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Abstract
Closure phase is the phase of a closed-loop product of spatial coherences formed by a ≥3-element interferometer array. Its invariance to
phase corruption attributable to individual array elements acquired during the propagation and the measurement processes, subsequent
calibration, and errors therein, makes it a valuable tool in interferometry applications that otherwise require high-accuracy phase calibra-
tion. However, its understanding has remained mainly mathematical and limited to the aperture plane (Fourier dual of the image plane).
Here, we present a geometrical, image domain view of closure phase, which until now has been lacking. Using the principal triangle in a
3-element interference image formed by a triad of interferometer elements, we show that the properties of closure phase, particularly its
invariance to multiplicative element-based corruption factors (even of a large magnitude) and to translation, are intricately related to the
conserved properties of the triangle, namely, its shape, orientation, and size, which is referred herein as the ‘shape-orientation-size (SOS)
conservation principle’. In the absence of a need for element-based amplitude calibration of the interferometer array (as is typical in optical
interferometry), the principal triangle in any 3-element interference image formed from phase-uncalibrated spatial coherences is still a true
and uncorrupted representation of the source object’s morphology, except for a possible shift. Based on this knowledge of the triangle SOS
conservation principle, we present two geometric methods to measure the closure phase directly from a simple 3-element interference image
(without requiring an aperture-plane view): (i) the closure phase is directly measurable from any one of the triangle’s heights, and (ii) the
squared closure phase is proportional to the product of the areas enclosed by the triad of array elements and the principal triangle in the
aperture and image planes, respectively. We validate the geometric understanding of closure phase in the image plane using observations
with the Karl G. Jansky Very Large Array, and the Event Horizon Telescope. These results verify the SOS conservation principle across a
wide range of radio interferometric conditions. This geometric insight can be potentially valuable to other interferometric applications, such
as optical interferometry. We also generalise these geometric relationships to an N-element interferometer.
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1. Introduction

The concept of closure phase in radio interferometry can be traced
back to Jennison (1958). Closure phase provides information on
the phase encoded in the spatial coherences due only to the inten-
sity distribution of sources of electromagnetic (EM) radiation in
the sky, without the need for calibration to correct for corruption
of the phases of the EM waves due to propagation effects and the
array receiver elements themselves. The invariance of the closure
phase to phase corruptions of the incident EM wave that can be
factorised into element-based phase terms, has been extensively
tested and applied in interferometry. This property has played a
significant role in the development of a popular calibration scheme
called ‘self-calibration’ (Cornwell & Wilkinson 1981; Pearson &
Readhead 1984; Schwab 1980). Moreover, closure phase is known
for its measure of the centrosymmetry or point-symmetry (mor-
phological symmetry around a point) as well as for its invariance to
translation of the spatial intensity distribution of the EM radiation
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(Monnier 2007). A general theory of identifying a complete and
independent set of closure invariants from co-polar and polari-
metric interferometry is beginning to emerge (Broderick & Pesce
2020; Samuel, Nityananda, & Thyagarajan 2021; Thyagarajan,
Nityananda, & Samuel 2021).

The invariance of closure invariants to local, element-based
corruptions have made them a valuable tool in experiments that
face challenges due to the requirement of high-accuracy calibra-
tion. Closure phases have thus been used in optical interferometry
to characterise the structures of stars (Monnier 2003a, b; Monnier
et al. 2006; Monnier et al. 2007, and references therein), dis-
coveries with Very Long Baseline Interferometry (VLBI) such as
the core-jet morphology of the quasar 3C 147 (Wilkinson et al.
1977), the detection of the superluminal expansion of the rela-
tivistic jet in quasar 3C 273 (Pearson et al. 1981), and the Event
Horizon Telescope (EHT) imaging of the shadow of the supermas-
sive black hole in M87 (Event Horizon Telescope Collaboration
et al. 2019a, b, c, d, e, f, 2021) andCentaurus A (Janssen et al. 2021).
Recently, closure phase has provided a useful avenue towards
detecting the neutral Hydrogen structures during the cosmic
reionisation (at redshifts, z� 6) using its characteristic 21-cm
spectral line redshifted to low radio frequencies with interferom-
eter arrays (Carilli et al. 2018, Carilli et al. 2020; Thyagarajan,
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Carilli, & Nikolic 2018; Thyagarajan & Carilli 2020; Thyagarajan
et al. 2020b).

However, despite extensive use and successful applications
spanning several decades, a geometric insight into the interfero-
metric closure phase has remained elusive. The complex, higher-
order dependence on the moments of the spatial intensity and
spatial coherence (Lachaume 2003; Thyagarajan & Carilli 2020)
makes it very challenging to gain a geometric intuition of this
special quantity. In this paper, we address this issue by develop-
ing a method to visualise the manifestation of closure phase in
3-element interference images and present two methods to esti-
mate the closure phase therein. While closure phase can always
be calculated from three separate measurements of the offsets (or
equivalently, phases) of individual fringes from a reference point
in an image, our methods generally require only a single measure-
ment on a three-fringe image except in special cases.We anticipate
that this insight will result in widening the spectrum of synthesis
interferometry applications.

The paper is organised as follows. Section 2 sets up the interfer-
ometry context and introduces the closure phase of an N-polygon
interferometer array. In Section 3, we present the geometrical
characteristics and direct geometrical methods for the estimation
of closure phase in the image plane using a 3-element interfer-
ometer, through a derivation of the shape-orientation-size (SOS)
conserving property of closure phase. A validation via applications
to real radio interferometric data from observations of bright cos-
mic objects at centimetre wavelengths using the Karl G. Jansky
Very Large Array (VLA) radio telescope, as well as in the VLBI
regime at millimetre wavelengths using publicly available EHT
data is provided in Section 4. The findings are summarised in
Section 5.

2. The interferometry context

Considermeasurements of a single polarisation state of a complex-
valued, quasi-monochromatic electric field, Ea(λ), integrated over
a narrow band around the wavelength, λ, of the incident EM radia-
tion byNA array elements at locations xa, with a= 0, 1, . . .NA − 1
in the aperture plane. The spacing between any pair of array ele-
ments (commonly referred as to as the baseline vector in radio
interferometry) is denoted by xab ≡ xb − xa. The spatial distribu-
tion of the intensity of the EM radiation in the image plane, I(ŝ, λ),
and the corresponding spatial coherence of the electric fields (also
known as visibilities in radio interferometry) in the aperture plane,
Vab(λ), exhibit a Fourier transform relationship with each other
(Born & Wolf 1999; Taylor, Carilli, & Perley 1999; Thompson,
Moran, & Swenson 2017),

Vab(λ) :=
〈
E�
a(λ)Eb(λ)

〉
(1)

=
∫

�

�(ŝ, λ) I(ŝ, λ) e−i2πuab·ŝ d� (2)

where, the angular brackets, 〈·〉, represent a true ensemble
average, ŝ denotes a unit vector in the direction of any loca-
tion in the image, uab := xab/λ ≡ (uab, vab,wab) defined on the
aperture plane denotes the array element spacings with uab and
vab being projections on the plane perpendicular to, and wab
being towards the direction of the phase centre, ŝ0, in the image.
In the Fourier relationship, uab, by definition, represents the
spatial frequencies of the structures in I(ŝ, λ). The array element’s
directional power pattern is denoted by �(ŝ, λ), and d� denotes
the differential solid angle in the image plane perpendicular
to ŝ. The vectors ŝ and uab can be represented on a Cartesian

Figure 1. A triad of aperture elements with positions, xa/λ, and spacings, uab, both
in units of wavelengths, with a, b= 0, 1, 2, and b �= a. uab represents the spatial fre-
quencies of the image plane intensity distribution, I(ŝ, λ), in the aperture plane. Vab(λ)
denotes the complex-valued spatial coherence of I(ŝ, λ) measured at uab in the aper-
ture plane. The cyclic ordering of the element spacings is indicated by the arrowed
(anticlockwise) circle. The three spatial frequencies, uab, are shown by dashed, dash-
dotted, and dotted lines, which will be used to denote the corresponding fringes in the
image plane in subsequent figures.

coordinate frame with orthogonal basis vectors, êx, êy, and
êz . In this frame, ŝ≡ � êx +m êy + nêz with �2 +m2 + n2 = 1,
where l, m, and n denote the direction-cosines of ŝ. And,
uab ≡ uab êx + vab êy +wabêz . Figure 1 depicts the modelled loca-
tions of three array elements in units of wavelengths (chosen at
λ = 21 cm) that will be used in the initial examples that follow.
The cyclic ordering of the element indices is indicated by the
arrowed circle. The three encircled elements can be considered
as three antennas in a radio interferometer, or optical mirrors or
aperture mask openings in an optical interferometer.

In practice, the EM voltage measurements at the array ele-
ments are inevitably corrupted by multiplicative complex-valued
‘gain’ factors introduced by the intervening medium as well as
the array element response. The corrupted measurements, either
pre-calibration or after miscalibration, are denoted by Ẽa(λ)=
Ga(λ) Ea(λ), where,Ga(λ) denotes the net corruption factors intro-
duced in the measurement process factorisable in such a way that
it is attributable to the individual elements. The process of calibra-
tion (Taylor et al. 1999; Thompson et al. 2017) aims to undo this
corruption. In this paper, Ga(λ) refers to the net corruption in a
measurement, whether it is uncalibrated or imperfectly calibrated.

The corrupted (uncalibrated or miscalibrated) visibility is

Ṽab(λ)=G�
a(λ)Gb(λ)Vab(λ) (3)

= ∣∣G�
a(λ)Gb(λ)Vab(λ)

∣∣ ei[ξb(λ)−ξa(λ)+φab(λ)] (4)

where, ξa(λ)= argGa(λ), φab(λ)= argVab(λ), and

φ̃ab(λ)= argṼab(λ)= φab(λ)+ ξb(λ)− ξa(λ) . (5)

The residual gain in an ideal measurement without corruption or
after a perfect calibration is, Ga(λ)= 1, and thus ξa(λ)= 0 and
φ̃ab(λ)= φab(λ) for all a and b. However, it is often difficult to
realise in practice.

In the rest of the paper, we assume a flat image plane without
significant curvature effects, usually referred to as narrow field of
view or ‘flat sky’ approximation (�,m� 1) in radio interferom-
etry. In such a scenario, wab �= 0 will only result in a translation
of the images as per the extra phase term in the visibility arising
from the additional path length due towab in Equation (2) and will
not affect their geometry or morphology. Therefore, we choose an
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Figure 2. Ideal fringes, Fab(ŝ, λ), and the respective NPCs (lines) in the image plane in direction-cosine (�,m) coordinates, with the line style in each panel corresponding to that
of the array element spacings, uab, in Figure 1. Equation (7) yields the fringe NPCs. The black lines in each line style corresponds to the principal fringe NPC (nab = 0), while the
varying shades of grey correspond to secondary (|nab| > 0) fringe NPCs. The phase centre (origin) is marked (with a+ symbol). The positional offset from the phase centre to each
of the principal fringe NPCs is shown in magenta and is related to the visibility phase, φab(λ), by Equation (8).

aperture plane which is coplanar (wab = 0). The effects of non-
coplanarity in the presence of significant image plane curvature
will be the subject of future study.

2.1. Interferometric fringes

The image plane response of a single interferometer (visibility
measured on one baseline) corresponding to the correlator out-
put or spatial coherence, is called a ‘fringe’, which for the general
corrupted form is

F̃ab(ŝ, λ)=
∣∣Ṽab(λ)

∣∣ ei[2πuab·ŝ+φab(λ)+ξb(λ)−ξa(λ)] (6)

with arg F̃ab(ŝ, λ)= 2πuab · ŝ+ φab(λ)+ ξb(λ)− ξa(λ) . Ideally,
arg F̃ab(ŝ, λ)= arg Fab(ŝ, λ)= 2πuab · ŝ+ φab(λ) occurs when all
elements are perfectly phase-calibrated, that is, ξa(λ)= 0 for all a.

These fringes are periodic, marked by ‘ridges’ corresponding
to where arg F̃ab(ŝ, λ) is an integer multiple of 2π and are given
by the null-valued (or zero-valued) isophase contoursa (and their
equivalents offset by multiples of 2π). These are, hereafter, called
the fringe null phase curves (NPCs):

2πuab · ŝ+ ψ̃ab(λ)= 0 , a, b= 0, . . .N − 1 , with a �= b , (7)

where, ψ̃ab(λ)= φ̃ab(λ)+ 2πnab , and nab (an integer) accounts for
the NPC offset from the principal NPC (nab = 0) by integer mul-
tiples (nab) of 2π. When traversing anywhere on an NPC (ridge),
arg F̃ab(ŝ, λ) remains unchanged.

The signed positional offset, δsab(λ), of the fringe NPC from the
phase centre (origin) along a perpendicular and the corresponding
phase offset, ψ̃ab(λ), are related by

ψ̃ab(λ)= 2π |uab| δsab(λ) . (8)

Here, |uab| =
(
u2ab + v2ab

)1/2 denotes the baseline lengths in the pro-
jected plane whose normal is the direction to the phase centre.

aAny (but same) constant-valued phase contours can be used for all fringes, but without
loss of generality, we use zero-valued contours corresponding to the ridges in the fringes,
for convenience.

Because uab is the spatial frequency of a fringe, 1/|uab| represents
the spatial period of the periodic ridges (or the fringe spacing)
in the image plane and corresponds to a phase change of 2π, as
verified by setting δsab(λ)= 1/|uab| in Equation (8).

Figure 2 shows the ideal fringes, Fab(ŝ, λ), in the image plane
in direction-cosine coordinates, (�,m), given by Equation (6) for
the modelled 3-element array and the corresponding visibilities
shown in Figure 1. The + symbol marks the phase centre (ori-
gin). The fringe NPCs, described by Equation (7), are shown in
line styles corresponding to those in Figure 1. The black line in
each panel denotes the principal NPC (nab = 0) of the correspond-
ing fringe. The various grey lines denote the secondary NPCs
(|nab| > 0) of the fringes. The positional offset, δsab(λ), of the prin-
cipal fringe NPC from the phase centre is shown by the magenta
segments and corresponds to φab(λ) (the principal visibility phase)
according to Equation (8). In the case of uncalibrated or imper-
fectly calibrated visibilities, these phase offsets also include the
corruptions, ξb(λ)− ξa(λ), arising from the complex gains of the
array elements.

2.2. Interferometric closure phase

Hereafter, we will assume that the angular power patterns,�(ŝ, λ),
of the array elements are identical. Consider N elements forming
an N-vertex polygon in the aperture plane. The element spac-
ings in the adjacent sides in the polygon are given by xa	a+1
N ≡
x	a+1
N − xa, where, 	a
N ≡ a mod N. The condition for a closed
loop in the aperture plane is

N−1∑
a=0

ua	a+1
N ≡ 0 . (9)

The interferometric closure phase on the N-polygon is

φ̃N(λ)≡ arg
N−1∏
a=0

Ṽa	a+1
N (λ)=
N−1∑
a=0

arg Ṽa	a+1
N (λ) . (10)

https://doi.org/10.1017/pasa.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2022.6


4 N. Thyagarajan and C.L. Carilli

Because
∑N−1

a=0 argG�
a(λ)G	a+1
N (λ)≡ 0 ,

φ̃N(λ)= φN(λ)=
N−1∑
a=0

argVa	a+1
N (λ) , (11)

where, φN(λ) is the true closure phase on the N-polygon.
Therefore, the closure phase is invariant to element-based cor-
ruptions, Ga(λ), the corrections from calibration, as well as the
errors therein, making it a true observable physical property of the
structures in the image plane intensity distribution. This property
is a form of gauge-invariance with respect to any element-based
phases acquired during the measurement process (Samuel et al.
2021; Thyagarajan et al. 2021).

A direct consequence of this gauge-invariance is that the clo-
sure phase is also invariant to translation in the image plane.
This can be shown by replacing ŝ with ŝ′ = ŝ− ŝ0, where ŝ0 is
an arbitrary choice for the origin of the image plane, referred to
as the phase centre in interferometry. From Equation (2), such a
translation modifies the spatial coherence as

V ′
ab(λ)= ei2πuab·ŝ0 Vab(λ) , (12)

which simply introduces an additional phase factor, ei2πuab·ŝ0 , that
is factorisable into element-based phase factors, ei2πxb·ŝ0/λ and
e−i2πxa·ŝ0/λ. Due to the gauge-invariance discussed above, the clo-
sure phase is therefore independent of the phase factors intro-
duced by translation in the image plane. Conversely, the trans-
lation invariance of the closure phase is simply a special case of
the gauge-invariance to the phase factors attributable locally to the
array elements.

Because closure phases are unaffected by the corrupting gain
terms as is well known and as shown above, without loss of gen-
erality, we choose to work with uncorrupted terms in subsequent
mathematical analysis unless specified otherwise.

3. SOS conservation

In the following, we mathematically derive and then demonstrate
with model and real data, the underlying geometric nature of
closure phase using the image plane fringes of a closed triad of
array elements, in the case when visibility phase corruption can be
assigned to individual elements and is not idiosyncratic to a given
baseline. The equivalent geometric behaviour manifests as a SOS
conservation, in which the shape, orientation, and size of the tri-
angle enclosed by the three principal fringe NPCs from a closed
triad of array elements are conserved even in the presence of large
phase errors, except possibly an overall translation in the image
plane that does not affect the SOS conservation.

A triad (N = 3), being the simplest closed shape for study-
ing the closure phase, will form the basis later for characterising
the behaviour on N-polygons with N > 3. Consider three fringes
Fa	a+1
N (ŝ, λ) with N = 3 and a= 0, 1, 2. The corresponding NPCs
are obtained from Equation (7) as

2πua	a+1
3 · ŝ+ ψa	a+1
3 (λ)= 0 , a= 0, 1, 2 . (13)

They enclose a ‘principal’ triangle,b in general.c
In Equation (13), ψa	a+1
3 (λ) is the phase offset from the phase

centre, which has been implicitly assumed to be at ŝ0 ≡ (0, 0, 1).

bThe principal fringe NPCs enclose the principal triangle.
cCollinear array elements will yield coincident or non-intersecting fringes, which will

enclose a flattened degenerate triangle.

Thus, the closure phase on the 3-polygon is

ψ3(λ)≡
2∑

a=0

ψa	a+1
3 (λ) , (14)

which is simply the sum of the phase offsets of the individual fringe
NPCs from the phase centre. Geometrically, the phase offsets are
obtained from Equation (8) by measuring the positional offsets
from the phase centre to each of these fringe NPC [Equation
(13)] normalised by the respective fringe spacings. For a calibrated
interferometer, these measured phase offsets relate directly to the
object’s position and structure.

If the phase centre is shifted to some arbitrary ŝ0, then by
defining ŝ′ = ŝ− ŝ0, Equation (13) for the fringe NPCs will be

2πua	a+1
3 · ŝ′ + ψ′
a	a+1
3 (λ)= 0 , a= 0, 1, 2 . (15)

Then, the closure phase with the shifted phase centre is

ψ′
3(λ)≡

2∑
a=0

ψ′
a	a+1
3 (λ)

=
2∑

a=0

ψa	a+1
3 (λ)+ 2πŝ0 ·
2∑

a=0

ua	a+1
3

= ψ3(λ) , (16)

where, we have used Equations (9) and (14). This reiterates,
using an image-based geometric viewpoint, the common knowl-
edge that the closure phase remains invariant despite an arbitrary
translation.

3.1. Relation to the height of the principal triangle

Consider the principal triangle enclosed by the three principal
NPCs. The phase centre, ŝ0, can be conveniently chosen to be at
any of the vertices of this triangle, which is the point of intersection
of any of the two fringe NPCs, for instance, F01(ŝ, λ) and F12(ŝ, λ).
Because ŝ0 lies on the NPCs of both F01(ŝ, λ) and F12(ŝ, λ), by def-
inition, δs′01(λ)= δs′12(λ)= 0 , and therefore, ψ′

01(λ)= ψ′
12(λ)= 0

from Equation (8). Hence,

ψ′
3(λ)= ψ′

20(λ)= ψ20(λ)+ 2πu20 · ŝ0
= ψ20(λ)− 2π(u01 + u12) · ŝ0

=
2∑

a=0

ψa	a+1
3 (λ)= ψ3(λ) . (17)

Thus, when the phase centre is chosen to be at any of the vertices
of the principal triangle, the closure phase is simply

ψ3(λ)= ψ′
a	a+1
3 (λ)= 2π

∣∣ua	a+1
3
∣∣ δs′a	a+1
3 (λ) (18)

from Equations (8) and (17), where, δs′a	a+1
3 (λ) is the height
drawn from the vertex chosen as the phase centre, to the oppo-
site side corresponding to the fringe NPC, Fa	a+1
3 (ŝ, λ). Thus, the
closure phase is directly calculable from a single measurement of
any one of the heightsd of this triangle.

dWhen the array elements are arranged collinearly on the aperture plane, the resulting
fringes are all parallel to each other yielding no definite intersections between the fringe
NPCs that could serve as the preferred phase centres. However, the closure phase is still
well defined. An arbitrary phase centre can be still chosen, including anywhere on one of
the fringe NPCs, and the closure phase is given by Equation (16) as in the general case.
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(a) (b)

Figure 3. Illustration of the gauge-invariant and shape-orientation-size (SOS) conserving nature of closure phase. (a) Visibility fringes and phases, and closure phase on ideal (or
perfectly calibrated) fringes, Fab(ŝ, λ) for a= 0, 1, 2, b= 	a+ 1
3. The three principal fringe NPCs are annotated and shown in black lines with the line style corresponding to that
in Figures 1 and 2 They enclose the principal triangle marked by the grey shaded region. Grey lines denote secondary fringe NPCs. The three principal visibility phases, φab(λ), are
proportional to the positional offsets [see Equation (8)] shown in magenta from the phase centre (origin) marked by+ and annotated byO. The closure phase from the principal
fringes,φ3(λ), is the sumof the three visibility phases. The phase centre can be conveniently shifted to any one of the triangle’s vertices,O′, marked in brown, blue, or red, inwhich
case the closure phase reduces simply to φ′

ab(λ), which are shown corresponding to the heights drawn from the vertex to the opposite side in brown (dashed), blue (dash-dotted),
or red (dotted), respectively, according to Equation (18). Moreover, the area enclosed by the triangle is proportional to the closure phase squared (see Section 3.2). (b) Same as
the ideal case in panel (a) but when considering uncalibrated (all three element phases corrupted randomly ranging from 15◦ to 75◦) and translated fringes in the middle and
right panels, respectively. As a result, all the fringe NPCs are displaced parallel to themselves relative to the phase centre compared to the ideal case. The closure phase, which
is still the sum of the three uncalibrated or translated visibility phases (corresponding to the positional offsets in magenta), remains unchanged. The geometrical equivalence is
that the closure phase which is proportional to the heights drawn from one of the triangle’s vertices to the corresponding opposite side (brown dashed, blue dash-dotted, or red
dotted lines) are independent of these shifts as well as of the phase centre. Though the individual fringes and the triangle enclosed by them are displaced, their displacements
are constrained to be parallel to themselves with the only degree of freedom being an overall translation of the triangle, thereby conserving its SOS characteristics (hence, the
area too). The SOS conservation, despite electromagnetic phase corruption attributable to individual array elements, and an overall translation in the image plane, geometrically
demonstrates the gauge-invariance of closure phase.

Invariance of closure phase to element-based gain corruptions
then implies the heights of the triangle also have to remain invari-
ant. And because the element spacings (baseline vectors) do not
change during the measurement process, the orientations of the
sides of the triangle in the image plane are fixed. Therefore, all
three characteristics, namely, shape, orientation, and size of the
triangle in the 3-element interference image are preserved.We will
refer to this as the SOS conservation principle. The only remain-
ing degree of freedom for this triangle that does not affect its SOS
characteristics is an overall translation.

Figure 3a illustrates these relations geometrically using image
obtained by interfering the three fringes, Fa	a+1
3 (ŝ, λ), shown
in Figure 2. The black and grey lines denote the principal and
secondary NPCs of the fringes, respectively, with line styles cor-
responding to those in Figures 1 and 2. The + symbol marks the
phase centre (or the origin) and is denoted by O in magenta. The
principal triangle is shown by the grey shaded region. The posi-
tional offsets, δsa	a+1
3 (λ), of the principal fringe NPCs from the
phase centre are shown as magenta lines annotated by the cor-
responding principal visibility phases, φa	a+1
3 (λ), obtained using
Equation (8). When the phase centre is conveniently chosen to be
at any of the vertices of the triangle (denoted by O′ in red, blue,
and brown), the modified visibility phases, φ′

a	a+1
3 (λ), are pro-
portional to the heights of the triangle, δs′a	a+1
3 (λ), drawn from
the chosen vertex (phase centre) shown by the corresponding

coloured lines, according to Equation (18).e The same equation
also implies that each of these modified principal visibility phases,
φ′
a	a+1
3 (λ), is equal to the principal closure phase, φ3(λ), or in

general, ψ3(λ)= ψ′
a	a+1
3 (λ), ∀a when the 2π phase ambiguity

(represented by nab) is included.
Figure 3b illustrates geometrically the gauge-invariance of the

3-polygon closure phase for uncalibrated (all three element phases
corrupted randomly, ranging from 15◦ to 75◦) and translated (in
the image plane) fringes in the left and the right panels, respec-
tively, but the discussion applies to both scenarios equally. Both
scenarios cause a displacement of the fringes and the NPCs rel-
ative to the ideal case in Figure 3a. As a result, the individual
principal visibility phases, φa	a+1
3 (λ), relative to the default phase
centre, O, are differently offset relative to the ideal case. However,
the closure phase, which is the sum of these three phases remains
unchanged as expected. This is also clear geometrically when the
phase centre is shifted to any one of the three vertices of the
principal triangle (denoted by O′ in red, blue, and brown), the
modified phase offset, φ′

a	a+1
3 (λ), corresponding to the height of

eWe note that, for a given vertex, there can be flipped or complementary triangles in
the image plane from which the closure phase can be derived. Two of these can be seen to
the left and right of the brownO′ vertex in Figure 3a. The sum of the two closure phases
from the complementary triangles sharing a vertex must be, by definition, 2π, thereby
demonstrating the 2π ambiguity of phase, encapsulated by nab following Equation (7).
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the triangle from the chosen vertex to its opposite side, δs′a	a+1
3 (λ)
given by Equation (18), remains unchanged compared to the ideal
case. The fact that the triangle’s heights are unchanged, and the
orientations of its sides also remain unchanged because they only
depend on the array element spacings, gives rise to the SOS con-
servation principle. It is important to note that the displacement of
the fringes in either case is constrained to be parallel to themselves
such that the triangle enclosed by the three vertices of intersec-
tion (the grey shaded region), conserves its SOS, and thus the area
too, independent of the choice of phase centre. The only degree
of freedom for the triangle that does not violate the SOS conser-
vation principle is an overall translation. This is the image plane
geometric visualisation of the gauge-invariance of closure phase,
and how closure phase is fundamentally related to the properties
of the triangle enclosed by the fringe NPCs in the image plane, and
not to the phase centre, calibration, or image plane translations.
And this is the geometric reaffirmation of the familiar aper-
ture plane view that closure phase is invariant to element-based
calibration.

3.2. Relation between areas in aperture and image planes

The closure phase is seen to be intricately linked to the the geomet-
ric characteristics of the triangle determined by the fringe NPCs,
encapsulated by the SOS conservation principle, which implies
that the triangle’s area must also be gauge-invariant. This moti-
vates investigation of the relation between the closure phase and
the areas of the triangles enclosed by the fringes and the array
elements in the image and aperture planes, respectively. Indeed,
it can be shown that

ψ2
3(λ)= 16π2AA3(λ)AI3(λ) , (19)

where, AI3(λ) is the area of the triangle enclosed by the three-
fringe NPCs in the image plane, AA3(λ) denotes the area of the
triangle formed by the locations of the triad of array elements.
AA3(λ) is in units of wavelengths squared. The subscripts I and
A in AA3(λ) AI3(λ) and AA3(λ) denote the image and the aper-
ture plane, respectively, while the subscript 3 denotes a 3-polygon.
AI3(λ) is dimensionless as it is obtained using direction-cosine
coordinates. See Appendix A for a detailed derivation of this result
and associated caveats. A generalisation of these closure phase
relationships to a closed N-polygon is provided in Appendix B.

Figure 3 illustrates the quantities in this relationship. AI3(λ) is
denoted by the grey shaded area, while AA3(λ) is the area enclosed
by the array elements in Figure 1 in wavelength squared units.
In this example, AI3(λ)≈ 1.78× 10−6, AA3(λ)≈ 34410.43, and
ψ3(λ)≈ −3.11 radians, thereby validating Equation (19). Thus,
using coordinate geometry in the image plane, this work pro-
vides a detailed derivation of similar findings from a quantum
mechanics perspective (Kobayashi et al. 2010).

3.3. A Geometric reasoning for the translation

Here, we provide a geometrical reasoning for the translation of
the three-fringe interference pattern in the presence of one or
more aperture element-based phase errors. Although fully valid
in a radio interferometric context, it is easily described from an
optical interferometry viewpoint (see Appendix C).

In the context of aperture masking in optical interferometry,
the three aperture elements in Figure 1 correspond to the small
unmasked regions of a larger parabolic mirror.f If we assume beam

fThe mask, of course, is usually implemented in the pupil plane.

combination of the type used in most aperture masking experi-
ments, that is, image plane combination where pupil rescaling is
the only type of pupil remapping performed, then Figure 2 corre-
sponds to the imaged fringes on the focal plane of the telescope.g

In this picture, a distortion of the wavefront’s phase at one of
the unmasked apertures caused by turbulence in the propagation
medium along its path, effectively translates to a simple displace-
ment of the aperture element towards or away from the prime
focus, resulting in a net path length or phase difference to the
focus. We have shown that such a disturbance will shift the closed
three-fringe pattern on the image plane, but will obey SOS conser-
vation. It is easy to see why the three angles of the fringe triangle,
and its orientation, are preserved, since these are predetermined
by the aperture’s geometry, and thus the fringes can only shift per-
pendicular to the fringe length, as seen earlier and described by
Equations (7) or (13). While less obvious, it remains physically
intuitive that the lengths of the triangle’s sides are also preserved,
since a phase distortion associated with a single aperture affects the
visibilities on the two baseline vectors that include this aperture
with equal but opposite values, so that the two fringes involved
shift relative to each other in such a way that the lengths between
the intersecting vertices are preserved.h

Figure 4 illustrates the result when the phase of one element
in a closed triad is corrupted. The three dark circles indicate the
elements (unmasked apertures in an optical telescope, or antennas
in a radio interferometer) in the aperture plane (in dark shade of
grey), assumed to be on the Z = 0 plane, whose normal vector is
indicated by the thick, solid upward arrow. The radiation is then
directed from the elements to the focal (image) plane, wherein a
three-fringe image is synthesised by the interference of the EM
waves. Consider a phase corruption of one array element (indexed
by a) by an amount δξa(λ), equivalent to a path length change,
	Da, related by δξa(λ)= 2π	Da/λ, from that aperture element
to the focal plane. Since three non-collinear points determine a
plane, one can visualise this phase corruption, or the extra path
length, at one of the aperture elements as a tilting of the aper-
ture plane relative to the original. The tilted aperture plane and
its normal are shown by the light grey-shaded region and the
dashed arrow, respectively. Such a tilt then directs the light in a
different direction, leading to a shift of the interference pattern in
the image plane. Each of the fringes from baselines that contain
the phase-corrupted aperture element will be subject to a posi-
tion offset in the image plane given by Equation (8), 	sab(λ)=
δξa(λ)/(2π |uab|). Except for the shift, the three-fringe pattern,
including the SOS characteristic, is otherwise conserved. These
arguments can be generalised to a scenario even when more than
one aperture element in a triad is subject to phase corruption.

4. Application to real data

We verify the visualisation and estimation of closure phase in the
image plane using three examples with real data from the Karl G.
Jansky VLA (Perley et al. 2009), and from the EHTi. The VLA is a
radio interferometer in New Mexico, comprised of 27 antennas of

gIn the optical case, the geometric delays are set by the shape and accuracy of the
parabolic surface, and sidereal tracking of the fringes is performed by moving the full
telescope. In radio interferometers, the array elements in the aperture plane coherently
amplify the voltages, and geometric delays and sidereal fringe tracking are performed
electronically, followed by cross-correlation of voltages from different array elements [see
Equation (2)].

hThe arguments above are true for displacements, 	Da , small compared to the baseline
lengths.

ihttps://eventhorizontelescope.org/.
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Figure 4. A schematic diagramof the effect of a phase error attributable to a single ele-
ment in a close triad of elements (denoted by dark circles) in an interferometer array.
The original aperture plane (in dark grey shade) is at Z= 0 with normal vector shown
by the thick, solid upward arrow, with the focal (image) plane, in the êz direction. The
phase error, δξa(λ), at one array element (indexed by a) can be effectively characterised
as a change in path length,	Da, from that array element to the focal plane (sometimes
referred to as ‘the piston effect’ Martinache et al. 2020) given by δξa(λ)= 2π	Da/λ.
This change in effective path length leads to a tilt of the aperture plane (in light grey
shade) as indicated by the new normal vector (tilted, dashed arrow), and hence a cor-
responding shift of the image plane. Thus, the image appears displaced relative to the
original image plane. The fringes of all baseline vectors that contain the array element
with the phase error will each be subject to a position offset as governed by Equation
(8), 	sab(λ)= δξa(λ)/(2π|uab|). Regardless of the shift, SOS conservation will apply to
the three-fringe interference image.

25 m diameter each, arranged in a Y-pattern. The EHT is a global
millimetre VLBI array involving 8 stations extending from Europe
to Hawaii.

The first example involves VLA observations of the compact
radio quasar 3C 286, including both calibrated data and uncali-
brated data. The second involves VLA observations of a powerful
extended radio galaxy with a complex morphology, Cygnus A,
using calibrated data, and then purposefully phase-corrupted data.
The third example involves EHT observations at high frequencies
of the active nucleus in the nearby radio galaxy, M87 (Walker et al.
2018).

These examples span the range from simple to complex mor-
phologies in the image plane, and from low to high frequencies
with very different phase stability criteria for the visibilities. These
examples will demonstrate the SOS conservation principle in real
data under varying observing conditions and reaffirm geometri-
cally the well-known fact that the closure phase is robust to phase
errors that are element-based, but not baseline-based. We will also
verify that the closure phases can be estimated geometrically from
the image plane, and that the results agree with those derived
from the aperture plane data (visibilities) to within the estimated
uncertainties.

4.1. Radio quasar 3C 286

The first example is that of radio quasar, 3C 286, which is a bright
and highly compact object, often used for flux density and complex
bandpass calibration at radio wavelengths. We employ the VLA in
its largest (‘A’) configuration and selected three antennas from the

array, corresponding to a triangle with projected spacings (base-
lines) of 12.4, 7.5, and 15.0 km. The flux density of 3C 286 at the
observing wavelength of λ = 3.2 cm (ν = 9.4 GHz), measured on
these antenna spacings is �4.4 Jy (1 Jy= 10−26 Wm−2 Hz−1). 3C
286 is the dominant source of emission in the field of view. It has a
compact core-jet structure, which on the spatial frequencies being
considered herein essentially appears as an unresolved, point-like
object (Perley & Butler 2013).

The nearly point-like structure of 3C 286 implies a closure
phase very close to zero, which further implies that the three-fringe
NPCs will intersect nearly at a point resulting in a nearly degen-
erate triangle. Equation (18) then implies that the height of such a
triangle will be δs′ab(λ)≈ 0.

We use a short 20 s observation made at λ = 3.2 cm with a
narrow bandwidth of 20 MHz. At this wavelength, the spatial fre-
quencies (in units of number of wavelengths) are |uab| = (u2ab +
v2ab)1/2 ≈ 3.912× 105, ≈2.371× 105, and ≈4.749× 105, respec-
tively. The root mean square (RMS) level of thermal noise in
the calibrated visibilities is ≈33 mJy, estimated using the VLA
exposure calculatorj using a 2 MHz spectral channel and a 20 s
averaging time interval.

We consider both calibrated and uncalibrated data. With the
former, the visibilities are expected to add coherently for a sky
image, since instrumental and tropospheric phase terms at each
element have been determined via a strong celestial calibra-
tor (in this case, 3C 286 itself). The uncalibrated data includes
electronics- and troposphere-induced phase offsets for each aper-
ture element in the interferometer array, which need to be cor-
rected via calibration before a coherent image of the target object
can be synthesised.

We obtained the interference pattern from a triad of aper-
ture elements as a dirty image (no deconvolution) made from the
three visibilities using the task ‘tclean’ of Common Astronomical
Software Applications (CASA; McMullin et al. 2007) with zero
iterations, which is effectively a sum of the Fourier transforms of
the individual visibilities. There are numerous ways in which the
fringe NPCs can be geometrically and directly determined from
the image plane without recourse to the visibility data in the aper-
ture plane. Here, we employed a simple method, which is neither
optimal nor efficient necessarily. In the first step, we determine
the intersecting vertices, (�abc,mabc), from the interference pattern
of any pair of fringes in the image plane, typically using matched
filtering followed by peak-fitting algorithm. Of the many possi-
ble possible triangles, we preferentially choose the ones closest to
the peak of the element power pattern which will yield the best
signal-to-noise ratio (S/N). Next, given this vertex and the slopes
of the two fringe NPCs from the predetermined projected element
spacings, uab, the individual fringe NPCs that contain this inter-
secting vertex are determined. Finally, with the three vertices of
the principal triangle determined, the closure phase can be mea-
sured geometrically using either its height [see Equation (18)] or
its area [see Equation (19)].

The thermal noise in the measurements and other systematics
will lead to uncertainties in the determined fringe NPCs and thus
in the measured closure phase. The phase deviations on the mea-
sured visibility phases, ψab(λ), from thermal noise and random
systematics in a high-S/N regime (S/N � 1) follow a Gaussian
distribution with a standard deviation that is inversely propor-
tional to the S/N (Taylor et al. 1999; Thompson et al. 2017). The

jhttps://obs.vla.nrao.edu/ect/.
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Figure 5. Three-fringe interference images from calibrated (left), uncalibrated (middle), and baseline-dependent phase-corrupted (right) 3C 286 data on projected array element
spacings (λuab) of 7.5 km (dot-dashed), 12.4 km (dashed), and 15 km (dotted) from the VLA. The image coordinates are in Right Ascension (R.A.) and Declination (Dec.) at the J2000
epoch, which are equivalent to the direction-cosine coordinates used earlier (Taylor et al. 1999; Thompson et al. 2017). The principal fringe NPCs (black lines) were determined
entirely from the image plane using the method described in the text. The calibrated and uncalibrated three-fringe interference patterns look identical except that the lack of
calibration shifts the interference pattern by≈.0′′2 relative to the calibrated fringes, which indicates themagnitude of the required phase calibration terms. Independent of calibra-
tion, the principal fringe NPCs in both cases are nearly coincident with each other which geometrically confirm that 3C 286 has a highly compact structure and the closure phase,
φ3(λ)≈ 0 as expected, remains invariant evenwhen the element-based instrumental and tropospheric phase corruption terms remain undetermined. A baseline-dependent phase
error (80◦, relative to the calibrated case) on one of the visibilities results in a shifting of the fringes corresponding to that corrupted visibility (from the uncorrupted fringe NPC
shown in white dashed line to the corrupted fringe NPC in black dashed line), while the other two remain unchanged. The resulting three-fringe interference pattern (right panel)
is very different from the other two panels, and the fringe NPCs are no longer coincident as evident from the non-zero area of the triangle enclosed by the three black lines, and
hence, the closure phase is non-zero even for 3C 286, a point-like source. Thus, in the presence of baseline-dependent phase errors, the SOS conservation does not apply to the
enclosed triangle, and the three-fringe interference image is no longer a true physical observable.

corresponding position error in the fringe NPCs is given by stan-
dard error propagation between the pertinent quantities, ψab(λ)
and δsab(λ), in Equation (8) as

[
Var (δsab(λ))

]1/2 =
[
Var (ψab(λ))

]1/2
2π|uab| ≈ (S/N)−1

2π|uab| . (20)

This is also typically the case with astrometric errors in VLBI
applications (Thompson et al. 2017). This uncertainty will also
propagate into the estimated closure phase. In the 3C 286 data
analysed here (2MHz spectral channel, 20 s integration), the signal
strength from 3C 286 and the thermal noise RMS in the visibilities
are roughly uniform across the different aperture element spacings
giving a S/N ≈ 133 on each visibility.

Figure 5 shows the three-fringe interference images made from
calibrated (left panel) and uncalibrated (middle panel) data. The
principal fringe NPCs are shown as black lines (dashed, dot-
dashed, and dotted for 12.4, 7.5, and 15.0 km element spacings,
respectively). They were determined geometrically using the sim-
ple peak-fitting procedure described above and did not use any
aperture plane measurements involving the visibilities, except the
mathematically predetermined array element spacings, uab [see
Equation (13)]. For the calibrated data, the fringe NPCs nearly
intersect at a point, indeed, on a grid of points, including the posi-
tion of 3C 286. Importantly, the uncalibrated fringes also result in
a similar grid of points. The only change is that the grid shifts by
about .0′′2 relative to the pattern seen in the calibrated data.

We also consider a counter-example in the right panel in
which an 80◦ phase corruption occurs in a visibility in a baseline-
dependent manner rather than through one or more individual
elements. In this case, two of the fringe NPCs whose visibilities

were not corrupted will remain unchanged as they are unaffected
by the corruption. Only the fringe NPC of the phase-corrupted
baseline will be shifted (uncorrupted in white dashed line and cor-
rupted in black dashed line). This will not result in a change of
shape or orientation (which are set by the geometry of the baseline
vectors), but will change the size of the triangle enclosed by the
three NPCs which effectively modifies the closure phase. And the
net three-fringe interference pattern appears to be very different
than the calibrated and uncalibrated cases. Therefore, the closure
phase (the triangle’s SOS characteristics) will no longer be con-
served, implying that the three-fringe interference pattern in the
presence of baseline-dependent phase errors is no longer a true
physical observable. This demonstrates geometrically that strict
closure phase and SOS conservation only occurs if the phase error
can be attributed to individual array elements (thereby affecting
the visibilities in two baselines with opposite signs), not individual
baselines.

The principal closure phases were measured to be φ3(λ)≈ 1.7◦
and φ3(λ)≈ 2◦ from calibrated and uncalibrated data, respec-
tively. The errors derived from the fitting process, based on
Equation (20), are �1.3◦, implying that both results are indeed
statistically consistent with zero closure phase, as expected for a
point-like structure.

For verification, it is also possible to calculate the closure phase
using the visibilities (in the Fourier- or aperture domain), as is typ-
ical in radio interferometry. From the individual visibility phases
for each baseline in the triad, we calculate, using Equation (14),
a closure phase of 2.6◦ ± 0.74◦ and 2.0◦ ± 0.74◦ for the calibrated
and uncalibrated data, respectively. The RMS uncertainty in the
visibility phases was again calculated as a reciprocal of the S/N,
in radians. The closure phase is the sum of three visibility phases.
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Hence, the phase noise, which is uncorrelated between the three
visibilities, increases by a factor of �√

3, to �0.74◦ in the clo-
sure phase. These aperture plane estimates of closure phase are
statistically consistent with that from the image plane discussed
earlier. The quoted uncertainties in the aperture plane measure-
ments represent that expected from thermal noise alone ignoring
any potential systematic errors and are thus optimistic relative to
the image plane measurements.

This result demonstrates a few important principles. First, the
fact that the fringes intersect at a point even for the uncalibrated
data geometrically confirms the invariance of closure phase (zero,
for a point-like morphology), for an instrument in which the
instrumental and tropospheric phase contributions can be fac-
tored into element-based terms as in Equation (3). But closure
phase is not invariant to baseline-dependent phase errors, which
has been shown here geometrically. Second, the shift in the grid
pattern in Figure 5 is a measure of themagnitude of element-based
phase corruptions due to the instrument and troposphere. Third,
the fact that the fringes nearly intersect at a point implies that,
for the VLA, the atmospheric and electronic phase corruptions to
the data are predominantly factorisable into element-based gains,
and are not dominated by corruptions that may be idiosyncratic
to a given interferometric baseline. And fourth, it is possible to
use this geometric understanding in the image plane for diagnos-
ing baseline-dependent phase errors, provided a model is known
for the object being imaged, or in the case of highly redundant
arrays. The key distinction between element-based and baseline-
based corruptions is that the former will result in an arbitrary
translation of fringes in the image plane but conserve the SOS
of the triangle, whereas a baseline-based error will fundamentally
modify the SOS parameters of the principle triangle, depending on
the nature of the baseline-dependent error. For example, a simple
baseline-based phase error such as the one discussed above in the
3C286 example will modify only the size of the principal triangle,
while a miscalculated antenna spacing vector canmodify any or all
of the SOS parameters.

4.2. Radio galaxy Cygnus A (3C 405)

As a second example, we employ VLA observations at λ = 3.75
cm (ν = 8.0 GHz) of the bright, extended radio galaxy, Cygnus
A (Sebokolodi et al. 2020). Cygnus A has a total flux density of
170 Jy at this wavelength, distributed in two extended lobes with a
full extent of 120′′. The observations were made in the ‘D’ con-
figuration of the VLA, which has a longest baseline of ≈1 km,
corresponding to a spatial resolution of ≈8′′. Figure 6 shows an
image synthesised from 4 min and 128 MHz of these data. Cygnus
A is noted to have complex spatial structure typical of an Fanaroff–
Riley II (FR II) morphology (edge-brightened with bright hotspots
at the outer edges of their lobes) (Fanaroff & Riley 1974).

We choose three baselines in a rough equilateral triangle with
projected baseline lengths of 797.1, 773.7, and 819.7m, and respec-
tive correlated flux densities of 22.7, 26.4, and 38.3 Jy. We employ
a single record with an integration time of 8 s and spectral chan-
nel width of 8 MHz, giving a thermal noise of �82 mJy in a single
polarisation.

We employ calibrated data, then corrupt the phase of one of
the array elements in a closed triad by 80◦, as would occur if,
for instance, there was a significant miscalibration, to detail its
geometrical effect on the resulting fringes, and eventually cor-
rupt all three element phases by random amounts (−68.4◦, 101.7◦,
and 90.4◦) as representative of real-world conditions. From the

Figure 6. Image of Cygnus A, a bright radio galaxy, synthesised from4min and 128MHz
of VLA data at λ = 3.75 cm (Sebokolodi et al. 2020). Cygnus A has a complex structure at
these wavelengths: a bright core centred on the active galactic nucleus (AGN) and two
bright and non-symmetric lobes, classified as an FR II morphology. The angular reso-
lution of the image (‘beam size’) is ≈8′′. The contours correspond to −2.5σ (dashed),
2.5σ , 5σ , 10σ , 20σ , 40σ , 80σ , 160σ , and 320σ , where, σ ≈ 0.1 Jy beam-1 is the RMS
of noise in the image. The colour bar uses a ‘symmetric’ logarithmic scale to represent
both negative and positive values of brightness.

aperture plane visibilities, we calculate a closure phase for the cali-
brated and the two forms of corrupted visibilities of 112.7◦ ± 0.3◦,
where the uncertainty is set by the quadrature sum of the indi-
vidual phase errors based on the respective visibility S/N (�275)
using Equation (20).

In Figure 7, we show the 3-element interference images from
calibrated (left panel) and two forms of corrupted data (one
element and three element corruptions in the middle and right
panels, respectively). In this case, the closure phase is clearly
non-zero, and hence the three fringe NPCs do not intersect in a
grid of points, as for 3C 286. However, a grid pattern remains vis-
ible in the three-fringe images, and this pattern repeats exactly,
with a simple shift between the three cases considered. The phase
corruption of a single element in the triad as shown in the middle
panel is geometrically illustrative. The two fringes involving this
corrupted element are shifted, but there is no change in the third
fringe. The shifting of the pattern, and thus the triangle enclosed
by the fringes, will then occur parallel to the uncorrupted fringe,
as indicated by the red double-headed arrow in the middle panel.
When multiple element phases are corrupted (right panel), the
same reasoning can be applied sequentially to all the corrupted
element phases to obtain the overall shift. Between all three cases,
we find the SOS conservation principle to be valid. We calculate
the closure phase in the image plane using the same process as
employed for 3C 286 above using the principal triangle’s heights,
and find it to be 112.4◦ ± 1.5◦ on average, where the uncertainties
were estimated using the uncertainties in the points of intersection
determined from the peak-fitting procedure.

The closure phases were also estimated using the relations
between the areas in the aperture and image planes. For the chosen
triad,AA3(λ)≈ 1.976× 108 (in units of wavelengths squared). The
corresponding image plane areas of the principal triangles,AI3(λ),
are found to be ≈1.236× 10−10, ≈1.263× 10−10, and ≈1.202×
10−10 for the three cases. Hence, the respective closure phases
computed are ≈112.5◦, ≈113.7◦, and ≈110.9◦, which are consis-
tent with the estimates above and confirm the relations derived in
Section 3.

Again, although our image plane estimate appears to have a
higher uncertainty, it must be noted that our aperture plane uncer-
tainty calculation represents a best-case scenario assuming ideal
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Figure 7. Three element interference patterns similar to Figure 5 but for Cygnus A data. Corrupting one or all element phases results in the shifting of the interference pattern
(middle and right panels) relative to the calibrated fringes (left panel), which indicates themagnitude of the required phase calibration.When a single element’s phase is corrupted
by 80◦ (middle panel), the two fringes involving that element get affected and shift while the third fringe which is unaffected. This results in the entire triangle enclosed by the
fringes sliding along the uncorrupted fringe as indicated by the red double-headed arrow while preserving its shape, orientation, and size (SOS conservation). The argument
can be extended to the case when all three element phases are corrupted by random amounts as representative of real-world conditions (right panel) by applying the same
logic sequentially to one corrupted element phase at a time. Independent of the degree of calibration, the principal fringe NPCs in all cases are clearly non-coincident with each
other which geometrically confirms that Cygnus A has a complex structure (see Figure 6) in contrast to 3C 286. Grey-shaded regions indicate twice the RMS uncertainties in the
determined positions of the fringe NPCs as determined from Equation (20), but they are barely visible due to the high S/N (�275) in the visibilities. The closure phase calculated
from the principal triangle’s heights is φ3(λ)≈ 112.4◦ (see Section 3.1) with an RMS uncertainty of≈1.5◦, and remains invariant even after corrupting one or more element phases
by large amounts.φ3(λ) estimated from the area relations in Section 3.2 are≈112.5◦,≈113.7◦, and≈110.9◦ from the fringe NPCs of the three cases considered, respectively. These
images show clearly the SOS conservation principle, that is, for a closed triad of array elements, the resulting images are a true representation of the sky brightness distribution,
independent of element-based phase corruption, besides an overall translation of the pattern which does not affect the SOS conservation. If the phase error was instead baseline-
dependent (not shown here), only one of the NPCs that corresponds to the affected baseline will be displaced while the other two will remain unchanged and unconstrained by
this phase perturbation, thereby changing the size of the resulting triangle in the image plane, as demonstrated in Figure 5 (right) for 3C 286. Thus, the SOS conservation principle
will not hold for a baseline-dependent phase error.

thermal noise, ignoring imaging systematics around a bright, com-
plex object such as Cygnus A. The value of closure phase inferred
from the image plane is not only consistent with that estimated
from the corrupted visibilities in the aperture plane, but also geo-
metrically confirms that it is indeed independent of element-based
calibration.

4.3. EHT observations of M87

As a third example, we have analysed data provided by the VLBI-
based EHT observations of the supermassive black hole in M87.
This example samples a very different regime in radio inter-
ferometry, namely, much higher frequencies and much longer
baselines. Therefore, the data are at a much finer spatial resolution
(∼20μas), and the phase stability is more of a challenge relative to
tied-array interferometry with the VLA.k

The EHT data (Event Horizon Telescope Collaboration 2019)l
are described in detail in Event Horizon Telescope Collaboration
et al. (2019c). In brief, observations were made of the nuclear

kTied-array implies a distributed timing signal from a central local oscillator that pro-
vides relative stability for element phases across the array. For VLBI observations spanning
inter-continental baselines, such as is employed with the EHT, phase-stable local oscillator
distribution is impossible, and local timing has to be maintained via accurate hydrogen
maser clocks at each station in the array. The synchronisation of these clocks is one of the
main sources of uncertainty in determining the interferometric phases of the array (Taylor
et al. 1999, Lecture 22 (Walker)).

lhttps://eventhorizontelescope.org/for-astronomers/data.

regions of the nearby radio galaxy, M87 (Virgo A), with the goal of
imaging the event horizon of the hypothesised supermassive black
hole. Observations were made on four days at 227.1 and 229.1
GHz, each with a total bandwidth of 1.9 GHz, using an array com-
prised of seven telescopes spanning the globe, including Europe,
South America, continental USA, and Hawaii.

The publicly available EHT data have had a priori gain (visibil-
ity flux density scale) calibration applied based on the measured
system parameters at each telescope, as well as delay calibration
via visibility fringe fitting, plus further adjustments based on a
few redundant baselines in the array. The gain calibration pro-
vides reasonable visibility amplitudes (to within∼10%). The delay
calibration provides enough phase stability to average the data in
time to 10 s records, and in frequency to a single 1.875 GHz chan-
nel. Following the EHT collaboration nomenclature, we designate
these data as the ‘network-calibrated data’. However, the EHT
collaboration emphasises that the initial calibration alone does
not allow for phase coherent imaging, since large element-based
phase offsets can remain due to residual errors in the tropo-
spheric model, station clocks, polarisation leakage, or other errors.
Further element-based phase self-calibration is required to pro-
duce a phase coherent astronomical image. They state: ‘Lack of
absolute phase information and a priori calibration uncertainties
in EHT measurements require multiple consecutive iterations of
CLEAN followed by self-calibration, a routine that solves for sta-
tion gains to maximise consistency with visibilities of a specified trial
image (Pearson & Readhead 1984).’
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Figure 8. Images of M87 at 229.1 GHz made using publicly available EHT data. Left:
Images from the ‘network-calibrated’ data, that is, with just a priori flux density and
delay calibration that still contains residual element-based phase errors. Right: Images
after hybrid mapping (iterative imaging and self-calibration) as presented in Carilli &
Thyagarajan (2022). The angular resolution of the image is≈20μas. The contour levels
of surface brightness progress geometrically in factors of two. The contours corre-
spond to−3σ (dashed), 3σ , 6σ , 12σ , 24σ , 48σ , and 96σ , where, σ ≈ 0.51 mJy beam-1
is the RMS of noise in the self-calibrated image. The colour bar uses a linear scale as
indicated on the top.

We have performed a standard hybrid mapping process (imag-
ing and self-calibration; Pearson & Readhead 1984), the results
of which will be presented in detail in Carilli & Thyagarajan
(2022). Figure 8 shows the results from our hybrid map-
ping process of the EHT data (Carilli & Thyagarajan, 2022).
We show the images synthesised at 229.1 GHz from the
network-calibrated data, and after the hybrid mapping process
in the left and right panels, respectively. The former does not
produce a coherent image, due to the presence of large residual
element-based phase errors. After a simple hybrid mapping and
self-calibration process, the image converges to an asymmetric
ring with a maximum diameter of about 50 μas, consistent with
the analysis of the EHT collaboration (Event Horizon Telescope
Collaboration et al. 2019a, d).

Now, we present the results of the closure phase image analy-
sis that parallels the sections above on 3C 286 and Cygnus A. For
our image plane closure phase estimation, we select a short inte-
gration (1 min) with the most sensitive closed triad in the array,
namely, the Atacama Large Millimeter Array (ALMA), the Large
Millimeter Telescope (LMT), and the Submillimeter Array (SMA)
stations. We then generate the three-fringe images under three
scenarios: (i) the network-calibrated data (containing residual
phase errors), (ii) the network-calibrated data, with the phase of
one element further corrupted by 80◦, and (iii) the self-calibrated
data.

The results are shown in Figure 9, from left to right, respec-
tively. The three-fringe interference image in all scenarios are
identical besides an overall shift, thus clearly demonstrating the
SOS conservation principle. The three principal NPCs (black
lines) determined geometrically in the image plane are also shown.
The right panel shows a zoomed-in view of the triangle enclosed
by the three fringe NPCs. From this triangle enclosing a finite area,
we estimate the closure phase in the image plane by applying the
methods described in Section 3, similar to the 3C 286 and Cygnus
A examples above. The closure phase calculated from the principal
triangle’s heights are 37.9◦, 37.4◦, and 41◦ for the three scenarios,
respectively, with errors ∼20◦ estimated from the fitting process.
The closure phase estimates from the ‘product of areas’ method
are 37.8◦, 37.1◦, and 40.6◦, respectively, for the three scenarios.

From the visibilities themselves, we derive closure phases from
these three fringes to be 37.1◦, 37.1◦, and 37.9◦ for the three scenar-
ios, respectively. We calculate the uncertainty on these values by
examining the scatter of the phases on the least sensitive baseline
in the triad (LMT to SMA), over scans of 10–15 min using 1 min
records. The resulting phase RMS is ∼15◦. This value is consistent
with the S/N on that visibility, which is between 4 and 5 (Taylor
et al. 1999, Lecture 9 (Wrobel & Walker)). We consider this to be
the RMS error on the closure phase measurements, since the RMS
phase scatter on visibilities involving ALMA is more than 10 times
lower, and hence does not contribute appreciably to the closure
phase uncertainty.

Once again, the image plane methods are not only consistent
with each other, but also with the standard aperture plane method
based on summing the visibility phases presented above. These
results demonstrate that closure phases can be estimated in the
image plane even in challenging interferometric experiments, such
as high frequency EHT VLBI imaging of M87. Moreover, after
a priori flux density calibration, Figure 9 shows that the snapshot
three-fringe images are good observable representations of the
true sky brightness, independent of element-based self-calibration
or phase corruption, besides the overall translations. This can
be compared to the network-calibrated vs self-calibrated images
in Figure 9, in which the former does not produce a coher-
ent image. The reason is, while the snapshot three-fringe images
on closed baselines may be true representations of the sky, they
have independent unconstrained translations that, when summed,
would not produce a coherent image.

5. Summary

Closure phase has been extensively used in astronomical inter-
ferometry for decades. But, due to its inherently higher-order
dependence on the moments of the spatial intensity and spa-
tial coherence, a geometric understanding of closure phase in the
image plane has been lacking. In this paper, we show how closure
phase manifests itself in the image plane. We derive and demon-
strate the SOS conservation principle in the image plane as the
Fourier domain counterpart of the familiar aperture plane clo-
sure phase. The properties of the principal image plane triangle
enclosed by the three fringes of a closed triad of array elements
are preserved, even in the presence of large element-based phase
errors, besides possibly an overall translation of the 3-element
interference pattern. We establish that the SOS conservation prin-
ciple is the precise geometric analog of the invariance of closure
phase to aperture element-dependent corruptions introduced by
the propagation medium and the measuring instrument, as well as
any translations of the intensity distribution in the image, which
has only been understood mathematically from the viewpoint of
the aperture plane to date.

The triangle SOS conservation principle provides two avenues
to estimate closure phase directly in the image plane, rather
than the standard practice of three measurements in the Fourier
domain (or the aperture plane). First, the closure phase from a
triad of aperture elements can be geometrically estimated in the
image plane from a single measurement of any one of the heights
of the triangle enclosed by the three principal fringes. Second, it
can also be estimated from an invariant relationship that exists
between the squared closure phase and the product of the areas
enclosed by the triad of array elements in the aperture plane and
the triangle enclosed by three fringes in the image plane. We have
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Figure 9. Three-fringe interference images of M87 using a snapshot (1 min) of EHT data at 229.1 GHz. The stations involved are: ALMA, the LMT, and the SMA. The first panel (from
left) shows the three-fringe interference pattern that has a priori flux density scale and delay calibration applied. The second panel uses the same data but with one element
(ALMA) phase-corrupted by 80◦. The third panel is obtained by hybrid mapping and self-calibration. The three-fringe interference pattern is found to be the same across these
panels except for an overall translation relative to each other. The fourth panel is an inset showing the zoomed-in view of the self-calibrated three-fringe interference pattern.
The fringe NPCs enclose a triangle of a finite area, thereby indicating a non-zero value for closure phase that was estimated from the image plane to be ≈38.8◦ and ≈38.5◦

from the ‘principal triangle’s height’ and ‘product of areas’ methods, respectively. These agree with the value of≈37.5◦ derived from the aperture plane measurements (i.e., the
visibilities) to within the expected uncertainties. Besides confirming that the three-fringe interference pattern remains the same except for relative overall shifts, these closure
phase estimates were found to be consistent between the three panels denoting different degrees of calibration accuracy, thereby verifying the SOS conservation principle.

generalised these invariant relationships derived for closure phases
on triads to any closed polygon in an N-element interferometer
array. This geometric understanding of closure phase has potential
to provide a heuristic for identifying and distinguishing between
baseline-based and element-based corruptions in the image
plane.

By analysing real interferometric VLA observations of the
bright radio quasar 3C 286 and the radio galaxy Cygnus A, and
high frequency EHT VLBI observations of M87, we have inde-
pendently computed the closure phase using the conventional
aperture plane method and the direct geometric method in the
image plane, thereby validating the latter approach. We also ver-
ify geometrically in the image plane that the closure phase in
real data is robust to element-based phase errors and calibration.
The results confirm the SOS conservation principle over a wide
range of radio interferometric conditions. Although this geomet-
ric understanding of closure phase in the image plane (namely, the
SOS conservation principle) was motivated by radio interferome-
try for astronomy applications, the existence of close parallels in
optical interferometry as well as other disciplines has been iden-
tified (appendix of Thyagarajan & Carilli 2020, and references
therein).

In future work, we will explore the application of SOS conser-
vation principle to interferometric imaging where the basic output
of the interferometer are images. The fact that each three-fringe
image is a true representation of the sky surface brightness, inde-
pendent of element-based phase calibration, presents the oppor-
tunity to perform interferometric imaging and self-calibration
completely in the image plane, without conversion to aperture
plane quantities.
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A. Derivation of Relation between Closure Phase and Areas
in the Aperture and the Image Planes

In Figure 3a, consider the segment bounded by the vertices of the
intersection of the NPC of fringe F01(ŝ, λ) with the other two fringe
NPCs, as the base of the triangle. Let θ012(λ) be the angle between
the NPCs of the fringes F01(ŝ, λ) and F12(ŝ, λ). Then θ012(λ) is also
the angle between u01 and u12 in the aperture plane. Thus, the base
of the triangle is b(λ)= δs′12(λ)/ sin θ012(λ), where δs′12(λ) is the
positional offset of the NPC of the fringe F12(ŝ, λ) from its opposite
vertex. The height is simply h(λ)= δs′01(λ). Then, using Equation
(18), the area enclosed by the fringe NPCs in the image plane is

AI3(λ)= 1
2

δs′01(λ) δs′12(λ)
sin θ012(λ)

= ψ′
01(λ)ψ′

12(λ)
8π2 |u01| |u12| sin θ012(λ)

. (A1)

Substituting AA3(λ)= (1/2) |u01| |u12| sin θ012(λ), we get

ψ2
3(λ)= 16π2 AA3(λ)AI3(λ) . (A2)

Note that the equations in this section are directly applicable
only to non-parallel fringes (or, non-collinear array elements in
the aperture plane) for which Cabc �= 0, or equivalently, θ012(λ) �= 0
and AA3(λ) �= 0. In the limiting case when the triad of array ele-
ments are collinear in the aperture plane, θ012(λ)= 0, and hence,
Cabc = 0 and AA3(λ)= 0. Because the fringe NPCs are parallel
to each other and do not have a distinct point of intersection
between them, the area enclosed by the fringe NPCs on the tangent
plane of the image is indeterminate, fromEquation (A1). However,
the product of these two areas is still a well-defined, finite value
proportional to the closure phase squared, given by Equation (A2).

B. Closure Phase Relationships on N-Polygons

The closure phase relations established on a triad of array elements
can be extended to generic closed N-polygons in the aperture
plane. A closed N-polygon can be decomposed into N − 2 adja-
cent triads with each adjacent pair sharing an edge and all such
triads sharing a common vertex as shown in Figure B.1. The clo-
sure phase on the N-polygon is simply the sum of the closure
phases on the adjacent elemental triads defined here, where the
visibility phase measured by the element spacing on the edge
shared between adjacent triads appears as the negative of each
other and thus vanishes perfectly in the sum (see also Cornwell
1987).

Assuming non-collinear aperture array elements, the intersec-
tion between the NPCs of fringes, F01(ŝ, λ) and FN1(ŝ, λ), can be
chosen, for example, as the phase centre, ŝ0. Then, the visibility
phases on these two fringes vanish because the NPCs of fringes
F01(ŝ, λ) and FN1(ŝ, λ) pass through ŝ0. The closure phase on theN-
polygon is then determined by the rest of the N − 2 fringe NPCs.
From Equation (13), the visibility phases of the fringe NPCs for
the chosen phase centre are

ψ′
ab(λ)=

{
0 , a= 0,N − 1 ,

2πuab · ŝ0 + ψab(λ) , otherwise,
(B1)

with, b= 	a+ 1
N , and,
ψa	a+1
N (λ)= −2πua	a+1
N · ŝ , a= 0, 1, . . .N − 1 .
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Figure B.1. An aperture plane view of an N-polygon interferometric array, indexed
by a= 0, 1, . . . , N− 1. The aperture element spacing in wavelength units (or spatial
frequencies) and the corresponding spatial coherence are indicated by ua	a+1
N and
Va	a+1
N (λ), respectively, on the adjacent sides. By choosing a vertex (indexed by 1 in
this case), adjacent triads sharing this common vertex and having one overlapping
side (shown by dashed lines) with the next triad can be defined, each with its own clo-
sure phase,ψ3(q)(λ), q= 1, 2, . . . N− 2. The closure phase on the N-polygon is the sum
of the closure phases on these adjacent triads with a consistent cyclic rotation of the
vertices as indicated by the arrowed circles,ψN(λ)= ∑N−2

q=1 ψ3(q)(λ).

Here, ψ′
ab(λ) is simply the phase offset proportional to the posi-

tional offset between ŝ0 and each of the fringe NPCs given by
Equation (8). Using Equation (13), the closure phase is obtained by
summing the closure phases of each of the adjacent triads, which
are effectively identical to the phase offsets, ψ′

a	a+1
N (λ), corre-
sponding to these position offsets. Thus, similar to Equation (16),
we get

ψN(λ)=
N−2∑
q=1

ψ3(q)(λ)=
N−1∑
a=0

ψ′
a	a+1
N (λ) , (B2)

where, the subscript q indexes the N − 2 adjacent triads constitut-
ing the closed N-polygon, and ψ3(q)(λ) denotes the closure phase
on triad q. Equation (B2) is a generalisation of Equation (16) for
the N-polygon. B.

Note that all the relations throughout the paper hold for
any arbitrary closed polygon in any configuration between the
available vertices, including self-intersecting polygons, and not
limited to only the convex or concave configurations. Each poly-
gon configuration will have a unique closure phase, in general, of
course.

We now examine whether the SOS conservation property
applies directly to anN-polygon of fringe NPCs in the image plane
when N ≥ 4. This can be understood by perturbing the phase of
one of the aperture array elements. This phase perturbation will
affect two fringes whose baseline vectors contain this aperture ele-
ment with opposite displacements of their respective fringe NPCs.
However, the rest of the fringe NPCs will remain unchanged and
are unconstrained by this change. Therefore, the superposed fringe
interference pattern from all the N array elements (N ≥ 4) will
not be conserved on the whole. However, when the N-polygon is
decomposed into adjacent, elemental triads, as described above,

Figure B.2. Left: An aperture plane view of a 4-polygon interferometric array decom-
posed as two adjacent triads sharing an edge (dashed lines). The element spacing
of the shared side in one triad is negative of that in the adjacent triad as indicated.
Thus, the corresponding spatial coherences are conjugates of each other. The area of
the 4-polygon is AA4(λ)= ∑2

q=1 AA3(q)(λ). Right: An image plane view of the visibility
phases on the 4-polygon and the adjacent triads using the principal NPCs of the corre-
sponding fringes, Fab(ŝ, λ), a, b= 0, 1, . . . N− 1, b �= a. The principal fringe NPCs from
adjacent spacings in the 4-polygon are shown by the thick, solid black lines, while
that of the spacing shared by the adjacent triads is shown by the two dashed lines
where one phase is negative of the other [φ02(λ)= −φ20(λ)] due to the conjugate rela-
tionship between their spatial coherences. The closure phases of the two triads are
φ3(1)(λ)= φ01(λ)+ φ12(λ)+ φ20(λ) andφ3(2)(λ)= φ02(λ)+ φ23(λ)+ φ30(λ), where the vis-
ibility phases, φab(λ) are the phase offsets associated with the positional offsets of the
phase centre (origin) from the respective fringe NPCs according to Equation (7). The
closure phase of the 4-polygon is the sum of closure phases of the two adjacent tri-
ads,φ4(λ)= ∑2

q=1 φ3(q)(λ)= ∑3
a=0 φa	a+1
4 (λ). However, the area enclosed by the fringe

NPCs of the 4-polygon (area enclosed between the four thick, solid black lines), AI4(λ),
is not equal to the sum of the areas enclosed by the two sets of triad fringe NPCs (the
two yellow-shaded regions). Thus, AI4(λ) �= ∑2

q=1 AI3(q)(λ). The SOS conservation does
not apply directly to the 4-fringe pattern (denoted by their NPCs in solid black lines)
as a whole. However, the SOS conservation holds individually for the elemental triad
fringe patterns denoted by the yellow shaded regions.

then the individual triad patterns will obey the SOS conservation
principle as discussed earlier.

The relationship established in Section 3.2 between the clo-
sure phase and the areas in the aperture and the image planes can
be extended to an N-polygon by expressing it in terms of adja-
cent and elemental 3-polygon units as above, each of which obey
gauge-invariance and SOS conservation. Let the elemental triads,
all sharing a common vertex (denoted by index a= 0) in the aper-
ture plane, be indexed by q= 1, 2, . . .N − 2. As a simple example,
consider a 4-polygon in the aperture plane with four vertices
indexed by a= 0, . . .N − 1, with N = 4. The two adjacent trian-
gles with a common vertex at a= 0 are denoted by 	012 and 	023
with areasAA3(q)(λ) with q= 1 and q= 2, respectively, in the aper-
ture plane. The area of the 4-polygon is AA4(λ)= ∑2

q=1 AA3(q)(λ).
Note that the edge joining the vertices 0 and 2 is only intermediate
and the visibility phase on this edge will be immaterial as we will
express the results using only gauge-invariant quantities from the
individual elemental triads.

The closure phase relations apply to each of the N − 2 adjacent
elemental triads (indexed by q) constituting the N-polygon. For
the 4-polygon, q= 1, 2. Thus, from Equation (A2),

ψ2
3(q)(λ)= 16π2 AA3(q)(λ)AI3(q)(λ) , q= 1, 2 . (B3)
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Because ψ4(λ)= ∑2
q=1 ψ3(q)(λ) from Equation (B2),

ψ2
4(λ)= 16π2

2∑
q=1

AA3(q)(λ)AI3(q)(λ)

+ 2
1∑

q=1

2∑
r=q+1

ψ3(q)(λ)ψ3(r)(λ) , (B4)

which can be generalised to an N-polygon as

ψ2
N(λ)= 16π2

N−2∑
q=1

AA3(q)(λ)AI3(q)(λ)

+ 2
N−3∑
q=1

N−2∑
r=q+1

ψ3(q)(λ)ψ3(r)(λ) . (B5)

Alternatively, we can also express the relation between the area of
the N-polygon in the aperture plane and the closure phases in the
adjacent elemental triads as

AAN(λ)=
N−2∑
q=1

AA3(q)(λ)= 1
16π2

N−2∑
q=1

ψ2
3(q)(λ)

AI3(q)(λ)
. (B6)

It is noted that both Equations (B5) and (B6) are gauge-invariant.
The former expresses the closure phase on theN-polygon in terms
of its adjacent elemental triads. The latter expresses the area of
the N-polygon in the aperture plane as a weighted sum of clo-
sure phases on the adjacent elemental triads where the weights are
inversely proportional to the areas enclosed by the fringe NPCs
of the elemental triads. In either case, the gauge-invariant clo-
sure phase relations on each of the elemental triads, and hence
on the N-polygon, can be measured geometrically. The 4-polygon
example is illustrated in Figure B.2.

Note that in either of the equations above, the area under the
fringe NPCs is expressed only in terms of the elemental triangle
NPCs and not the N-polygon in the image plane. This is because
the area enclosed by the fringe NPCs of the N-polygon is not the
sum of the elemental triad fringe NPCs in the image plane, as
illustrated in Figure B.2. Therefore, AI4(λ) �= ∑2

q=1 AI3(q)(λ).
This inequality results from the fact that the SOS conserva-

tion is not expected to directly apply for the 4-fringe pattern. For
example, perturbing the phase of array element ‘1’ will only dis-
place the NPCs of fringes F01(λ) and F12(λ) leaving the NPCs
of fringes F23(λ) and F30(λ) unchanged. The resulting change in
NPCs of fringes F01(λ) and F12(λ) and the lack of constraint on
NPCs of fringes F23(λ) and F30(λ) will result in a distortion or
shearing of the 4-fringe interference pattern (solid black lines) in
the image plane shown on the right panel of Figure B.2. Hence,
the SOS conservation does not apply to the 4-fringe interference
pattern as a whole. However, the yellow regions denoting the
3-fringe interference patterns from the two adjacent, elemental tri-
ads will individually obey the SOS conservation property despite
the non-conservation of the net 4-fringe interference pattern.

Although a detailed discussion of the propagation of measure-
ment noise into the measured closure phases is beyond the scope
of this paper and discussed in detail elsewhere (Blackburn et al.
2020; Christian & Psaltis 2020), the general trends of the noise
properties of closure phases on N-polygons can be inferred. The
phase noise in the individual fringe is, in general, analytically
involved but is well approximated by a Gaussian distribution in
a high S/N regime (Taylor et al. 1999; Thompson et al. 2017).

The same applies to closure phases as well (Blackburn et al. 2020;
Christian & Psaltis 2020). Since the closure phase of anN-polygon
interferometric array is the sum of the N individual fringe phases,
[Equation (B2)], the net uncertainty increases if the individual
phase noises of the fringes are uncorrelated. As N increases, the
net uncertainty in the closure phase will tend to follow a Gaussian
distribution as governed by the Central Limit Theorem. In a high
S/N regime, the net uncertainty will follow closely a Gaussian
distribution and grow as ∼N1/2.

C. Parallels In Optical Interferometry

We have approached this problem from the perspective of radio
interferometric imaging, but the insight is applicable to opti-
cal interferometry, where measurements are made in the image
plane, with particular relevance to aperture masking interferom-
etry (Buscher 2015; Monnier 2003b; Quirrenbach 2001). Indeed,
consideration of simple aperture masking provides further phys-
ical insight into the interpretation of closure phase in the image
domain (Baldwin et al. 1986; Cornwell 1987; Haniff et al. 1989;
Tuthill et al. 2000).

In radio astronomy, the visibility phases are measured as the
argument of the complex cross-correlation products of voltages
between the elements, as per Equation (3), where the voltages are
generated via coherent amplification of the radio signals at each
element in the aperture plane. These visibility phases can then be
summed in closed triangles to produce closure phases. In optical
interferometry, voltages in the aperture plane cannot be captured
and coherently amplified, and thus the element pair visibilities are
generated via mirrors (e.g., siderostats or unmasked regions of
a larger aperture) and lenses, beam splitters, and/or beam com-
biners, then coherently reflect, focus, and interfere the light from
different aperture elements onto a photon detector, typically a
charge-coupled device (CCD), resulting in interference fringes.
The phase and amplitude of the visibilities can then be extracted
through a Fourier analysis of the image (using knowledge of the
beam combination and reimaging optics), and closure phases are
generated by summing these visibility phases (Basden & Buscher
2005; Buscher 2015; Pedretti et al. 2005).

SOS conservation for an image synthesised from a closed
triad of baselines is an implicit criterion in the theory of optical
speckle imaging with a non-redundant aperture mask, sometimes
called triple correlation (or triple product or bispectrum) imag-
ing (Brown 1978; Cornwell 1987; Lohmann, Weigelt, & Wirnitzer
1983; Weigelt & Wirnitzer 1983). In a speckle imaging process,
which employs exposures shorter than the atmospheric coherence
time, and using a non-redundant aperture mask,o a Fourier trans-
form of a given speckle image contains a set of spatial frequencies
that are unique to a given aperture pair, or baseline, such that
the visibilities derived can be traced directly and uniquely back to
specific aperture pairs. In radio astronomy parlance, the resulting
data set corresponds to an uncalibrated set of snapshot visibili-
ties. From these, meaningful closure phases can be derived from

oA non-redundant mask ensures that only one aperture pair, or baseline, contributes
to a given spatial frequency in the image plane. Without the mask, the many redundant
spatial frequencies that would normally occur using the full mirror, will incoherently add
in the image plane (incoherence arising from turbulent phase structure over the telescope),
leading to decoherence of the measured visibility. The exception is in the high Strehl ratio
regime, meaning close to diffraction-limited optics, where the element-based phase errors,
or ‘piston phases’, are small, and hence decoherence of redundant fringes is small. Such is
the case for space telescopes (Martinache et al. 2020).
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the visibilities, and a standard hybrid imaging and element-based
self-calibration process can be performed, in which closure phase
is inherently preserved (Cornwell 1987; Pearson & Readhead
1984).

In aperture masking in optical interferometry, and in some
other applications of interferometric structure determination, the

magnitude of amplitude errors in the aperture element-based
complex gains, and of non-closing (i.e., baseline-based) phase
errors, is negligible. In this case, the conservation of the relative
positions of the NPCs on a closed triad of apertures implies a
stricter conservation of the true image of the sky itself for that
closed triad, except possibly an overall shift of the image.
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