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We study both theoretically and numerically two-dimensional magnetohydrodynamic
turbulence at infinite and zero magnetic Prandtl number Pm (and the limits thereof),
with an emphasis on solution regularity. For Pm = 0, both ‖ω‖2 and ‖j‖2, where ω
and j are, respectively, the vorticity and current, are uniformly bounded. Furthermore,
‖∇j‖2 is integrable over [0,∞). The uniform boundedness of ‖ω‖2 implies that in the
presence of vanishingly small viscosity ν (i.e. in the limit Pm→ 0), the kinetic energy
dissipation rate ν‖ω‖2 vanishes for all times t, including t = ∞. Furthermore, for
sufficiently small Pm, this rate decreases linearly with Pm. This linear behaviour
of ν‖ω‖2 is investigated and confirmed by high-resolution simulations with Pm
in the range [1/64, 1]. Several criteria for solution regularity are established and
numerically tested. As Pm is decreased from unity, the ratio ‖ω‖∞/‖ω‖ is observed
to increase relatively slowly. This, together with the integrability of ‖∇j‖2, suggests
global regularity for Pm = 0. When Pm =∞, global regularity is secured when either
‖∇u‖∞/‖ω‖, where u is the fluid velocity, or ‖j‖∞/‖j‖ is bounded. The former is
plausible given the presence of viscous effects for this case. Numerical results over the
range Pm ∈ [1, 64] show that ‖∇u‖∞/‖ω‖ varies slightly (with similar behaviour for
‖j‖∞/‖j‖), thereby lending strong support for the possibility ‖∇u‖∞/‖ω‖ <∞ in the
limit Pm→∞. The peak of the magnetic energy dissipation rate µ‖j‖2 is observed
to decrease rapidly as Pm is increased. This result suggests the possibility ‖j‖2 <∞
in the limit Pm→∞. We discuss further evidence for the boundedness of the ratios
‖ω‖∞/‖ω‖, ‖∇u‖∞/‖ω‖ and ‖j‖∞/‖j‖ in conjunction with observation on the density
of filamentary structures in the vorticity, velocity gradient and current fields.

Key words: MHD and electrohydrodynamics, MHD turbulence, turbulence simulation

1. Introduction
The possible regularization of fluid motion in three dimensions by viscosity is

a fundamental mathematical problem of both theoretical and practical interest. The
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significance of this notoriously difficult problem can be appreciated by the fact
that the classical theory of turbulence is formulated on the hypothesis of non-zero
energy dissipation in the inviscid limit. This hypothesis implicitly assumes finite-time
singularities in the inviscid case, because otherwise the energy dissipation rate would
not tend to a non-zero limit (in a finite time) in the presence of vanishingly small
viscosity. Presumably, viscous effects regularize the dynamics, giving rise to a positive
limiting energy dissipation rate. Thus far, this deceptively simple picture has eluded
mathematical verification. For two-dimensional (2D) fluids, the problem of regularity
and limiting dissipation is relatively more tractable in certain cases, yet remains
highly challenging in others. On the one hand, by virtue of vorticity conservation, no
finite-time singularities can develop in the 2D Euler dynamics. By the same token,
2D geophysical fluid models, which conserve the potential vorticity, are globally
regular. As a result, in the presence of viscosity and for t <∞, the enstrophy and
potential enstrophy become conserved in the inviscid limit. For a semi-analytic proof
of enstrophy conservation without the constraint t <∞, see Tran & Dritschel (2006).
Some numerical demonstration of this fact can be found in Dritschel, Tran & Scott
(2007). On the other hand, it is well-known that the 2D surface quasi-geostrophic and
magnetohydrodynamic (MHD) equations with usual molecular diffusion (or weaker
dissipation mechanisms, see the discussion below and the theorem in § 2 for the
MHD case and Kiselev, Nazarov & Volberg (2007) for the surface quasi-geostrophic
case) possess globally regular solutions. However, the issue of regularity of the ideal
dynamics remains outstanding. Similarly, the problem of limiting energy dissipation
has not been fully understood (cf. Tran, Blackbourn & Scott 2011; Blackbourn & Tran
2012).

Recent mathematical studies of the 2D MHD equations have derived several
regularity criteria concerning the strength of the generalized diffusion operators
−(−1)α, for α > 0, which replace the usual molecular diffusion operator 1 (Wu
2011; Tran, Yu & Zhai 2013a). Since the induction equation is linear in the magnetic
field, global regularity is possible in the absence of magnetic diffusion, provided that
a strong enough dissipation mechanism is applied to the velocity field, so as to keep
the velocity gradients bounded (this is true for any number of dimensions, see Tran,
Yu & Zhai (2013b) and references therein). On the other hand, since vortex stretching
is absent in two dimensions, global regularity is possible in the absence of momentum
diffusion, provided that a sufficiently strong dissipation mechanism is applied to the
magnetic field, so as to suppress magnetic stretching and keep the current gradients
(which appear in the vorticity equation) bounded. Indeed, Tran et al. (2013a) have
proven global regularity for either hyperviscosity (represented by (−1)α) alone with
α > 2 or magnetic hyperdiffusion alone with α > 2. As far as the classical energy
method is concerned, these bounds for α appear optimal. However, physical arguments
and numerical analysis indicate otherwise. More precisely, Blackbourn & Tran (2012)
suggest that for fully developed turbulence from a large-scale energy reservoir, the
conversion between kinetic and magnetic energy becomes quasi-steady (dynamo
saturation in the three-dimensional context). This may correspond to a state of
complete or nearly complete depletion of nonlinearities (cf. Tobias & Cattaneo (2008)
and the concluding remarks of Blackbourn & Tran (2012)). Hence, excessively strong
dissipation mechanisms would be unnecessary to prevent finite-time singularities.

In this study, we investigate the possibility of solution regularity of the 2D
MHD equations with usual molecular diffusion when either one of the diffusion
channels is removed, i.e. when either Pm = 0 or Pm = ∞. Here Pm = ν/µ is the
magnetic Prandtl number, where ν and µ are the viscosity and magnetic diffusivity,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.193


2D MHD turbulence in the extreme limits of magnetic Prandtl number 197

respectively. Regularity in these cases would correspond to drastic improvements to the
mathematical results discussed in the preceding paragraph (reducing the upper bounds
for α from two to one). For Pm = 0, both ‖ω‖2 and ‖j‖2 are uniformly bounded
and ‖∇j‖2 is integrable over [0,∞). Here ω and j are, respectively, the vorticity
and current and ‖ · ‖ denotes the usual L2 norm. The uniform boundedness of ‖ω‖2

implies that in the presence of vanishingly small viscosity (i.e. in the limit Pm→ 0),
the kinetic energy dissipation rate ν‖ω‖2 vanishes for all times t, including t = ∞.
Furthermore, for sufficiently small Pm, this rate decreases linearly with Pm. Several
criteria for solution regularity are derived and numerically tested. The results from
high-resolution simulations over the range Pm ∈ [1/64, 64] show a mild increase of
the ratio ‖ω‖∞/‖ω‖, where ‖ω‖∞ is the vorticity supremum, as Pm is decreased
from unity. This provides strong support for the possibility ‖ω‖∞/‖ω‖ <∞ in the
limit Pm→ 0 and, together with the integrability of ‖∇j‖2, suggests global regularity
for Pm = 0. On the other hand, when Pm is increased from unity, both the ratios
‖∇u‖∞/‖ω‖, where u is the fluid velocity, and ‖j‖∞/‖j‖ are observed to increase
slowly, thereby favouring the possibility ‖∇u‖∞/‖ω‖ <∞ and ‖j‖∞/‖j‖ <∞ in the
limit Pm→∞. The observed behaviour of either ratio implies uniform boundedness
of ‖j‖, and hence vanishing magnetic energy dissipation in the presence of vanishing
resistivity. In either case, global regularity immediately follows. Evidence for the
boundedness of ‖ω‖∞/‖ω‖, ‖∇u‖∞/‖ω‖ and ‖j‖∞/‖j‖ is discussed in conjunction
with further numerical observations on the filamentary structures of the vorticity,
velocity gradient and current fields.

This paper is organized as follows. Section 2 provides a brief review of some well-
known mathematical results and recent findings, which constitute the framework for
the present study. Section 3 features some theoretical considerations of the dynamical
behaviour in the limits Pm→ 0 and Pm→∞ and of the possibility of solution
regularity for Pm = 0 and Pm =∞. The main results of this study are presented in
§ 4, including numerical confirmation of and evidence for the theoretical results of § 3.
Concluding remarks are given in § 5.

2. Background
The MHD equations governing the motion and evolution of the internally generated

magnetic field of an electrically conducting and incompressible fluid under no
influence from external magnetic fields or mechanical forces are

∂u
∂t
+ (u ·∇)u+∇p= (b ·∇)b+ ν1u, (2.1)

∂b
∂t
+ (u ·∇)b= (b ·∇)u+ µ1b, (2.2)

∇ ·u= 0=∇ · b, (2.3)

where all notation is standard. In the momentum equation (2.1), the term (b · ∇)b
represents the Lorentz force. In the induction equation (2.2), the stretching term
(b · ∇)u allows the magnetic induction b to be amplified by the fluid velocity
gradients. This amplification (known as dynamo action in the three-dimensional
context) necessarily results in an increase of the magnetic energy at the expense of
kinetic energy as the total energy is conserved in ideal dynamics. Given a limited
kinetic energy reservoir, dynamo action inevitably weakens the velocity field to some
extent and necessarily becomes saturated. In three dimensions, this may result in a
reduction of energy transfer to small scales (i.e. some suppression of turbulence).
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Indeed, Iroshnikov (1964) and Kraichnan (1965) suggested such a reduction on the
basis of Alfvén wave effects (see also Moffatt 1967). See, however, the competing
theory of Sridhar & Goldreich (1994) and Goldreich & Sridhar (1995). There exist
ample numerical results in support of both theories (Verma et al. 1996; Galtier,
Pouquet & Mangeney 2005; Ng et al. 2010; Beresnyak 2011). It is interesting to
note that in the Rayleigh–Taylor instability problem, the growth of a disturbance (to
the interface of two conducting fluids of different densities with the heavier on top)
can be suppressed by a magnetic field (Chambers & Forbes 2011).

Two-dimensional dynamics lack the underpinning direct energy transfer to make
sense of the Kraichnan–Iroshnikov theory (Blackbourn & Tran 2012). In the absence
of vortex stretching, the energy conversion via the Lorentz force (and magnetic
stretching) is responsible for the direct energy transfer. This force breaks the vorticity
conservation of the ideal dynamics, which would otherwise be effectively linear, as
far as the small scales are concerned. It has long been recognized that the action of
this force on the vorticity is relatively weak (Pouquet 1978; Orszag & Tang 1979),
presumably owing to some correlation between the vorticity and current fields. Hence,
the degree of nonlinearity of 2D MHD turbulence can be accordingly low. Recently,
Blackbourn & Tran (2012) raised the possibility of complete or nearly complete
depletion of nonlinearity for fully developed turbulence, upon which the conversion
between the kinetic and magnetic energy becomes quasi-steady. A complete depletion
of nonlinearity would mean that the term ∇ × (b · ∇)b, which amplifies the vorticity,
is not significantly greater than the vorticity. Note that quasi-steady energy conversion
means that the energy conversion term u · (b ·∇)b on average fluctuates about zero.

Throughout this study (except for Appendix), absolute constants (usually of order
unity) are denoted by c while dimensional constants, which may or may not depend
on physical parameters, are denoted by C. These constants may vary from one line
to another. As in the introductory section, the respective notation ‖ · ‖ and ‖ · ‖∞ is
used for L2 and L∞ norms. Other Lp norms are explicitly specified by the subscript Lp.
Bounded-mean-oscillation (BMO) norms are identified with the subscript BMO. For a
brief review of BMO spaces and some of their basic properties used in this study, see
Appendix.

Consider a solution evolving from a smooth initial condition {u, b} = {u0, b0} and
some time T > 0. The CKS criterion (Caflisch, Klapper & Steel 1997), which has
become the main tool in proving regularity of the MHD equations with or without
dissipation, states that the solution remains smooth at least shortly beyond t = T if∫ T

0
(‖ω‖∞ + ‖j‖∞) dt <∞, (2.4)

where ω = ∇ × u and j = ∇ × b are the vorticity and current, respectively. This
criterion is a straightforward extension of the celebrated BKM criterion (Beale, Kato &
Majda 1984) for usual (non-magnetic) fluids governed by the Euler or Navier–Stokes
equations. As in the BKM criterion, where the BMO norm of the vorticity ‖ω‖BMO

can replace ‖ω‖∞ (Kozono & Tanuichi 2000), we have the following slightly weaker
version of (2.4): ∫ T

0
(‖ω‖BMO + ‖j‖BMO) dt <∞. (2.5)

Indeed, (2.5) is weaker than (2.4) because for any function f , one has ‖f‖BMO 6 2‖f‖∞
(see Appendix).
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The 2D MHD system possesses globally smooth solutions when both ν and
µ are positive. It turns out that dissipation mechanisms much weaker than the
usual molecular diffusion of both the velocity and magnetic fields are capable of
regularizing the dynamics. Furthermore, global regularity can be secured with partial
hyperdissipation. These facts are described in detail in the following theorem.

THEOREM 2.1 (Tran et al. 2013a). Consider the 2D MHD equations

∂u
∂t
+ (u ·∇)u+∇p= (b ·∇)b− ν(−1)αu, (2.6)

∂b
∂t
+ (u ·∇)b= (b ·∇)u− µ(−1)βb, (2.7)

∇ ·u= 0 =∇ · b, (2.8)

where the viscous and magnetic diffusion terms are replaced by −ν(−1)αu
and −µ(−1)βb, respectively. Given {u0, b0} as smooth as necessary (essentially twice
differentiable), the system is globally regular for any one of the following conditions.

(i) α > 1/2 and β > 1, (ii) 0< α < 1/2 and 2α + β > 2,
(iii) ν = 0 and β > 2, (iv) α > 2 and µ= 0.

As far as the classical energy method is concerned, the results in the above theorem,
together with global regularity in the case α > 1, α + β > 2 proved by Wu (2011),
appear optimal. In this study, we are interested in (iii) and (iv), where theoretical and
numerical evidence suggests a dramatic improvement, essentially reducing the lower
bounds for α and β to unity.

3. Theoretical considerations
This section considers some theoretical aspects of 2D MHD turbulence, particularly

the plausibility of global regularity when either Pm = 0 or Pm = ∞. The former
case is of practical interest as plasmas in nature and liquid metals in laboratories
are relatively low in viscosity but high in resistivity. In fact, Pm can be as low as
10−5− 10−3 in stellar interiors and 10−5 in liquid metals (Iskakov et al. 2007; Dritschel
& Tobias 2012).

3.1. The limit Pm→ 0
By multiplying (2.1) and (2.2) by u and b, respectively, summing up and integrating
the resulting equation, we obtain (by virtue of energy conservation of the ideal
dynamics)

1
2

d
dt
(‖u‖2 + ‖b‖2)=−ν‖ω‖2 − µ‖j‖2 6−µ‖j‖2. (3.1)

Here ω and j are the (scalar) vorticity and current, respectively. It follows that∫ t

0
‖j‖2 dτ 6

1
2µ
(‖u0‖2 + ‖b0‖2), (3.2)

for all t, including t =∞, for which the inequality becomes an equality if ν = 0.
The governing equations for ω and j are given by

∂ω

∂t
+ u ·∇ω = b ·∇j+ ν1ω, (3.3)
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∂j

∂t
+ u ·∇j= b ·∇ω + B(∇u,∇b)+ µ1j. (3.4)

In (3.4), B(∇u,∇b) is bilinear in ∇u and ∇b and given by

B(∇u,∇b)= 2
∂b1

∂x

(
∂u2

∂x
+ ∂u1

∂y

)
+ 2

∂u2

∂y

(
∂b2

∂x
+ ∂b1

∂y

)
, (3.5)

where u = (u1, u2) and b = (b1, b2). By multiplying (3.3) and (3.4) by ω and j,
respectively, summing up and integrating the resulting equation, we obtain

1
2

d
dt
(‖ω‖2 + ‖j‖2)=

∫
jB(∇u,∇b) dx− ν‖∇ω‖2 − µ‖∇j‖2, (3.6)

where only the triple-product term involving B survives (the two triple-product terms
involving u vanish while the two triple-product terms involving b cancel each other,
thanks to the divergence-free properties ∇ · u=∇ · b= 0). This term can be estimated
as follows: ∫

jB(∇u,∇b) dx 6 ‖∇u‖‖j‖L4‖∇b‖L4 6 c‖ω‖‖j‖2
L4

6 c‖ω‖‖j‖‖∇j‖6
c

2µ
‖ω‖2‖j‖2 + µ

2
‖∇j‖2. (3.7)

Here the first inequality is due to Hölder’s inequality and the second inequality follows
from the relation ‖∇b‖L4 6 c‖j‖L4 , which is a consequence of the boundedness
of Riesz operators on Lp spaces (1 < p < ∞), see e.g. Stein (1970). The
Gagliardo–Nirenberg inequality ‖j‖2

L4 6 c‖j‖‖∇j‖ (see e.g. Nirenberg (1959) for a
complete discussion of such a class of inequalities) and Young’s inequality have been
used in the subsequent steps. Substituting (3.7) into (3.6) yields

d
dt
(‖ω‖2 + ‖j‖2)+ µ‖∇j‖2 6

c

µ
‖ω‖2‖j‖2 6

c

µ
(‖ω‖2 + ‖j‖2)‖j‖2. (3.8)

By applying Gronwall’s lemma to (3.8) (or directly integrating (3.8) with the
integrating factor exp{−c

∫ t
0 ‖j‖2 dτ/µ}) we obtain

‖ω‖2 + ‖j‖2 + µ
∫ t

0
‖∇j‖2 dτ 6 (‖ω0‖2 + ‖j0‖2) exp

{
c

µ

∫ t

0
‖j‖2 dτ

}
6 (‖ω0‖2 + ‖j0‖2) exp

{
c

2µ2
(‖u0‖2 + ‖b0‖2)

}
, (3.9)

where ω0 = ω(x, y, 0) and j0 = j(x, y, 0).
Given µ > 0, two important results can be readily deduced from (3.9). First, both
‖ω‖ and ‖j‖ are bounded independently of viscosity for t > 0. This result was known
to Lei & Zhou (2009) and Cao & Wu (2011). The implication is that in the presence
of vanishingly small viscosity, the kinetic energy dissipation rate ν‖ω‖2 tends to zero.
Furthermore, for sufficiently small Pm, the approach ν‖ω‖2→ 0 becomes linear in ν,
approximately given by ≈νΩ2, where Ω is an upper bound for ‖ω‖. The regime of
this linear behaviour turns out to be fully accessible to numerical simulations. Indeed,
the results reported in § 4 show a nearly linear decrease of ν‖ω‖2 with ν even for
moderately small Pm. Second, we have∫ t

0
‖∇j‖2 dτ <∞. (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.193


2D MHD turbulence in the extreme limits of magnetic Prandtl number 201

Since in two dimensions, ‖j‖BMO can be bounded from above in terms of ‖∇j‖, namely
‖j‖BMO 6 c‖∇j‖ (see Appendix), one has∫ t

0
‖j‖BMO dτ <∞, (3.11)

which is half of the improved CKS regularity criterion (2.5).
The other half of the CKS criterion concerning ‖ω‖BMO is not available although
‖ω‖ is uniformly bounded. This half would immediately follow if ‖ω‖BMO/‖ω‖ <∞,
and global regularity would be secured. In § 4 the results from numerical simulations
indicate a mild growth of the ratio ‖ω‖∞/‖ω‖ for a range of small Pm, thereby
suggesting global regularity. Note that for solutions with ‖ω‖BMO/‖ω‖ 6 F(t),
regularity beyond t = T is guaranteed once

∫ T
0 F(t) dt is bounded, as can be seen

from the fact that∫ T

0
‖ω‖BMO dt 6

∫ T

0
‖ω‖F(t) dt 6Ω

∫ T

0
F(t) dt <∞. (3.12)

Here, again, Ω is an upper bound for ‖ω‖. In particular, for regularity beyond t = T , it
is sufficient to require that

‖ω‖BMO

‖ω‖ 6 C(T − t)−α, (3.13)

for α < 1.

3.2. The limit Pm→∞
For fixed ν > 0, the parallel of (3.2) is∫ t

0
‖ω‖2 dτ 6

1
2ν
(‖u0‖2 + ‖b0‖2), (3.14)

for all t, including t = ∞, for which the inequality becomes an equality if µ = 0.
Now recall (3.6). To take advantage of (3.14), we consider two distinct estimates (both
different from the one above) for the triple-product term. First, we have∫

jB(∇u,∇b) dx 6 ‖j‖∞‖∇u‖‖∇b‖ = ‖j‖∞‖ω‖‖j‖

6
‖j‖∞
‖j‖ ‖ω‖(‖ω‖

2 + ‖j‖2), (3.15)

where the inequalities are straightforward. Substituting (3.15) into (3.6) with µ = 0
yields

d
dt
(‖ω‖2 + ‖j‖2)+ 2ν‖∇ω‖2 6 2

‖j‖∞
‖j‖ ‖ω‖(‖ω‖

2 + ‖j‖2). (3.16)

Similar to the derivation of (3.9), we apply Gronwall’s inequality to (3.16) or directly
integrate it with the integrating factor exp{−2

∫ t
0 ‖j‖∞‖ω‖/‖j‖ dτ } and obtain

‖ω‖2 + ‖j‖2 + 2ν
∫ t

0
‖∇ω‖2 dτ 6 (‖ω0‖2 + ‖j0‖2) exp

{
2
∫ t

0

‖j‖∞
‖j‖ ‖ω‖ dτ

}
. (3.17)

The right-hand side of (3.17) would remain bounded as long as the ratio ‖j‖∞/‖j‖
does not grow too rapidly with time, that is when j does not exhibit extreme
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concentration. More specifically, if ‖j‖∞/‖j‖ 6 F(t) where F(t) satisfies
∫ t

0 F(τ )2 dτ <
∞, then by Hölder’s inequality and (3.14) we have∫ t

0

‖j‖∞
‖j‖ ‖ω‖ dτ 6

∫ t

0
F(τ )‖ω‖ dτ

6

[∫ t

0
F(τ )2 dτ

]1/2[∫ t

0
‖ω‖2 dτ

]1/2

<∞. (3.18)

It follows that

‖ω‖2 + ‖j‖2 + 2ν
∫ t

0
‖∇ω‖2 dτ <∞, (3.19)

which implies both ∫ t

0
‖ω‖BMO dτ 6 C

∫ t

0
‖∇ω‖ dτ <∞ (3.20)

and ∫ t

0
‖j‖BMO dτ 6 2

∫ t

0
‖j‖∞ dτ 6 2

∫ t

0
F(τ )‖j‖ dτ

6 2
[∫ t

0
F(τ )2 dτ

]1/2[∫ t

0
‖j‖2 dτ

]1/2

<∞. (3.21)

Hence, (2.5) holds and regularity follows.
Alternatively, consider the estimate∫

jB(∇u,∇b) dx 6 ‖j‖‖∇u‖∞‖∇b‖ = ‖∇u‖∞‖j‖2. (3.22)

Substituting (3.22) into (3.6) with µ= 0 yields

d
dt
(‖ω‖2 + ‖j‖2)+ 2ν‖∇ω‖2 6 2‖∇u‖∞‖j‖2. (3.23)

Now let F(t) be a function such that

‖∇u‖∞
‖ω‖ 6 F(t). (3.24)

By substituting this into (3.23) we obtain

d
dt
(‖ω‖2 + ‖j‖2)+ 2ν‖∇ω‖2 6 2F(t)‖ω‖ (‖ω‖2 + ‖j‖2

)
, (3.25)

which, upon integration, yields

‖ω‖2 + ‖j‖2 + 2ν
∫ t

0
‖∇ω‖2 dτ 6

(‖ω0‖2 + ‖j0‖2
)

exp
{

2
∫ t

0
F(τ )‖ω‖ dτ

}
. (3.26)

Suppose
∫ t

0 F(τ )2 dτ <∞. Then the exponential factor on the right-hand side of (3.26)
is bounded since by Hölder’s inequality and (3.14) we have∫ t

0
F(τ )‖ω‖ dτ 6

[∫ t

0
F(τ )2 dτ

]1/2[∫ t

0
‖ω‖2 dτ

]1/2

<∞. (3.27)

So the left-hand side of (3.26) is bounded and we recover (3.19).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.193


2D MHD turbulence in the extreme limits of magnetic Prandtl number 203

We now establish the boundedness of ‖∇ω‖2 + ‖∇j‖2. Such a result immediately
implies the improved CKS criterion (2.5) thanks to (A 8) given in Appendix. By
multiplying (3.3) and (3.4) by 1ω and 1j, respectively, summing up and integrating
the resulting equation we obtain

1
2

d
dt
(‖∇ω‖2 + ‖∇j‖2)=

∫
T1(∇u,∇ω,∇ω) dx+

∫
T2(∇u,∇j,∇∇b) dx

+
∫

T3(∇b,∇∇u,∇j) dx− ν‖1ω‖2. (3.28)

In (3.28), the trilinear terms

T1 =−
2∑

m,n=1

(∂mun)(∂nω)(∂mω), (3.29)

T2 =−
2∑

m,n=1

(∂mun)(∂nj)(∂mj)+
2∑

m=1

B(∇u,∇∂mb)(∂mj), (3.30)

T3 =
2∑

m,n=1

(∂mbn) [(∂nj)(∂mω)+ (∂nω)(∂mj)]+
2∑

m=1

B(∇∂mu,∇b)(∂mj) (3.31)

involve derivatives of u and b up to second-order only (i.e. up to first-order derivatives
of ω and j). Here ∂1 = ∂/∂x, ∂2 = ∂/∂y and B(·, ·) is the bilinear form defined in (3.5).
These desired forms of Ti have been obtained by integration by parts, which effectively
redistributes the derivatives among u, b, ω and j, together with making use of the
divergence-free properties ∇ ·u=∇ · b= 0. It is clear that

|T1|6 c|∇u||∇ω|2, |T2|6 c|∇u||∇j||∇∇b|, |T3|6 c|∇b||∇∇u||∇j|. (3.32)

Now the triple-product terms
∫

Ti dx in (3.28) can be estimated in a straightforward
manner. First, we have∣∣∣∣∫ T1 dx

∣∣∣∣6 c
∫
|∇u||∇ω|2 dx 6 c‖∇u‖∞‖∇ω‖2 6 cF(t)‖ω‖‖∇ω‖2. (3.33)

Second ∣∣∣∣∫ T2 dx
∣∣∣∣6 c

∫
|∇u||∇j||∇∇b| dx 6 c‖∇u‖∞‖∇j‖2 6 cF(t)‖ω‖‖∇j‖2. (3.34)

Third ∣∣∣∣∫ T3 dx
∣∣∣∣6 c

∫
|∇b||∇∇u||∇j| dx

6 c‖∇b‖L4‖∇∇u‖L4‖∇j‖6 c‖j‖L4‖∇ω‖L4‖∇j‖
6 c‖j‖1/2‖∇ω‖1/2‖∇j‖3/2‖1ω‖1/2

6 C‖j‖2/3‖∇ω‖2/3‖∇j‖2 + ν‖1ω‖2, (3.35)

where Gagliardo–Nirenberg’s and Young’s inequalities have been used in the
penultimate and final steps, respectively. By substituting the above estimates for the
triple-product terms into (3.28) we obtain

d
dt

(‖∇ω‖2 + ‖∇j‖2
)

6 C
(
F(t)‖ω‖ + ‖j‖2/3‖∇ω‖2/3

) (‖∇ω‖2 + ‖∇j‖2
)
. (3.36)
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Integrating (3.36) yields

‖∇ω‖2 + ‖∇j‖2 6
(‖∇ω0‖2 + ‖∇j0‖2

)
× exp

{
C
∫ t

0

(
F(τ )‖ω‖ + ‖j‖2/3‖∇ω‖2/3

)
dτ
}
. (3.37)

Thanks to the assumption on F(t) and (3.19), we have∫ t

0

(
F(τ )‖ω‖ + ‖j‖2/3‖∇ω‖2/3

)
dτ 6

(∫ t

0
F(τ )2 dτ

)1/2(∫ t

0
‖ω‖2 dτ

)1/2

+
(∫ t

0
‖j‖ dτ

)2/3(∫ t

0
‖∇ω‖2 dτ

)1/3

<∞.
(3.38)

So ‖∇ω‖2 + ‖∇j‖2 remains bounded. Hence, the improved CKS criterion holds and
regularity follows.

In conclusion, we see that for solution regularity beyond t = T of the 2D MHD
system with Pm=∞, it is sufficient to require either

‖j‖∞
‖j‖ 6 C(T − t)−α or

‖∇u‖∞
‖ω‖ 6 C(T − t)−α (3.39)

for α < 1/2.
In passing, it is worth mentioning that for ideal dynamics, as well as for all Pm, one

has the following regularity criterion∫ T

0
‖∇j‖∞ dt <∞. (3.40)

Indeed, given (3.40) and energy conservation, the finiteness of
∫ T

0 ‖j‖∞ dt follows by
applying the Gagliardo–Nirenberg inequality. Moreover, the vorticity equation (3.3)
immediately implies that ‖ω‖∞ is bounded over [0,T]. Hence, both ‖j‖∞ and ‖ω‖∞
are integrable over [0,T]. Thus, (2.4) holds, and regularity follows.

4. Numerical results
This section presents the results from a series of numerical simulations, which

support the above theories and confirm the mathematical result of the linear scaling
of ν‖ω‖2 with ν in the limit Pm→ 0. Interestingly, a slightly less rapid decrease of
µ‖j‖2 with µ is observed in the large Pm regime.

Equations (2.1) and (2.2), rewritten in the form

∂ω

∂t
+ J(ψ, ω)= J(a,1a)+ ν1ω, (4.1)

∂a

∂t
+ J(ψ, a)= µ1a, (4.2)

where ψ is the streamfunction, a is the magnetic potential and J(·, ·) denotes the
Jacobian, were integrated numerically using a pseudo-spectral method in a periodic
domain of side 2π. A fourth-order Runge–Kutta time-stepping procedure was used,
with the dissipative terms incorporated exactly using integrating factors. The initial
magnetic modes lay within the wavenumber range [5, 8], having random phases and
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FIGURE 1. (Colour online) Kinetic (a) and magnetic (b) energy dissipation rates versus time
for Pm= 1, 1/4, 1/16, 1/64.

an energy of 0.5. The initial mechanical modes were also confined to the range [5, 8],
having random phases and an energy of 0.5. This amounts to a total energy of 1.0.
Seven different values of Pm were chosen: Pm = 1/64, 1/16, 1/4, 1, 4, 16, 64. The
case Pm = 1 corresponds to ν = µ = 8 × 10−4. For Pm 6= 1, we fixed one diffusion
coefficient at 8 × 10−4 and decreased the other accordingly. The cases Pm= 1/64 and
Pm= 64 were simulated at the highest resolution of 8192× 8192. For Pm= 1/64, the
magnetic and kinetic Reynolds numbers Rm and Re, defined in terms of the maximum
energy dissipation rates (see Blackbourn & Tran 2012; Tran & Blackbourn 2012; Tran
& Yu 2012) are Rm = 10 500 and Re = 173 700. On the other hand, for Pm = 64,
these numbers are Rm = 325 000 and Re = 9700. For each Pm, the energy conversion
(primarily from kinetic to magnetic) was observed to become saturated when t & 1,
shortly after which the energy dissipation achieves its peak. In agreement with the
findings of Tran & Blackbourn (2012), the saturated ratio of magnetic to kinetic
energy (not shown) have been found to be within the range [2, 3].

Figure 1 shows the kinetic (a) and magnetic (b) energy dissipation rates versus
time for Pm = 1, 1/4, 1/16, 1/64. It can be seen that energy loss is primarily due to
Ohmic dissipation, in agreement with previous studies for the regime of moderate and
small Pm (cf. Brandenburg 2011a). The decrease of ν‖ω‖2 is not quite linear with
Pm, but nonetheless appears to accelerate as Pm is decreased. This implies that the
simulations have approached the regime of maximal enstrophy (more details below).
The total energy dissipation rate versus time is shown in figure 2. As Pm is decreased,
the time taken for each kinetic, magnetic and total energy dissipation rate to achieve
its maximum increases, a result consistent with that of Blackbourn & Tran (2012) for
the case Pm = 1 when ν = µ is decreased. Another feature in agreement with the
results of Blackbourn & Tran (2012) is the decrease of the peak of the total energy
dissipation rate as Pm is decreased. Note, however, that for the present case, this peak
decreases toward a positive limit (which is the maximum of µ‖j‖2) because µ is fixed.
The vanishing of kinetic energy dissipation in the limit Pm→ 0 partly justifies the
numerical approach of Dritschel & Tobias (2012), who simulated 2D MHD turbulence
at low Pm using a conservative numerical scheme for the vorticity. Given strong
support for solution regularity discussed below, this justification could be considered
complete.

The evolution of the kinetic, magnetic and total energy dissipation rates for
Pm = 1, 4, 16, 64 are shown in figures 3 and 4. It can be seen that Ohmic dissipation
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FIGURE 2. (Colour online) Total energy dissipation rates versus time for
Pm= 1, 1/4, 1/16, 1/64.
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FIGURE 3. (Colour online) Kinetic (a) and magnetic (b) energy dissipation rates versus time
for Pm= 1, 4, 16, 64.

is greater than its viscous counterpart for the case Pm = 1 only. The latter overtakes
the former for Pm = 4 and becomes dominant for Pm > 4. This confirms the earlier
suggestion by Blackbourn & Tran (2012) that Ohmic dissipation is not necessarily
predominant for all Pm. Like the cases Pm 6 1, the time of each maximum dissipation
rate increases slowly as Pm is increased. Furthermore, the peak of the total energy
dissipation rate decreases (presumably toward a positive limit, which is the maximum
of ν‖ω‖2) as Pm is increased. An interesting behaviour of µ‖j‖2 is that it decreases
quite rapidly as Pm is increased from unity. The decrease is less rapid (approximately
like Pm−0.6, more detail is given below) than that of ν‖ω‖2 in the previous cases
(Pm 6 1) when Pm is decreased from unity. This means that a much wider range of
Pm is required to access the regime of maximal ‖j‖2 if ‖j‖2 is to remain bounded in
the limit Pm→∞ (a behaviour suggested by further numerical results on the issue of
regularity, see below).

In passing, it is worth noting that for the range of Pm under consideration, the ratio
of kinetic to magnetic energy dissipation rates has an apparent power-law behaviour.
Figure 5 shows the ratio of the maximum of ν‖ω‖2 to that of µ‖j‖2 versus Pm. For
small Pm, this ratio, say rd, is given by rd ≈ 0.57Pm0.83, which is slightly sublinear
in Pm. This behaviour of rd implies a similar behaviour of ν‖ω‖2 because µ‖j‖2
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FIGURE 4. (Colour online) Total energy dissipation rates versus time for Pm= 1, 4, 16, 64.
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FIGURE 5. (Colour online) Ratio of peak kinetic to peak magnetic energy dissipation rates
versus magnetic Prandtl number. The straight lines are best fit lines.

becomes independent of Pm in the small Pm limit. The exponent 0.83 provides a
quantitative measure of how close our simulations were to the maximal enstrophy
regime. On the other hand, for large Pm, rd scales approximately as 0.56Pm0.62. The
exponent 0.62 is significantly less than unity, implying that our simulations were
still quite far from the expected regime of maximal ‖j‖, if such a regime exists.
Interestingly, power-law behaviour of a ratio similar to rd was observed in a previous
study. For a mechanically forced 3D model, Brandenburg (2011b) found rd ≈ 0.6Pm0.6

over six decades of Pm, where his rd is the ratio of averaged energy dissipation rates.
While the analysis in § 3 has provided a mathematical proof that the exponent 0.83
in rd ≈ 0.57Pm0.83 increases toward unity for lower ranges of Pm, the exponent 0.6 in
Brandenburg’s result appears to be robust.

As far as we know, no algorithms for computing the BMO norm have been put
forth in the literature. Given the unavailability of such algorithms, we monitored the
(slightly stronger) ratio ‖ω‖∞/‖ω‖ instead of ‖ω‖BMO/‖ω‖, although the boundedness
of the latter is sufficient for regularity when Pm = 0. Figure 6(a) shows the evolution
of ‖ω‖∞/‖ω‖ for Pm = 1, 1/4, 1/16, 1/64. As Pm is decreased by a factor of 64,
‖ω‖∞/‖ω‖ approximately increases by a factor of 2. This can be considered strong
support for the possibility ‖ω‖∞/‖ω‖ < ∞ in the limit Pm→ 0. A quantitative
dependence of ‖ω‖∞/‖ω‖ on Pm is required to address this possibility and, hence,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.193


208 C. V. Tran, X. Yu and L. A. K. Blackbourn

10

20

30

40

0

10

15

20

25

5

t
1 2 3 4 5

t
1 2 3 4 5

30

0

(a) (b)

FIGURE 6. (Colour online) Plots of ‖ω‖∞/‖ω‖ versus time for Pm= 1, 1/4, 1/16, 1/64 (a)
and for Pm= 1, 4, 16, 64 (b).
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FIGURE 7. (Colour online) Plots of ‖∇u‖∞/‖ω‖ versus time for Pm= 1, 4, 16, 64.

the issue of regularity for Pm = 0, but is not possible by the present set of
simulations without undermining the Reynolds numbers. For comparison, we have
included figure 6(b), which describes the evolution of ‖ω‖∞/‖ω‖ for the cases
Pm= 1, 4, 16, 64. It will be seen shortly that ‖ω‖∞/‖ω‖ and ‖∇u‖∞/‖ω‖ are virtually
the same for these cases.

With regard to the issue of regularity for the case Pm = ∞, we have obtained
evidence as strong as figure 6(a) for the case Pm= 0. Figure 7 describes the evolution
of the ratio ‖∇u‖∞/‖ω‖ for Pm = 1, 4, 16, 64. As Pm is increased from unity to
64, this ratio approximately increases twofold, thereby suggesting the possibility
‖∇u‖∞/‖ω‖ < ∞ in the limit Pm→∞. Note that no appreciable discrepancies
between ‖∇u‖∞/‖ω‖ and ‖ω‖∞/‖ω‖ can be observed (cf. figure 6). This makes sense
since ‖∇u‖∞ and ‖ω‖∞ are not expected to differ by much, although the fields |ω|
and |∇u| may disagree substantially on local basis. Interestingly, vortex and velocity
gradient ‘filaments’ look alike (see below), suggesting that |∇u| ≈ |ω| at large values.

Figure 8(b) shows the plots of ‖j‖∞/‖j‖ versus time for Pm = 1, 4, 16, 64. It can
be seen that over the range Pm ∈ [1, 64], ‖j‖∞/‖j‖ increases approximately threefold.
This provides slightly weaker support for regularity than the milder behaviour of
‖∇u‖∞/‖ω‖ (with twofold increase) discussed above. For comparison, figure 8(a)
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FIGURE 8. (Colour online) Plots of ‖j‖∞/‖j‖ versus time for Pm= 1, 1/4, 1/16, 1/64 (a)
and for Pm= 1, 4, 16, 64 (b).
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FIGURE 9. (Colour online) Vorticity (a) and current (b) fields at t = 1 for Pm= 1/64. The
images are for |ω|> 2‖ω‖ ≈ 4.6× 101 and |j|> 2‖j‖ ≈ 4.2× 101.

shows a relatively much weaker response of ‖j‖∞/‖j‖ to the decrease of Pm from
unity to 1/64.

The distributions of large values of the fields |ω|, |j| and |∇u| are of interest as
these distributions provide a sense of the magnitudes of the ratios discussed above.
Figures 9–11 show the images of |ω| for |ω| > 2‖ω‖, |j| for |j| > 2‖j‖ and |∇u| for
|∇u| > 2‖ω‖, for the cases Pm = 1/64 and Pm = 64 at t = 1.0. This time is shortly
after the energy dissipation in each case becomes greatest. For Pm = 1/64, the vortex
and current filamentary structures are comparable in magnitude and density. On the
other hand, for Pm= 64, these ‘filaments’ are significantly less dense and are an order
of magnitude greater than their Pm= 1/64 counterparts. In any case, at both magnetic
Prandtl numbers vortex filaments are qualitatively the same (this is true for velocity
gradient filaments, whose image for the case Pm = 1/64 is omitted). So the change
in |ω| (and |∇u|) is relatively mild over a significantly wide range of Pm. The heavy
population of vortex and velocity gradient filaments is indicative of moderate values of
‖ω‖∞/‖ω‖ and ‖∇u‖∞/‖ω‖. On the other hand, over the same range of Pm, |j| can
be seen to change significantly. Nonetheless, this poses no risk to the possibility of
regularity, given the mild behaviour of ‖j‖∞/‖j‖ (and of ‖∇u‖∞/‖ω‖). An interesting
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FIGURE 10. (Colour online) Vorticity (a) and current (b) fields at t = 1 for Pm= 64. The
images are for |ω|> 2‖ω‖ ≈ 3.8× 101 and |j|> 2‖j‖ ≈ 1.2× 102.
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FIGURE 11. (Colour online) Velocity gradient field at t = 1 for Pm= 64. The image is for
|∇u|> 2‖ω‖ ≈ 3.8× 101.

feature to note is that the images of |ω| and |∇u| for Pm = 64 differ only in minute
details.

At t = 3, the turbulence can be considered fully developed. Figures 12–14 are
similar to figures 9–11, albeit at t = 3, and are presented here for comparison.
Somewhat surprisingly, over the time interval [1, 3], ‖ω‖∞, ‖∇u‖∞ and ‖j‖∞ decrease
much more rapidly than their L2 norm counterparts as the scales of the figures indicate
(see also figures 6–8). This is in a sharp contrast to 2D Navier–Stokes turbulence, for
which ‖ω‖ decays much more rapidly than ‖ω‖∞ throughout the course of evolution
(Dritschel et al. 2007). While it is fairly easy to understand why ‖ω‖∞ is better
conserved than ‖ω‖ in 2D Navier–Stokes turbulence, we have no obvious explanation
for the above observation in the present case.

5. Concluding remarks
We have studied both theoretically and numerically 2D MHD turbulence in the

limits of infinite and vanishing magnetic Prandtl number Pm = ν/µ, as well as the
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FIGURE 12. (Colour online) Vorticity (a) and current (b) fields at t = 3 for Pm= 1/64. The
images are for |ω|> 2‖ω‖ ≈ 2.4× 101 and |j|> 2‖j‖ ≈ 2.1× 101.
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FIGURE 13. (Colour online) Vorticity (a) and current (b) fields at t = 3 for Pm= 64. The
images are for |ω|> 2‖ω‖ ≈ 1.8× 101 and |j|> 2‖j‖ ≈ 6.8× 101.

partial dissipation cases, i.e. Pm = 0 and Pm =∞. For positive magnetic diffusivity
µ > 0, ‖∇j‖2 is integrable over [0,∞). Furthermore, both ‖ω‖2 and ‖j‖2 are uniformly
bounded independently of the viscosity ν. This means that given ν → 0 at fixed
µ > 0, the kinetic energy dissipation rate ν‖ω‖2 tends to zero. For sufficiently small
Pm, the approach ν‖ω‖2 → 0 is linear in ν. Regularity criteria have been derived
for the partial dissipation cases. When Pm = 0, smooth solutions remain smooth up
to t = T provided that ‖ω‖BMO/‖ω‖ 6 C(T − t)−α, for α < 1. When Pm =∞, either
‖j‖∞/‖j‖ 6 C(T − t)−α or ‖∇u‖∞/‖ω‖ 6 C(T − t)−α, for α < 1/2, is sufficient. The
latter is physically plausible given the presence of viscous effects. The results from
high-resolution numerical simulations over the range Pm ∈ [1/64, 64] support these
criteria and demonstrate the nearly linear behaviour of the kinetic energy dissipation
rate with ν for fixed µ > 0. As Pm is decreased from unity, the ratio ‖ω‖∞/‖ω‖
has been observed to increase relatively slowly. On the other hand, an equally slow
increase of ‖∇u‖∞/‖ω‖ has been observed when Pm is increased from unity. These
results lend strong support for solution regularity for the partial dissipation cases.
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FIGURE 14. (Colour online) Velocity gradient field at t = 3 for Pm= 64. The image is for
|∇u|> 2‖ω‖ ≈ 1.8× 101.

Further evidence for the mild behaviour of the said ratios has been observed from
the filamentary structures of large values of the vorticity and velocity gradient fields.
These filaments are heavily populated, an indication of moderate values of ‖ω‖∞/‖ω‖
and ‖∇u‖∞/‖ω‖.
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Appendix. The space BMO(Rn)

The space BMO(Rn) of BMO functions in Rn plays an important role in the theory
of partial differential equations. This appendix provides a brief review of this special
space, together with some of its basic properties used in this study.

Let f (x) be a locally integrable function in Rn and Q⊂ Rn be an n-dimensional cube
with measure (volume) µ(Q). The mean oscillation of f (x) over Q is defined by the
quantity

1
µ(Q)

∫
Q
|f (x)− fQ| dx, (A 1)

where fQ stands for the average of f over Q, i.e.

fQ := 1
µ(Q)

∫
Q

f (x) dx. (A 2)

The space BMO(Rn) is equipped with the norm

‖f‖BMO := sup
x∈Rn

sup
Q

1
µ(Q)

∫
Q
|f (y)− fQ| dy, (A 3)

where the second supremum is taken over all cubes Q containing x.
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From this definition two things are immediately clear. First, the BMO norm is
weaker than the L∞ norm. Indeed, one has

‖f‖BMO 6 2‖f‖L∞ . (A 4)

Second, the BMO norm has the same scaling as that of its L∞ counterpart.
The BMO norm is slightly weaker than the L∞ norm, but not by much. More

quantitatively, we have the following theorem.

THEOREM A.1 (Kozono & Tanuichi 2000). Let 1 < p <∞ and s > n/p. Given f
with (−1)s/2f ∈ Lp, there exists a constant C = C(n, p, s) such that

‖f‖∞ 6 C
(
1+ ‖f‖BMO

(
1+ log+‖(−1)s/2f‖Lp

))
, (A 5)

where log+a= log a if a > 1 and log+a= 0 if 0< a< 1.

This theorem, together with the relation ‖f‖BMO 6 2‖f‖L∞ , means that the BMO and
L∞ norms are almost equivalent, up to a logarithmic ‘correction’. This fact enables
Kozono & Tanuichi (2000) to replace ‖ω‖∞ by ‖ω‖BMO in the BKM criterion, by
essentially accommodating a logarithmic factor in the estimate of the growth rate of
high-order derivatives of u.

Some in-depth comparison between the BMO and L∞ spaces is possible on the basis
of the following theorem.

THEOREM A.2 (John & Nirenberg 1961). For any function f (x) ∈ BMO there are
two positive constants C1 and C2 such that the following holds for any cube Q and
any λ > 0.

µ(
{
x ∈ Q : |f (x)− fQ|> λ

}
)6 C1e−C2λµ(Q). (A 6)

Equation (A 6) means that ‘extremal values’ of a function in BMO are
‘exponentially rare’. In comparison, such values of a function in L∞ have an abrupt
‘cut-off’ at a finite value. In fact, given f (x) ∈ L∞, one has µ({x ∈ Q : |f (x) − fQ| >
λ})= 0, for all λ> 2‖f‖∞. A typical example of a BMO function which is not in L∞

is ln |x|.
In the context of partial differential equations, the space BMO(Rn) possesses many

useful properties, most of which are not enjoyed by its L∞ cousin. In particular, the
following two properties have been repeatedly employed in our analysis. These would
fail when BMO is replaced by L∞.

(a) Singular integral operators are bounded from BMO to BMO. In particular,

‖∇u‖BMO 6 C‖ω‖BMO, ‖∇b‖BMO 6 C‖j‖BMO. (A 7)

(b) For any f we have

‖f‖BMO 6 C‖∇f‖Ln . (A 8)

A more complete discussion of BMO spaces can be found in many texts on harmonic
analysis, such as Stein (1993).
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