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Abstract

This paper is devoted to dualization of paracompactness to the coarse category via the concept of
R-disjointness. Property A of Yu can be seen as a coarse variant of amenability via partitions of
unity and leads to a dualization of paracompactness via partitions of unity. On the other hand, finite
decomposition complexity of Guentner, Tessera, and Yu and straight finite decomposition complexity of
Dranishnikov and Zarichnyi employ R-disjointness as the main concept. We generalize both concepts
to that of countable asymptotic dimension and our main result shows that it is a subclass of spaces with
Property A. In addition, it gives a necessary and sufficient condition for spaces of countable asymptotic
dimension to be of finite asymptotic dimension.

2010 Mathematics subject classification: primary 54F45; secondary 55M10.

Keywords and phrases: absolute extensors, asymptotic dimension, coarse geometry, coarse amenability,
Lipschitz maps, Property A.

1. Introduction

Property A of Yu [19] was introduced in the context of the Novikov conjecture. It
is a large-scale variant of amenability. See [18] for a survey of results on Property
A. Subsequently, it was generalized to the concept of exact spaces by Dadarlat and
Guentner [4]. In [1], exact spaces were narrowed down to large-scale paracompact
spaces and [3] (see also [2]) contains an analysis of interrelationships between various
concepts.

As explained in [3], all the above concepts can be unified using existence (for each
ε > 0) of (ε, ε)-Lipschitz (see Definition 2.8) partitions of unity f : X → ∆(S ) (see
Definition 2.6) that are cobounded (see Definition 2.7). Property A corresponds to f
being a barycentric partition of unity (see Definition 2.6), exact spaces correspond to
arbitrary partitions of unity, and large-scale paracompact spaces correspond to the case
of f having Lebesgue number at least 1/ε (see Definition 2.6).

One may summarize that the three concepts (Property A, exact spaces, and large-
scale paracompact spaces) deal with dualizing paracompactness via partitions of unity.
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In [3], the concept of Strong Property A was introduced as a way of dualizing
paracompactness via covers.

This paper is devoted to developing large-scale paracompactness from the point of
view of discreteness. More precisely, it deals with dualizing the following two classical
results of general topology.

Theorem 1.1 [11]. A Hausdorff space X is paracompact if and only if it is weakly
paracompact and collectionwise normal.

Theorem 1.2 (See [11, Theorem 5.1.12, page 303]). A regular space X is paracompact
if and only if every open cover has a σ-discrete open refinement.

Since topological discreetness naturally dualizes to R-disjointness (see Definition
2.2), one arrives at the following question.

Problem 1.3. Characterize metric spaces X such that for each R > 0 there exist M > 0
and a finite sequence of R-disjoint families Un, i ≤ k, such that X =

⋃k
i=1Un and

diameters of elements of eachUn are at most M.

It turns out that special cases of Problem 1.3 were considered in the past. The most
restrictive property expressed in terms of R-disjointness is the following definition.

Definition 1.4 [5]. A metric space X has asymptotic property C if for every sequence
R1 < R2 < · · · there exists n ∈ N such that X is the union of Ri-disjoint families Ui,
1 ≤ i ≤ n, that are uniformly bounded.

Subsequently, Guentner et al. introduced the concept of finite decomposition
complexity (see [13]), which was weakened as follows.

Definition 1.5 [7]. The metric space X is of straight finite decomposition complexity if
for any increasing sequence of positive real numbers R1 < R2 < · · · there is a sequence
Vi, i ≤ n, of families of subsets of X such that the following conditions are satisfied:

(1) V1 = {X};
(2) each element U ∈ Vi, i < n, can be expressed as a union of at most two families

fromVi+1 that are Ri-disjoint;
(3) Vn is uniformly bounded.

It turns out that straight finite decomposition complexity is a variant of coarse
amenability.

Theorem 1.6 [7]. Every space of straight finite decomposition complexity has
Property A.

Our view is that straight finite decomposition complexity is a special case of
countable asymptotic dimension (see Definition 7.1). Namely, it corresponds to the
fact that, in topology, one can define spaces of countable covering dimension as either
countable unions of zero-dimensional spaces or as countable unions of spaces of finite
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dimension. Our main result, Theorem 7.6, states that spaces X of countable asymptotic
dimension are actually of finite asymptotic dimension provided some finite skeleton of
∆(X) is a large-scale absolute extensor of X. It generalizes Theorem 1.6 as well.

2. Basic concepts

In this section we recall basic concepts used in the paper.

Definition 2.1. The cardinality of a set S is denoted by card(S ).

Definition 2.2. Given R > 0, a family {Us}s∈S of subsets of a metric space X is called
R-disjoint if d(x, y) > R whenever x ∈ Us, y ∈ Ut, and s , t.

Definition 2.3. A family {Us}s∈S of subsets of a metric space X is called uniformly
bounded if there is M > 0 such that diameters of all sets of the family are at most M.

Definition 2.4. The Lebesgue number of a family {Us}s∈S of subsets of a metric space
X is at least M > 0 if the family of M-balls {B(x,M)}x∈X refines {Us}s∈S .

Definition 2.5. By ∆(S ), we mean the subspace of l1(S ) (S is the set of vertices of the
simplicial complex ∆(S )) consisting of nonnegative functions f : S → [0, 1] of finite
support such that

∑
v∈S f (v) = 1. The star st(v) of vertex v consists of all f ∈ ∆(S ) such

that f (v) > 0.
By ∆(S )(n), we mean the n-skeleton of ∆(S ).

Definition 2.6. A (point-finite) partition of unity on a set X is a function f : X→ ∆(S )
for some S . The function f is a barycentric partition of unity if f (x)(v) = f (x)(w)
whenever f (x)(v) > 0 and f (x)(w) > 0.

The Lebesgue number of f is synonymous with the Lebesgue number of
{ f −1(st(v))}v∈S .

Definition 2.7. Suppose that X is a metric space. A partition of unity f : X → ∆(S ) is
M-cobounded if diam( f −1(st(v))) ≤ M for all v ∈ S .

A function f is cobounded if it is M-cobounded for some M > 0.

Definition 2.8. A function f : X → Y is (λ, C)-Lipschitz if dY ( f (x), f (y)) ≤ λ ·
dX(x, y) + C for all x, y ∈ X.

Lemma 2.9. Suppose that f : X → ∆(S ) is a partition of unity and ε ≥ 2/(R + 1) for
some R > 0. If d(x, y) < R implies d( f (x), f (y)) ≤ ε · d(x, y) + ε, then f is (ε, ε)-
Lipschitz.

Proof. If d(x, y) ≥ R, then ε · d(x, y) + ε ≥ ε · (R + 1) ≥ 2 ≥ d( f (x), f (y)). �

For basic facts related to the coarse category, see [17].
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3. Large-scale weak paracompactness
A dualization of weak paracompactness was developed in [3] via coarsening of

covers. Using R-disjointness, one is led to a different concept and we do not know if it
is equivalent to large-scale weak paracompactness (see Problems 1.3 and 3.5).
Definition 3.1 [2, 3]. A metric space X is large-scale weakly paracompact if for each
r, s > 0 there is a uniformly bounded coverU of X of Lebesgue number at least s such
that every r-ball B(x, r) is contained in only finitely many elements ofU.
Proposition 3.2 [3]. The following conditions are equivalent for each metric space X:

(a) for each r > 0 there is a uniformly bounded coverU of X such that every r-ball
B(x, r) intersects only finitely many elements ofU;

(b) X is large-scale weakly paracompact;
(c) for every uniformly bounded cover U of X there exists a uniformly bounded

point-finite coverV such thatU is a refinement ofV.

The following proposition is a partial answer to Problem 1.3.

Proposition 3.3. If for every r > 0 there is a uniformly bounded coverU of X that can
be written as the union

⋃∞
i=1Ui of r-disjoint familiesUi, then X is large-scale weakly

paracompact.

Proof. Suppose that s > 0. Pick a uniformly bounded coverU of X that can be written
as the union

⋃∞
i=1Ui of 2s-disjoint familiesUi.

Given U ∈ Uk, define U′ = U\
⋃

i<k{B(V, s)|V ∈ Ui} and U∗ = B(U′, s). Since
{U′}U∈U is a uniformly bounded cover of X, {U∗}U∈U is of Lebesgue number at least s
and is uniformly bounded. Given x ∈ X, choose m ≥ 1 so that x ∈ U for some U ∈ Um.
Therefore, B(x, s) ∩ V ′ = ∅ and x < V∗ for all V ∈ Ui, i > m. If we fix k ≤ m, then there
is at most one V ∈ Uk such that x ∈ V∗. Thus, {U∗}U∈U is a point-finite cover of X. By
Proposition 3.2(c), X is large-scale weakly paracompact. �

Corollary 3.4 [3]. If X is separable at some scale r > 0 (that means that there
is a countable subset S of X with

⋃
x∈S B(x, r) = X), then X is large-scale weakly

paracompact.

Proof. The family {B(x, r)}x∈S is uniformly bounded and is the union of countably
many∞-disjoint families. �

Problem 3.5. Suppose that X is large-scale weakly paracompact and r > 0. Is there a
uniformly bounded coverU of X that can be written as the union

⋃∞
i=1Ui of r-disjoint

familiesUi?
Definition 3.6 [2]. A metric space X is large-scale finitistic if for every r > 0 there is
a uniformly bounded cover U of X whose Lebesgue number is at least r and there is
n(U) ∈ N such that each x ∈ X belongs to at most n(U) elements ofU.
Problem 3.7. Suppose that X is large-scale finitistic and r > 0. Is there a uniformly
bounded cover U of X that can be written as the union

⋃m
i=1Ui of finitely many r-

disjoint familiesUi?
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4. Pasting partitions of unity

This section contains the main technical tool of the paper: pasting partitions of unity
so that the resulting partition of unity is (ε, ε)-Lipschitz and K-cobounded. Given a
partition of unity f : A→ ∆(S ), by the carrier of f we mean the minimal subcomplex
of ∆(S ) containing f (A).

Lemma 4.1. Suppose that the following are given:

(a) A is a subset of a metric space X;
(b) f : A→ ∆(S ) is a (δ, δ)-Lipschitz partition of unity on A for some δ > 0;
(c) g : X → ∆(S ) is a (δ, δ)-Lipschitz partition of unity on X;
(d) p : X → A is a retraction such that d(x, p(x)) < dist(x, A) + 1 for all x ∈ A;
(e) α : X → [0, 1] is 1/r-Lipschitz, α(A) ⊂ {0}, and α(X \ B(A, r)) ⊂ {1};
(f) h : X → ∆(S ) is defined as h(x) = α(x) · g(x) + (1 − α(x)) · f (p(x)).

In order for h to be (ε, ε)-Lipschitz, it suffices that r ≥ 4/ε, δ ≤ ε/3 − 2/3r, and
δ ≤ ε/(4r + 7).

If, in addition, the carriers of f (A) and g(X) are disjoint and both f and g are
M-cobounded, then h is (M + 2r + 2)-cobounded.

Proof. Notice that h is an extension of f .
We need to show that |h(x) − h(y)| ≤ ε · d(x, y) + ε for x, y ∈ X. Notice that

h(x) − h(y) = α(x) · g(x) + (1 − α(x)) · f (p(x)) − [α(y) · g(y) + (1 − α(x)) · f (p(y))] =

(α(x) − α(y)) · g(x) + α(y) · (g(x) − g(y)) + [ f (p(x)) − f (p(y))] − [α(x) · f (p(x)) −
α(y) · f (p(y))].

The terms (α(x) − α(y)) · g(x) and α(y) · (g(x) − g(y)) have universal estimates
|(α(x) − α(y)) · g(x)| ≤ |α(x) − α(y)| ≤ 1/r · d(x, y) and |α(y) · (g(x) − g(y))| ≤ |g(x) −
g(y)| ≤ δ · d(x, y) + δ, so we need to estimate the remaining terms depending on where
x and y belong.

Case 1. x < B(A, r) and y ∈ B(A, r).
Here α(x) = 1, so [ f (p(x)) − f (p(y))] − [α(x) · f (p(x)) − α(y) · f (p(y))] = (α(y) −

α(x)) · f (p(y)) and this term is at most 1/r · d(x, y). Thus, in that case, we have
|h(x) − h(y)| ≤ ((2/r) + δ) · d(x, y) + δ ≤ ε · d(x, y) + ε.

Case 2. x ∈ B(A, r) and y ∈ B(A, r).
We know that | f (p(x)) − f (p(y))| ≤ δ · d(p(x), p(y)) + δ. Notice that d(p(x), p(y)) ≤

d(p(x), x) + d(x, y) + d(y, p(y)) ≤ dist(x, A) + 1 + d(x, y) + d(y, A) + 1 ≤ 2r + 2 +

d(x, y). Also, α(x) · f (p(x)) − α(y) · f (p(y)) = α(x) · ( f (p(x)) − f (p(y))) + (α(x) −
α(y)) · f (p(y)), resulting in |α(x) · f (p(x)) − α(y) · f (p(y))| ≤ | f (p(x)) − f (p(y))| +
|α(x) − α(y)| ≤ δ · (2r + 2 + d(x, y)) + δ + (1/r) · d(x, y).
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The final outcome is

|h(x) − h(y)| ≤
1
r
· d(x, y) + δ · d(x, y)

+ δ + δ · (2r + 2 + d(x, y))+ δ + δ · (2r + 2 + d(x, y)) + δ +
1
r
· d(x, y)

=

(2
r

+ 3δ
)
· d(x, y) + 4rδ + 7δ.

To achieve |h(x) − h(y)| ≤ ε · d(x, y) + ε, it suffices that (2/r) + 3δ ≤ ε and 4rδ + 7δ ≤ ε.
That amounts to δ ≤ (ε/3) − (2/3r) and δ ≤ ε/(4r + 7).

Case 3. x < B(A, r) and y < B(A, r).
In that case h(x)=g(x) and h(y)=g(y), so |h(x) − h(y)| ≤ δ · d(x, y)+δ ≤ ε · d(x, y)+ε.
Suppose that the carriers of f (A) and g(X) are disjoint and there is M > 0 such that

diam( f −1(st(v))), diam(g−1(st(v))) ≤ M for all v ∈ S .
If v ∈ S belongs to the carrier of g(X) and h(x)(v) > 0, then x must belong to

g−1(st(v)). Thus, diam(h−1(st(v))) ≤ M in that case. If v ∈ S belongs to the carrier of
f (A) and h(x)(v) > 0, then x ∈ B(A, r) and p(x) ∈ f −1(st(v)). Since d(x, p(x)) ≤ r + 1,
dist(x, f −1(st(v)) ≤ r + 1 and diam(h−1(st(v))) ≤ M + 2r + 2. �

5. Coarse normality

In this section we dualize one part of Theorem 1.1.
It is shown in [8, Theorem 9.1(5)] that a topological space X is collectionwise

normal if and only if partitions of unity on each closed subset A of X extend over X.
In other words, certain spaces are absolute extensors of X. The work of Dydak and
Mitra [10] is devoted to dualizing the concept of absolute extensors to the coarse
category.

The following result may be seen as stating that every metric space X is large-scale
collectionwise normal.

Theorem 5.1. For every ε > 0 there is δ > 0 such that any (δ, δ)-Lipschitz partition
of unity f : A→ ∆(S ), A a subset of a metric space X, extends to an (ε, ε)-Lipschitz
partition of unity g : X → ∆(S ).

Proof. Pick r = 8/ε. Once r is fixed, choose δ smaller than both (ε/3) − (2/3r) = ε/4
and ε/(4r + 7). Suppose that f : A→ ∆(S ) is a (δ, δ)-Lipschitz partition of unity on A.
Obviously, there is a retraction p : X → A such that d(x, p(x)) < dist(x, A) + 1 for all
x ∈ A. Consider α : X → [0, 1] defined by α(x) = min((d(x, A))/r, 1). Notice that it is
1/r-Lipschitz. Define g : X → ∆(S ) via g(x) = α(x) · v + (1 − α(x)) · f (p(x)), where v
is some fixed point in S . By Lemma 4.1, g extends f and is (ε, ε)-Lipschitz. �
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6. Unifying asymptotic dimension and large-scale paracompactness

In this section we develop a result that allows a unified approach to both asymptotic
dimension and large-scale paracompactness.

Classical dimension theory of topological spaces has the following three threads
that are relevant to this paper (the fourth thread is that of inductive definitions of
dimension):

• dimension defined using multiplicity of covers (commonly known as the covering
dimension);

• Ostrand–Kolmogorov version of covering dimension (see [15] and [14]);
• dimension defined via extending maps to spheres.

Gromov [12] defined asymptotic dimension by interpreting the first thread. It turns
out that the definition also generalizes the second thread, as seen in [17, Theorem 9.9,
page 131]. The definition of asymptotic dimension in [17, page 129] can be translated
using [9] to the language of uniformly bounded covers (as opposed to the language of
controlled sets of [17]), as follows.

Definition 6.1. A coarse space X has asymptotic dimension at most n (n a given
nonnegative integer) if for every uniformly bounded cover U of X there exist
uniformly bounded families V0, . . . ,Vn that are U-disjoint (that is, each element of
U intersects at most one element ofVi) and X =

⋃n
i=0Vi.

Definition 6.1 is in the spirit of Ostrand–Kolmogorov and is equivalent to the
following result (see [17, Theorem 9.9, page 131]): a coarse space X has asymptotic
dimension at most n (notation: asdim(X) ≤ n, n a given nonnegative integer) if for
every uniformly bounded cover U of X there exists a uniformly bounded cover V of
X such that each element ofU intersects at most n + 1 elements ofV.

The first attempt to generalize the third thread of dimension theory was initiated
by Dranishnikov [5]. The work of Dydak and Mitra [10] contains a different take on
that issue and it centers on the concept of a large-scale absolute extensor. Recall that,
in case K is a bounded metric space, K is a large-scale absolute extensor of X if for
all ε > 0 there is δ > 0 such that for any subset A of X any (δ, δ)-Lipschitz function
f : A→ K extends to an (ε, ε)-Lipschitz function g : X → K (see [10]).

It turns out (see [10]) that S n being a large-scale absolute extensor of X is related to
the dimension of the Higson corona of X being at most n (in case X is a proper metric
space) and, if X is of finite asymptotic dimension, then it is equivalent to asdim(X) ≤ n.
It remains an open problem if asdim(X) ≤ n provided S n is a large-scale absolute
extensor of X. In this section we propose another version of generalizing the third
thread of dimension theory, as follows.

Definition 6.2. Let X be a metric space, n ≤ ∞, α be a function on a subset Dα

of (0,∞) to (0,∞), and M : Dα × (0,∞)→ (0,∞) be a function. We say that the
large-scale extension dimension of X with respect to α and M is at most n (notation
LsExtDim(X, α, M) ≤ n) if for any set S of cardinality bigger than card(X × N),
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any K > 0 any (α(δ), α(δ))-Lipschitz map f : A ⊂ X → ∆(S )(n) (δ ∈ Dα) that is
K-cobounded extends to a (δ, δ)-Lipschitz map g : X → ∆(S )(n) that is M(δ, K)-
cobounded.

Remark 6.3. Notice that if Definition 6.2 holds for one set S , then it holds for
any set of cardinality bigger than card(X × N). Indeed, given a partition of unity
f : A ⊂ X → ∆(S ), the carrier of f has vertices forming a set of cardinality at most
card(X × N). That can be easily established by noticing that, for each k ≥ 0, vertices
generated by x ∈ A such that f (x) is in the geometric interior of a k-simplex form a set
of cardinality at most card(X × N).

Theorem 6.4. Let X be a metric space, n ≤ ∞, and S a set of cardinality bigger than
card(X × N). The following conditions are equivalent.

(1) For each ε > 0 there is an (ε, ε)-Lipschitz partition of unity f : X → ∆(S )(n) such
that the family { f −1(st(v))}v∈S is uniformly bounded.

(2) There are functions α : (0,∞)→ (0,∞), M : (0,∞) × (0,∞)→ (0,∞) such that
LsExtDim(X, α,M) ≤ n.

Proof. (2) =⇒ (1). Let A be a point in X and let f : A→ ∆(S )(n) be a constant map to
a vertex. For each ε > 0, f is (α(ε), α(ε))-Lipschitz and 1-cobounded, so it extends to
an (ε, ε)-Lipschitz g : X → ∆(S )(n) that is M(ε, 1)-cobounded.

(1) =⇒ (2). Suppose that ε > 0 and K > 0. Pick µ > 0 with the property that
for any (µ, µ)-Lipschitz partition of unity g : X → ∆(S ) there is an (ε, ε)-Lipschitz
h : X → ∆(S )(n) so that g(x) ∈ ∆(S )(n) implies h(x) = g(x) and h(x)(v) > 0 implies
g(x)(v) > 0 for all x ∈ X and v ∈ S . For n < ∞, existence of µ is established in [1];
for n =∞, we put µ = ε (as h = g works).

Pick r = 8/µ. Once r is fixed, choose δ smaller than both (µ/3) − (2/3r) = µ/4
and µ/(4r + 7). Put α(ε) = δ. Suppose that f : A→ ∆(S ) is a (δ, δ)-Lipschitz partition
of unity on A that is K-cobounded. Obviously, there is a retraction p : X → A such
that d(x, p(x)) < dist(x, A) + 1 for all x ∈ A. Consider γ : X → [0, 1] defined by
γ(x) = min(d(x, A)/r, 1). Notice that it is 1/r-Lipschitz. Define g : X → ∆(S ) via
g(x) = γ(x) · u(x) + (1 − α(x)) · f (p(x)), where u is some (δ, δ)-Lipschitz partition of
unity u : X → ∆(S )(n) that is Q-cobounded for some Q > 0. By Lemma 4.1, g extends
f , is (µ, µ)-Lipschitz, and is (max(K, Q) + 2r + 2)-cobounded. Now, modify g to
obtain an (ε, ε)-Lipschitz h : X→ ∆(S )(n) so that g(x) ∈ ∆(S )(n) implies h(x) = g(x) and
h(x)(v) > 0 implies g(x)(v) > 0 for all x ∈ X and v ∈ S . Notice that h is max(K,Q) +

2r + 2-cobounded. That means that putting M(ε,K) = max(K,Q) + 2r + 2 works and
the proof is completed. �

Remark 6.5. Notice that Theorem 6.4 provides a very good unification of Property
A and asymptotic dimension. For n finite, Condition 1 in Theorem 6.4 amounts
to asdim(X) ≤ n. For n = ∞, that condition is equivalent to X being large-scale
paracompact, which, in case of X being of bounded geometry, is equivalent to X having
Property A (see [3]).
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7. Countable asymptotic dimension

This section is devoted to generalizing Definition 6.1 to the case of infinite
asymptotic dimension. Using the Ostrand–Kolmogorov approach as a blueprint (and
in analogy to the concept of countable covering dimension), we propose the following
definition.

Definition 7.1. A metric space X is of countable asymptotic dimension if there is a
sequence of integers ni ≥ 1, i ≥ 1, such that for any sequence of positive real numbers
Ri, i ≥ 1, there is a sequence Vi of families of subsets of X such that the following
conditions are satisfied:

(1) V1 = {X};
(2) each element U ∈ Vi can be expressed as a union of at most ni families fromVi+1

that are Ri-disjoint;
(3) at least one of the familiesVi is uniformly bounded.

Proposition 7.2. If a metric space X is of straight finite decomposition complexity, then
X is of countable asymptotic dimension.

Proof. Recall that X is of straight finite decomposition complexity [7] if for any
increasing sequence of positive real numbers R1 < R2 < · · · there is a sequence Vi,
i ≤ n, of families of subsets of X such that the following conditions are satisfied:

(1) V1 = {X};
(2) each element U ∈ Vi, i < n, can be expressed as a union of at most two families

fromVi+1 that are Ri-disjoint;
(3) Vn is uniformly bounded.

That means that ni = 2 for i ≥ 1 works. �

Our next concept generalizes Definition 6.2.

Definition 7.3. Suppose that X is a subset of a metric space Y , n ≤ ∞, α is a function
on a subset Dα of (0,∞) to (0,∞), and M : Dα × (0,∞)→ (0,∞) is a function. We
say that the large-scale extension dimension of X with respect to Y , α, and M is
at most n (notation LsExtDim(X, Y, α, M) ≤ n) if for any set S of cardinality bigger
than card(Y × N) and any K > 0, any (α(δ), α(δ))-Lipschitz map f : A ⊂ Y → ∆(S )(n)

(δ ∈ Dα) that is K-cobounded extends to a (δ, δ)-Lipschitz map g : A ∪ X → ∆(S )(n)

that is M(ε,K)-cobounded.

Lemma 7.4. Suppose that α : [a,∞)→ [b,∞) and β : [b,∞)→ (0,∞) are functions. Let
{Wt}t∈T be an R-disjoint family of subsets of X such that LsExtDim(Wt, X, α, M) ≤ n
for each t ∈ T. If LsExtDim(B, X, β,MB) ≤ n for some B ⊂ X, then

LsExtDim
(
B ∪

⋃
t∈T

Wt, X, β ◦ α,M1

)
≤ n

provided a ≥ 2/(R + 1) and M1(u,K) = 2 · M(u,MB(α(u),K)) + MB(α(u),K).
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Proof. Suppose that A ⊂ X and f : A→ ∆(S )n is (β ◦ α(u), β ◦ α(u))-Lipschitz and
K-cobounded for some u ≥ a. Extend it to g : A ∪ B→ ∆(S )n, which is (α(u), α(u)-
Lipschitz and MB(α(u), K)-cobounded. Now, for any t ∈ T , g extends over Wt to
a gt function that is (u, u)-Lipschitz and M(u, MB(α(u), K))-cobounded. We may
arrange so that for t1 , t2, new vertices introduced during extension are different.
Since u ≥ 2/(R + 1), h = f ∪

⋃
t∈T gt is (u, u)-Lipschitz by Lemma 2.9. The function

h is (2 · M(u, MB(α(u), K)) + MB(α(u), K))-cobounded. Indeed, new vertices have
point inverses of their stars arising from a single map gt, so they are bounded by
M(u, MB(α(u), K)). Old vertices v have their main part g−1(st(v)) , ∅ (of diameter
at most MB(α(u), K)) enlarged by adding g−1

t (st(v)) for each t ∈ T . Each union
g−1(st(v)) ∪ g−1

t (st(v)) is of diameter at most M(u, MB(α(u), K)), resulting in h being
M1(u,K)-cobounded. �

Lemma 7.5. Suppose that α : (0,∞)→ (0,∞) is a nondecreasing function such that the
q-fold composition αq satisfies αq(a) ≥ 2/(R + 1) for some R > 0, q ≥ 1, and all a > 0.
Let M : [αq(a),∞) × (0,∞)→ (0,∞) be a function and consider the family V of all
subsets W of X satisfying LsExtDim(W, X, α|[αq(a),∞), M) ≤ n. There is a function
M1 : [a,∞) × (0,∞)→ (0,∞) such that if U ⊂ X is the union of q families in V that
are R-disjoint, then LsExtDim(U, X, αq|[a,∞),M1) ≤ n.

Proof. For q = 1, it follows from Lemma 7.4. Use induction on q and apply
Lemma 7.4 again as follows. Suppose that B ⊂ X is the union of q − 1 families
in V that are R-disjoint. By the inductive assumption (we use α(a) instead of a),
LsExtDim(B, X, αq−1|[α(a),∞), M2) ≤ n for some function M2 : [α(a),∞) × (0,∞)→
(0,∞). If W is the union of a family inV that is R-disjoint, then put β = αq−1|[α(a),∞).
Notice that β ◦ α = αq|[a,∞). Using Lemma 7.4,

LsExtDim(B ∪W, αq|[a,∞),M1) ≤ n

for M1 : [a,∞) × (0,∞) → (0,∞) defined by M1(u, K) = 2 · M(u, M2(α(u), K)) +

M2(α(u),K). �

Theorem 7.6. Let X be a metric space and n ≤ ∞ be such that ∆(X)(n) is a large-
scale absolute extensor of X. If X is of countable asymptotic dimension, then
LsExtDim(X) ≤ n.

Proof. Pick a function E : (0,∞) → (0,∞) such that E(x) < x for all x and any
(E(x), E(x))-Lipschitz function f : A ⊂ X → ∆(X)(n) extends to an (x, x)-Lipschitz
function g : X → ∆(X)(n). We may assume that E is nondecreasing (replace E(x) by
sup{E(t)/2|t < x} if necessary). Suppose that S is a set of cardinality bigger than
card(X × N). We point out that any (E(x), E(x))-Lipschitz function f : A ⊂ X →
∆(S )(n) extends to an (x, x)-Lipschitz function g : X → ∆(S )(n). Given k > 0, by Ek

we mean the composition E ◦ · · · ◦ E of k copies of E. Also, E0 = id.
There is a sequence of integers ni ≥ 1, i ≥ 1, such that for any sequence of positive

real numbers Ri, i ≥ 1, there is a sequenceVi of families of subsets of X such that the
following conditions are satisfied:

https://doi.org/10.1017/S1446788715000312 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000312


[11] Coarse amenability and discreteness 75

(1) V1 = {X};
(2) each element U ∈ Vi can be expressed as a union of at most ni families fromVi+1

that are Ri-disjoint;
(3) at least one of the familiesVi is uniformly bounded.

Let N(1) = 0 and let N(i) =
∏i−1

j=1 n j for i ≥ 1.
Given 2 > ε > 0, define Ri > 0 as satisfying 2/(Ri + 1) = EN(i)(ε); then pick a

sequenceVi of families of subsets of X satisfying the above conditions. Choose m ≥ 1
such thatVm is uniformly bounded by K.

Claim 1. LsExtDim(U, X, E|[ε,∞), Mm) ≤ n for all U ∈ Vm, where Mm : [ε,∞) ×
(0,∞)→ (0,∞) is defined by Mm(x, y) = y + K + Rm.

Proof of Claim 1. Suppose that u ≥ ε and f : A ⊂ X→ ∆(S )(n) is (E(u),E(u))-Lipschitz
and R-cobounded. If A ∩ B(U, Rm) = ∅, then extending f to g : A ∪ U → ∆(S )(n)

by sending U to a vertex vU not belonging to the carrier of f (A) produces a (u, u)-
Lipschitz function by Lemma 2.9 that is (R + K)-cobounded. Indeed, g−1(st(vU)) = U
is of diameter at most K and g−1(st(v)) = f −1(st(v)) for v , vU is of diameter at most R.

Extend f to g : A ∪U → ∆(S )(n) that is (u,u)-Lipschitz. This may give rise to points
x ∈ U and a ∈ A that are far away but both g(a) and g(x) belong to the same star. To
avoid that difficulty, consider the vertices S 1 of the carrier of f (A ∩ B(U,Rm)) and the
vertices S 2 ⊃ S 1 of the carrier of g(B(U,Rm)). Let r : S 2 → S 1 be a retraction. Change
g to h by changing it on B(U,Rm) to the composition of g and the induced retraction
∆(S 2)→ ∆(S 1). The function h is (u, u)-Lipschitz (see Lemma 2.9), it extends f , and
to check it is (R + K + Rm)-cobounded all one has to do is look at h−1(st(v)) for v ∈ S 1.
This set contains a ∈ A ∩ B(U,Rm), its intersection with A is of diameter at most R,
and the remainder is contained in U. Therefore, any two points of h−1(st(v)) are at the
distance at most R + Rm + K. This completes the proof of Claim 1.

Define P(m) = 1 and P(i) = P(i + 1) · ni for i < m.

Claim 2. For each 1 ≤ i ≤ m there is a function Mi : [EN(i)(ε),∞) × (0,∞)→ (0,∞)
such that LsExtDim(U, X, EP(i)|[EN(i)(ε),∞),Mi) ≤ n for all U ∈ Vi.

Proof of Claim 2. i = m is taken care of by Claim 1. Suppose that i < m and Mi+1

exists. Put q = n(i) and α = EP(i+1) : [EN(i+1)(ε),∞)→ (0,∞). Applying Lemma 7.5,
one gets the existence of a function Mi : [EN(i)(ε),∞) × (0,∞)→ (0,∞) such that
LsExtDim(U, X, EP(i)|[EN(i)(ε),∞),Mi) ≤ n for all U ∈ Vi.

Applying Claim 2 to i = 1, we get LsExtDim(X, X, EP(1)|[ε,∞), M1) ≤ n. That
implies the existence of an (ε, ε)-Lipschitz function g : X → ∆(S )(n) that is K-
cobounded for some K > 0. Thus, LsExtDim(X) ≤ n. �

Now we can derive a more general result than Theorem 1.6.

Corollary 7.7. Any space X of countable asymptotic dimension has Property A.

Proof. We are applying Theorem 7.6 when n =∞, in which case the assumption that
∆(X)(n) is a large-scale absolute extensor of X is vacuous (in view of Theorem 5.1).
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Notice that X is large-scale finitistic (see Definition 3.6) and hence it is large-scale
weakly paracompact. In view of Theorem 7.6, for each ε > 0 there is an (ε, ε)-Lipschitz
partition of unity on X that is cobounded. As shown in [3] (use Theorem 4.9 there,
which says that if X is large-scale weakly paracompact and for each ε > 0 there is
an (ε, ε)-Lipschitz partition of unity on X that is cobounded, then X is large-scale
paracompact), a large-scale finitistic metric space X has Property A if and only if it is
large-scale paracompact. Consequently, X has Property A. �

Remark 7.8. Theorem 7.6 is related to the problem of Dranishnikov about the equality
of the asymptotic dimension asdim(X) of proper metric spaces X to the covering
dimension of their Higson corona ν(X) (see [5]). As is shown in [5] and [6], the two
numbers are equal in case of asdim(X) being finite. Theorem 7.6 improves that result
for spaces of countable asymptotic dimension. Note (see [10]) that dim(ν(X)) ≤ n is
equivalent to the n-sphere S n being a large-scale absolute extensor of X.

Remark 7.9. In a recent paper [16], Ramras and Ramsey introduced independently the
concept of a metric family X to have weak straight finite decomposition complexity
with respect to the sequence (k1, k2, . . .) (ki ∈ N) if for every sequence R1 < R2 < · · ·
of positive numbers, there exist an n ∈ N and metric families X0,X1,X2, . . . ,Xn such
that X = X0, the family Xi is (ki+1,Ri+1)-decomposable over Xi+1, and the family Xn is
uniformly bounded. The family X has weak straight finite decomposition complexity
(wsFDC) if it has wsFDC with respect to some sequence (k1, k2, . . .).

Notice that, in case ofX consisting of a single space X, the above definition amounts
to saying that X has countable asymptotic dimension. Therefore, our Corollary 7.7
answers positively [16, Question 4.7].
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