *Indiana Univ. Math. J.* to appear.
- 11. N. J. Kalton and J. W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, *Trans. Amer. Math. Soc.* 278 (1983), 803–816.
- 12. J. L. Krivine, Théoremes de factorisation dans les espaces reticules, Seminaire Maurey-Schwartz 1973-4, Exposés 22-23, Ecole Polytechnique (Paris).
- 13. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces (Springer-Verlag, 1979).
- 14. B. Maurey, Type et cotype dans les espaces munis de structure locales incontitiononelles, Seminaire Maurey-Schwartz 1973-4, Exposés 24-25 Ecole Polytechnique (Paris).
- **15.** B. Maurey Théorèmes de factorisation pour les operateurs linéaires à valeurs dans un espace L_n (Asterisque No 11, 1974).
- 16. B. Maurey and G. Pisier, Series de variables aleatoires vectorielles independantes et propriétés geometriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- 17. N. Popa, Uniqueness of symmetric structures in $L_p(\mu)$ for 0 , Rev. Roumaine. Math. Pures. Appl. to appear.
 - 18. S. Rolewicz, Metric linear spaces (PWN, Warsaw 1972).
 - 19. H. H. Schaefer, Banach lattices and positive operators, (Springer-Verlag, 1974).
- 20. M. Talagrand, A simple example of a pathological submeasure, *Math. Ann.* 252 (1980), 97-102.
- 21. G. E. F. Thomas, On Radon maps with values in arbitrary topological vector spaces and their integral extension (unpublished paper, 1972).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI 65211