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Experimental study on spray in the atmospheric
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Spray formed by a myriad of secondary droplets generated by the impact of raindrops on a
deep-water pool is studied with a laboratory rain facility. Experiments are performed with
two rain rates and raindrops fall on the water surface at a nearly constant velocity. The
secondary droplets at various heights above the pool’s water surface are recorded with
a cinematic digital in-line holographic technique that consists of a high-speed camera,
a pulsed Nd:YLF laser and associated optics. The experimental results show that in the
heat-map scatter plots of radius versus velocity near the water surface of the pool, the
droplets are distributed into three regions, corresponding to distinct physical mechanisms
of droplet generation. It is found that the diameter distribution of the droplets in the rain
field changes with height above the pool’s water surfaces. Both numerical simulation and
experimental data reveal that the liquid water content, due to the presence of secondary
droplets, in the atmospheric surface layer decreases exponentially with increasing height.
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1. Introduction

It is well known that approximately 79 % of the global total precipitation occurs over
the ocean (Barry & Chorley 2009) and approximately 70 % to 85 % of the heat energy
that the global atmosphere receives is latent heat released from precipitation (Salby
1996; Simpson et al. 1996; Aplers & Melshelmer 2004). Rainfall over the ocean
greatly enhances the exchange of gas across the air–water interface (Zappa et al. 2009;
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Harrison et al. 2012), creates turbulence in the upper ocean layer (Harrison & Veron 2017),
and affects the production and concentrations of sea spray aerosols (Lewis & Schwartz
2004). A recent study (Lehmann et al. 2021) shows that tiny droplets (called secondary
droplets herein) produced by the impact of raindrops on a water surface serve as vehicles
for the transport of micro-plastic particles from ocean water to the atmosphere.

When large raindrops impinge on the ocean surface, they create splash products,
consisting of crowns, central jets (stalks) and cavities, on the water surface and myriad
secondary water droplets in the air, as part of sea sprays. These surface features are
crucial to understanding radar backscattering from the ocean surface in a rain field.
In a laboratory study, Braun, Gade & Lange (2002) showed that the cross-polarization
radar backscattering from the water surface, dominated by rain-induced splash products,
increases with increasing rain rate for a range of wind speeds less than 12 m s−1. Studies
given by Liu et al. (2016, 2017) revealed that the radar backscattering intensity in response
to oceanic rainfall correlates with the average distance between the rain-generated stalks on
the ocean surface and is influenced to a certain degree by the concentration of secondary
droplets near the air–water interface.

The role of rain-generated secondary droplets in the formation of sea sprays has been
largely overlooked (Veron 2015; Okachi et al. 2020). Several mechanisms are involved in
the generation of these droplets in rain field. Using the volume-of-fluid lattice Boltzmann
method, Lehmann et al. (2021) performed a great number of numerical simulations of
single raindrop impact with various raindrop diameters and provided a detailed statistical
analysis on the secondary droplets ejected from the upper edge of the crowns that form as
thin water sheets shooting upward around the impact sites. They showed that a raindrop of
diameter 4 mm impacting on the water surface at terminal velocity can produce hundreds
of such droplets. An experimental study given by Liu (2018) shows that the number of
secondary droplets generated by this kind of mechanism is greatly affected by wind. In
addition, it is well known that rainfall entrains bubbles that collapse to generate underwater
sound (Prosperetti & Oguz 1993). When these bubbles reach the ocean surface, their thin
water film caps drain and eventually burst, projecting film drops into the atmosphere (Spiel
1998). Both experiments (Blanchard 1989) and numerical simulations (Deike et al. 2018;
Gañán-Calvo & López-Herrera 2021) showed that the popping bubbles also can eject thin
and fast vertical water jets, resulting in several jet droplets under certain flow regimes.

The main focus of the present laboratory experiments is to explore the dynamics of
secondary droplets generated by raindrops impacting a water surface. Using cinematic
in-line holography, new observations of the droplets in the air layer directly above
the water surface are provided. With the experimental observations, several droplet
generation mechanisms and basic air–water mixing features in the atmospheric surface
layer, including the vertical profile of the liquid water content that is important to radar
application, are revealed.

The remainder of this paper is organized as follows. The experimental set-up and
measurement techniques are described in § 2. The results and discussion are presented
in § 3. Finally, conclusions are given in § 4.

2. Experimental details

The experiments were performed in a rain facility that includes an overflow water pool
and a rain generator, see figure 1(a). The overflow water pool is 1.2 m by 1.2 m square
in plan view with a depth of 0.31 m. The pool is constructed of transparent acrylic and
two opposing sidewalls of the tank are 1.27 cm lower than the other two sidewalls. The
pool is supported by a short frame which is adjusted so that the upper edges of the two
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Figure 1. (a) Schematic showing the rain simulation facility. The drawing is not to scale. The rain impact area
on the water surface is approximately 0.51 m long (in the direction of the laser beam) and 0.36 m wide. Both
the horizontal laser beam and the camera are set at the same height relative to the overflow pool by using the
two traverses. (b) Long-exposure photographic image showing raindrops (straight vertical lines), stalks (bright
trajectories near the water surface) and secondary droplets (thin trajectories above the stalks).

lower sidewalls form a horizontal plane. Before the experiments, the pool was fully filled
with filtered tap water mixed with sodium hypochlorite at a concentration of 10 ppm. This
high level of chlorination was used to maintain low levels of bacteria and other organic
material which are known to produce surfactants. A circulation system was used to skim
the pool water into a separate water reservoir tank and pump it back to the pool via a filter
system for a period of two days. During the rain experiments, the water in the reservoir
tank is pumped into the rain generator and the pool is operated with a constant water
level by maintaining an overflow condition at the two lower sidewalls with inflow due
entirely to the incoming raindrops. The surface tension at the air–water interface in the
pool was monitored with a Langmuir trough system (KSV NIMA, model KN 1003) just
before and after the rain experiments and the ambient surface tension was kept constant,
i.e. σ = 72.6 mN m−1.

The rain generator consists of a rectangular water tank (horizontal dimensions 0.9 m by
0.6 m) with an array of hypodermic needles mounted vertically on the bottom of the tank to
produce raindrops. In this study, 370 needles (22 gauge with an inner diameter of 0.41 mm
and a length of 6.35 mm) are used to produce raindrops with a diameter of approximately
2.74 mm. The distance between the needles is approximately 2.54 cm, resulting in a rain
site area of 0.51 m by 0.36 m on the water surface of the pool. The bottom of the rain
generator tank was positioned 2.3 m above the water pool and the impact speed of the
raindrops on the water surface was 5.6 m s−1. The rain rate is regulated by using an
overflow pipe to control the water depth in the rain generation tank. Herein, heavy rains
with two rain rates, RR = 140 and 381 mm h−1, are studied. The two rain rates are within
the range of prior laboratory experiments investigating the interactions between heavy
rainfall and surface wave turbulence (Tsimplis & Thorpe 1989; Tsimplis 1992; Peirson
et al. 2013; Harrison & Veron 2017).

In order to create random raindrop impact locations on the water surface, the rain
generator is mounted on a linear traverser system with two degrees of freedom travelling on
a horizontal plane. Each motion axis of the traverser system consists of two parallel rails,
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bearings, a servomotor, a crank-piston drive mechanism and a linear position feedback
sensor. The rain generator is mounted on the top motion axis mechanism, while the
traverser system is attached to a tall frame that is in turn attached to the laboratory
ceiling and sidewalls to stabilize the entire rain simulation system. The motion of the
rain generator is controlled by a computer using the position feedback sensor on each
motion axis. In this study, the motion of the rain generator was circular with a diameter
of 1.3 cm and a frequency of 1.0 Hz. With these values of diameter and frequency, the
horizontal distance between the impact locations of two consecutive raindrops released
from one needle ranges from 0.5 to 1.0 cm for the two rain cases. Given this droplet
impact spacing for droplets from a single needle and the 2.54 cm distance between the
needles, the possibility of collision between raindrops and antecedent splashes, resulting
from the impacts of previous raindrops from surrounding needles, is very low. However,
such collisions may still occur in the rain field since the raindrops are randomly released
with time.

Secondary droplets and raindrops at various heights (Hc) above the water surface are
measured with a cinematic in-line holographic technique using a high-speed camera and
an expanded laser beam. The technique implements the principle that a droplet located
in the pathway of a collimated laser beam induces a diffraction wave pattern that is
superposed with the reference wave thereby creating a holographic image on the camera
sensor. The light source for the holograms is an expanded laser beam with a diameter
of approximately 75 mm that is generated by a pulsed Nd:YLF laser (CrystalLaser,
QL527-200) in combination with a set of optical lenses, a spatial filter and a neutral
density optical filter. A mirror is used to orient the laser beam horizontally across the
0.51 m width of the rain field and this mirror is attached to a vertical traverser that is
attached to one side of the water pool, see figure 1(a). The high-speed camera (Phantom
VEO 640L, 2560 by 1600 pixel with resolution 10 μm per pixel) fitted with an Infinity K-2
long-distance microscope lens that is focused with a one-to-one magnification is attached
to a second vertical traverser that is mounted on the opposing side of the rain pool. The
camera and the laser beam are set at the same height and the camera sensor directly faces
the expanded incoming laser beam. The field of view for the holograms is 2.56 × 1.6 cm2

with a measurement volume of 209 cm3. The camera records 1000 holograms per second
with one laser light pulse per image as the droplets pass through the expanded laser beam
over a total time of 12 s for each experimental run.

The physical 3-D location and radius (diameter) of each droplet are extracted from
a given hologram in the two-step procedure described below. In the first step, the
holographic images along the laser beam axis (z) across the width of the rain field
are numerically reconstructed by employing an angular spectrum method based on
the Rayleigh–Sommerfeld diffraction formula. The complex wave field at any plane
perpendicular to z is given as follows (Katz & Sheng 2010):

E(x, y, z) =
∫∫

S(kx, ky) exp[ jzk
√

(1 − (kx/k)2 − (ky/k)2)] ej(xkx+yky) dkx dky, (2.1)

where, S(kx, ky) = ∫∫
E0(x, y) e−j(kxx+kyy) dx dy is the Fourier transform of the hologram

E0(x, y) recorded at the image plane (z = 0), kx and ky are the corresponding spatial
frequencies of the image coordinates x and y, respectively, and k = 2π/λ is the
wavenumber of the laser light with a wavelength of λ = 527 nm. The intensity distribution
of the complex wave field is used to reconstruct a holographic image at z. With intervals of
1 mm in z, 511 reconstructed images are generated from a single hologram, covering the
entire measurement volume of the rain field.
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In the second step of the droplet position and radius determination, raw data of the
radii and position for the droplets in all of the images reconstructed along the laser beam
are estimated. For a given droplet, its centre in each reconstructed image, if detected, is
nearly the same. Thus for each droplet and each reconstructed image, a subimage with
size slightly greater than that of the droplet image is created. The edge sharpness of
each cropped image is quantified by applying the Laplacian operator to each pixel. The
numerical value of this edge sharpness measure is calculated by

LP(z) =
∑
x,y

[∇2I(x, y, z)]2, (2.2)

where, I(x, y, z) is the intensity of the cropped image reconstructed at z. The image with
the maximum of the sharpness measure is taken as the in-focus reconstructed hologram
image and the z value of this image is taken as the physical z location of the droplet. This
reconstructed image is also used to determine the droplet radius and the x–y position of its
centre. Further details can be found in Erinin et al. (2023) and others.

The in-line hologram system was calibrated with a custom calibration target consisting
of a flat glass plate with 14 sputter-deposited circular dots with radii from 15 to 1500 μm.
Before and after the rain experiments, six holograms of the target placed at positions
separated by 0.1 m along the laser beam and covering the entire width of the measurement
field were recorded. With the reconstruction scheme mentioned above, the dots with
radii ≥ 0.05 mm (50 μm) were measured. The measurement accuracy of the dots varies
with position relative to the lens focal plane. This accuracy is of the order of 0.5 pixel
(0.005 mm) when near the focal plane but 2–3 pixels when at the limits of the rain field.
In addition, it is noted that small droplets in the measurement volume that are completely
occluded by large ones cannot be measured with this holographic technique. To remedy
this issue, a large sample size is used in the statistical analyses given in § 3.

The trajectories of droplets in the x–y plane are obtained from consecutive frames with
a particle tracking algorithm based on a minimum acceleration criterion, i.e. droplets
moving with nearly constant velocity during a very short time interval. The algorithm
is described below and further details can be found in Malik et al. (1993) and Ouellette,
Xu & Bodenschatz (2006). In the algorithm, assuming that a set of links between droplets
in the (n − 1)th frame and the nth frame have been established, let xn

i denote the position
of the ith linked droplet in the nth frame. The tracking algorithm then searches for an xn+1

j

for each xn
i such that xn+1

j , the position of the jth droplet in frame n + 1, is the ith linked

droplet in frame n that was at the position xn
i . To determine which of all the xn+1

j to choose,
the criterion of minimum acceleration in three frames is used and the optimal solution to
making links between xn

i and xn+1
j is to minimize the tracking cost Φ as follows:

Φ =
∑

i

∑
j

‖xn+1
j − 2xn

i + xn−1
i ‖

�t2
. (2.3)

Here, �t = 1 ms is the time interval between frames. In order to improve the efficiency
of computation, the positions of the ith linked droplet in frames n − 1 and n are used to
calculate its velocity vn

i and a position for the droplet in frame n + 1 is estimated by

x̃n+1
i = xn

i + vn
i �t. (2.4)
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The tracking cost Φ in (2.3) is calculated only with those droplets in a search area
surrounding the estimated position x̃n+1

i . Also, if x̃n+1
i is beyond the image boundary,

the tracking for the ith linked droplet in the nth frame ends.
Next, all the unlinked droplets in the nth frame are considered as new droplets entering

in the measurement volume. Let X n
i denote the position of the ith unlinked droplet in the

nth frame while X n+1
j refers to the position of the jth unlinked droplet in the (n + 1)th

frame. The links between X n
i and X n+1

j are established with the minimum acceleration
criterion, too, by minimizing the tracking cost ΦN that is given as follows:

ΦN =
∑

i

∑
j

∑
k

‖xn+2
k − 2X n+1

j + X n
i ‖

�t2
, (2.5)

where xn+2
k is the position of the kth droplet in the (n + 2)th frame. The tracking algorithm

for new droplets with the minimum acceleration criterion performs better than the nearest
neighbour heuristic (Ouellette et al. 2006), especially when a group of new droplets close
to one another in one frame have a wide spread in the next frame. After the tracking of
one hologram movie is completed, the new droplets from all the frames form the data set
of the droplets found in the movie. The droplet velocities are defined as the differences
between their positions of two consecutive frames divided by the time interval between
the two frames.

During the tracking process, certain conflicts occur when a droplet in frame n + 1 is
the best match for multiple droplets in frame n, arising from overlapping and/or colliding
droplet images. To handle the conflicts, the involved links except that with the largest
droplet radius, labelled An, are stopped at frame n and new links are considered to have
begun as soon as the overlapping or colliding is over within the next several frames. After
all the frames in one movie have been processed, a set of links, labelled Bn+1, starting from
the (n + 1)th and the next several frames are selected. Connections between the links in
An and Bn+1 are established by searching for a best fit of a second-order polynomial to the
droplet position varying with time for each stopped pair (from An to Bn+1). The tracking
algorithm was verified by surveying a number of sampled images obtained in both rain
cases.

The raindrops and secondary droplets are separated into two data sets after the droplet
trajectories are found. As previously stated, with one particular needle size and the same
fall height, the raindrops in a state of free fall have a diameter of approximately 2.74 mm
and reach the water surface at a velocity of 5.6 m s−1. Since such large drops with such a
high speed cannot be generated by the impact of raindrops on the water surface, the data
set of raindrops is formed by the droplets of radii ≈ 1.37 mm with a downward velocity of
approximately 5.6 m s−1 and zero horizontal velocity. The raindrops are excluded from the
data set of secondary droplets. The raindrop and secondary droplet data sets are checked
by using the fact that the number of raindrops does not change with height Hc, while the
number of secondary droplets decreases drastically with increasing Hc.

The data set consisting of the droplet radii, R, measured with the holographic axis
located at various heights (Hc = 4.0, 8.0, 12.0 and 16.0 cm for RR = 140 mm h−1, and
Hc = 4.4, 7.5 and 9.5 cm for RR = 381 mm h−1) above the mean water surface, and the
horizontal and vertical velocity components, u0 and v0, respectively, as each secondary
droplet enters the measurement volume at the lowest measurement height for each rain rate,
is presented and discussed in the following sections. The holographic image sequences are
also used to elucidate the mechanisms that create some aspects of this data.
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3. Results and discussion

A qualitative idea of the rain impact system consisting of raindrops, stalks (also called
jets in Michon, Josserand & Séon 2017) and secondary droplets can be seen in the
long-exposure-time diffuse light side view image given in figure 1(b). In the image,
raindrops in a state of free fall appear as straight vertical lines. The thick bright curves
near the water surface are the stalks (jets), while the secondary droplets appear as thin
dim nearly parabolic curves. The intensity of a given feature is affected by both its size
and speed. As can be seen from the image, two distinct layers of liquid water content are
formed above the air–water interface of the rain field. The bottom layer (the bright region)
near the water surface is dominated by a dense population of stalks, while the top layer
consists of a cloud of secondary droplets. The height of the bottom layer is approximately
15 mm based on the average stalk height of 14.85 mm as reported in Liu et al. (2016),
while the top of the layer of secondary droplets extends to a height estimated by visual
observation of approximately 0.4 m. A decrease in the number of secondary droplets with
height is clearly visible in the image. For reference, the initial vertical velocity component
of a 1 mm diameter droplet that reaches a maximum height of 0.4 m in otherwise stationary
air is estimated by the model described in § 3.3 to be approximately 3.5 m s−1.

3.1. Characteristics of secondary droplets near the water surface
In order to show the distribution of radii and velocities of secondary droplets near the
water surface, heat-map scatter plots of u0 and v0 vs R at the lowest measurement height
for the two rain rates are given in figure 2(a–d). Since the data are recorded as each droplet
enters the measurement volume, positive vertical velocity components indicate that the
droplets are ejecting from the impact sites of raindrops on the water surface while droplets
with negative vertical velocity components are settling back to the pool water.

Heat-map scatter plots of v0 and u0 vs R at Hc = 4 cm for RR = 140 mm h−1 are given
in figure 2(a,b), respectively. In the figures, the colourbars refer to the local number of
droplets measured in rectangular cells of �R = 0.014 mm by �v0 (or �u0) = 0.043 m s−1

and the total number of droplets is 61 021. As can be seen from figure 2(a), secondary
droplets are mainly distributed in three regions, labelled I, II and III. The vast majority
of droplets (approximately 99.7 % of the total number) are in Region I, which consists of
a right triangular region formed by R > 0, v0 > 0 and v0 + 5R ≤ 4, where R is in mm
and v0 in m s−1, for ascending-motion droplets and a half-circle for descending-motion
ones. The right triangle shape for ascending-motion droplets indicates that in general
the maximum droplet ejection vertical velocity decreases with increasing droplet radius.
Region II consists of a group of large droplets (R > 0.8 mm) for which v0 is uncorrelated
with the radius and |v0| is typically less than 1.0 m s−1. Also, figure 2(b) shows that the u0
values of the droplets in Region II are very close to zero, indicating that these large droplets
mainly move in the vertical direction. Only approximately 0.11 % of the total number of
droplets are found in Region II. Region III is defined to include all downward-moving
droplets with |v0| greater than the terminal settling speeds for droplets in still air as given
by the red dashed curve (see the figure 2 caption for additional details). The droplets in
Region III comprise only approximately 0.2 % of the total number of measured droplets
and most have radii less than approximately 0.3 mm.

In order to evaluate the effects of rain rate on the dynamics of the secondary droplets in
a rain field, heat-map scatter plots of v0 and u0 vs R at Hc = 4.4 cm for RR = 381 mm h−1

are presented in figure 2(c,d), respectively. A total number of 191 763 droplets are used in
the figures and a slightly different value of Hc than the prior rain rate is due to a change
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Figure 2. Heat-map scatter plots of secondary droplet vertical (a,c) and horizontal (b,d) velocity components,
respectively, vs droplet radius, R, at Hc = 4 cm for RR = 140 mm h−1 (a,b) and Hc = 4.4 cm for
RR = 381 mm h−1 (c,d), and the p.d.f. curves of vertical (e) and horizontal ( f ) velocity components with
the same data as the heat-map scatter plots. In the heat-map scatter plots, the plot symbol colour gives the local
number of droplets measured in �R = 0.014 mm by �v0 = 0.043 m s−1 (or �u0) rectangles. The dashed
lines in (a) and (c) are the terminal velocity of raindrops falling in still air, given by equation (2) in Liu et al.
(2016). The average diameters of raindrops for both rain rates are approximately DR = 2.74 mm and the total
numbers of secondary droplets measured over the period of 12 s are 61 021 for RR = 140 mm h−1 and 191 763
for RR = 381 mm h−1, respectively.

of the measurement unit on the ruler used for operational convenience. As can be seen by
comparing these figures with figure 2(a,b), where RR = 140 mm h−1, the three regions
defined above are also evident at the higher rain rate and the ranges of u0 and v0 for the
large droplets in Region II are nearly the same as those observed at RR = 140 mm h−1.
However, the shape of each region varies with increasing rain rate and the percentages
of secondary droplets increase in Regions II and III to approximately 0.31 % and 2.15 %
of the total number, respectively. In addition, both vertical and horizontal velocity
ranges increase markedly for both the ascending-motion droplets in Region I and the
descending-motion droplets in Region III. This is confirmed by the p.d.f. curves of both
the vertical and horizontal velocities of the secondary droplets in the rain field, as shown
in figure 2(e, f ), respectively. From the plots, one can see that the p.d.f. curves for the
two rain rates are nearly the same in the range −1.4 to 2.8 m s−1 for v0 and −2.8 to
2.8 m s−1 for u0, corresponding to Region I, but outside this range the p.d.f. values for the
RR = 381 mm h−1 are substantially higher. The range −4.5 to −2.8 for v0 corresponds
to Region III in figure 2(a,c). In addition, the asymmetrical shape of the p.d.f. curve for
the vertical velocity (v0) shows different dynamic characteristics of the secondary droplets
between ascending- and descending-motion in the rain field. The peak at v0 ≈ −0.5 m s−1

corresponds to the tiny droplets settling with a speed close to their terminal velocity (the
peak near the dashed line in Region I). In contrast, the symmetrical shape of the p.d.f.
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curve about u0 = 0 for the horizontal velocity indicates that, as expected, there is no
preference for secondary droplet motion to the right or left since they are generated by
vertically moving raindrops in a uniform rain field. The high peak at u0 = 0 in figure 2( f )
demonstrates that a large portion of the secondary droplets move in the vertical direction.

The physical processes that create the above-described characteristics of the plots in
figure 2 are discussed below in §§ 3.2 and 3.3.

3.2. Generation mechanisms of secondary droplets
As noted above, most of the secondary droplets measured close to the water surface are
in Region I of the v0–R scatter plots in figure 2(a,c). Though there are roughly equal
numbers of upward-moving (v0 > 0) and downward-moving (v0 < 0) droplets in this
region, the two distributions of the droplets on the v0–R coordinates of each plot are
markedly different. These differences are not surprising since upward-moving droplets
that do not undergo collisions have vertical speeds close to their ejection speed at the water
surface, diminished only by drag and gravity during their relatively short travel distance to
the measurement site. On the other hand, downward-moving droplets that do not undergo
collisions can have vertical speeds ranging from zero at the top of their trajectories to
their terminal velocities, i.e. the space between the terminal velocity curve and the v0 = 0
axis in figure 2(a,c). As can be seen in figure 2(b,d), the distributions of the droplets in
u0–R coordinates are symmetric about the u0 = 0 axis in agreement with the u0 p.d.f. in
figure 2( f ). In the v0 > 0 regions of figure 2(a,c), the increase in the maximum values
of v0 with decreasing R is an indication of the splash droplet generation mechanisms,
though the small region of low droplet numbers for v0 > 2.5 m s−1 and R < 0.3 mm is
probably due to the very strong influence of air drag at small R and high speed. Given
the above-described distributions of droplets in Region I of v0–R space, these droplets are
thought to be generated by a number of physical mechanisms including bubble collapsing
and bursting (jet and film drops) and crown splashing (film drops) according to extensive
laboratory and numerical studies of single drop impact on the surface of a deep-water pool,
see for example Leng (2001), Zhang et al. (2012), Deike et al. (2018) and Lehmann et al.
(2021).

In an effort to gain insight into the physical mechanisms responsible for the generation
of the secondary droplets in Region II, the holographic movies are carefully examined.
Figure 3 presents a sequence of five images showing the pinch-off process of a jet (stalk),
marked with red arrow in (a), in the rain field for RR = 381 mm h−1 and Hc = 4.4 cm.
The fact that this stalk appears sharp in the holographic image sequence indicates that it
is in the plane of focus of the camera lens. According to the studies of single drop impact
on a liquid surface, see Michon et al. (2017), this stalk (a complete picture of the stalk not
shown in the figure) is an energetic thick (fat) jet. As can be seen from figure 3(a), after the
jet reaches a maximum height, herein approximately 3.5 cm (note that the bottom edge of
the image is 3.2 cm above the water surface), a ball of water forms at its top necking down
to a non-uniform filament connecting to the rest of the jet. Later, the filament stretches
and eventually breaks up, resulting in several large secondary droplets, marked with blue
arrows in (e). These large droplets move upwards with a vertical velocity of approximately
1.5 m s−1, and mainly appear in Region II in figure 2. Also, since the number of the large
droplets in Region II has the same order of magnitude as the number of raindrops measured
from the movie and the horizontal velocities of the droplets are nearly zero, see figure 2(b),
these large Region II droplets are likely due to the pinch-off of thick jets (stalks) that are
produced by the impact of raindrops on the water surface. In addition, it is emphasized
that these large droplets contribute significantly to the vertical profile of the liquid water
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(e)(b)(a) (c) (d )

Figure 3. A sequence of five holographic images showing the generation of large-diameter secondary droplets
(marked by the blue arrows in image (e)) near the water surface by the pinch-off (yellow arrow in (b)) of an
energetic thick (fat) stalk (red arrow in (a)). Each image (5 mm wide by 16 mm high) is a portion of the full
hologram and the time interval between images is 2 ms. The bottom of the images is located 3.2 cm above the
mean water surface in the rain field.

content in the rain field as described in the later part of the present paper. Examples of
experimental and numerical studies of single droplet impact on a quiescent water surface
where stalk generation and pinch-off processes are examined include Castillo-Orozco et al.
(2015) and Michon et al. (2017).

As noted above, Region III consists of small droplets that are moving downward at
speeds greater than their terminal velocity in still air. The explanation for this behaviour
is also evident from visual examination of the high-speed holographic movies. Figure 4
shows a sequence of four images separated by 1 ms taken in the rain field at a rain
rate of RR = 381 mm h−1. Among the large secondary droplets present in the image,
a neck-form collision (McTaggart-Cowan & List 1975), called a stretching separation
collision elsewhere (Ashgriz & Poo 1990), of a raindrop (marked by the left red arrow)
and a secondary droplet (marked by the right red arrow) appears at the top of the image in
figure 4(a). The downward-moving raindrop collides with the secondary droplet moving
from left to right at very low speed. The collision is a glancing contact, i.e. only a portion of
the surface having direct contact, resulting in a region of interaction. During the collision,
the secondary droplet does not appear to affect the raindrop (disregarding the illusion
caused by other moving droplets in the image sequence), except in the immediate vicinity
of the point of contact. As the raindrop and secondary droplet move in different directions,
they remain connected to each other by a neck, yellow arrow in figure 4(b). After the
separation, the raindrop becomes distorted and the neck breaks up into a chain of new
small droplets with radii in the range of R = 0.13 to 0.25 mm and downward vertical
velocities |v0| ranging from 1.0 to 3.7 m s−1, which is in Region III. The neck breakup
and formation of droplets may be explained by the ‘end-pinching’ mechanism given by
Stone & Leal (1989). Similar phenomenon of droplet generation during the collision of
two secondary droplets is observed in the sequence of images shown in figure 5.
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(b)(a) (c) (d )

Figure 4. A binary collision of a raindrop (left red arrow) and a secondary droplet (right red arrow) produces
a chain of small daughter droplets, blue arrows in (d), with downward velocity components greater than
their terminal velocities in still air. The time interval between images is 1 ms and the size of each image is
approximately 6 mm wide and 16 mm high. Here RR = 381 mm h−1.

(b)(a) (c) (d )

Figure 5. A binary collision of secondary droplets (two red arrows) produces small daughter droplets, marked
by three blue arrows in (d). The time interval between images is 1 ms and the size of each image is
approximately 6 mm wide and 5 mm high. Here RR = 381 mm h−1.

Though binary droplet collisions have been studied extensively in a number of scenarios
including spray combustion and raindrop formation (McTaggart-Cowan & List 1975;
Orme 1997), the present study is the first, to the authors’ knowledge, to observe collisions
between raindrops and secondary droplets and between two secondary droplets in rain
fields. The events shown in figures 4 and 5 are frequently observed in the video record
and recorded by the data in Region III in figure 2(a,c). From the movies and the number of
droplets in Region III at the two rain rates studied herein, it is suspected that the occurrence
of these collisions increases dramatically with rain rate. However, the present observations
cover an insufficient range of rain rate conditions to establish the parameter range over
which collisions might be significant. Also, it should be mentioned that with extensive
experimental investigations on binary collisions of liquid drops, Ashgriz & Poo (1990)
and Jiang, Umemura & Law (1992) elucidated that the outcomes of separating collisions
depend on the competition between the surface energy and drop kinetic energy in the
region of interaction. The collision-breakup phenomena reported herein may be explained
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by this kind of energy mechanism. Unfortunately, the surface area of direct contact can
not be measured with the current holographic technique so a detailed analysis of such
underlying physics of individual events in the rain field is not possible.

3.3. Diameter distributions of secondary droplets and vertical profiles of liquid water
content in the air above the water surface

Plots of the diameter distributions (the number of droplets per unit volume vs droplet
diameter D) of the secondary droplets at four heights (Hc = 4.0, 8.0, 12.0 and 16.0 cm)
above the water surface for RR = 140 mm h−1 are given in figure 6(a). As can be seen
from the plot, the diameter distribution at the lowest height (Hc = 4 cm, red circles)
features two power-law regions; the small diameter region (D < 0.9 mm) can be described
by N(D) ∝ D−1.97 and the intermediate diameter region (0.9 < D < 1.8 mm) by N(D) ∝
D−5.86. The break in slope between the two power-law regions, D ≈ 0.9 mm, is similar
to that reported in field and laboratory experiments for sea spray (Wu et al. 1984; Veron
et al. 2012; Erinin et al. 2019). The level lines formed by the data in the range of large
droplets (D > 1.8 mm) is a result of the very small number of droplets in this region
and the logarithmic vertical axis of the plot. As the height increases, the break point in
slope shifts to smaller droplet diameters, though the two slopes (α and β) do not vary
significantly with height. Also, secondary droplets with diameter less than approximately
0.3 mm decrease in number with increasing height more rapidly than that of larger droplets
and the level region for large-diameter droplets diminishes. Qualitatively similar results are
obtained when RR = 381 mm h−1, as shown in figure 6(b) though a gradual reduction in
the slope (α) of the small diameter region of the curves with increasing Hc is evident.

The liquid water content at any height h above the air–water interface in the presence of
secondary droplets is determined by

ρL(h) = ρw

Va

∫ ∞

0

4πR3

3
N(R, h) dR, (3.1)

where ρw is the water density, Va is the measurement volume containing air and droplets, R
is the droplet radius and N(R, h) is the radius distribution of the droplets present at height
h. The distribution N(R, h) is rarely studied due to technical difficulties in both laboratory
and field measurements. In the present study, measurements of N(R, h) at several heights,
Hc, are taken from figure 6(a,b).

In addition, using the measured joint distribution of radius and velocity of the droplets
near the water surface, N0(R, u0, v0), and the trajectories of the droplets calculated
numerically, N(R, h) is computed and compared with the measured values. A basic drag
force model for the motion of a solid particle in still air is used to compute these droplet
trajectories. The governing equations are given as follows:

ẋ(t) = u(t), (3.2)

u̇(t) = −3CD

8R
ρa

ρw
u|U|, (3.3)

ẏ(t) = v(t), (3.4)

v̇(t) = −3CD

8R
ρa

ρw
v|U| − g

(
1 − ρa

ρw

)
, (3.5)

where, |U| = √
u2 + v2 is the velocity magnitude, ρa is the density of air at standard

temperature and pressure, and CD is the drag coefficient, which is a function of the
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Figure 6. (a,b) The diameter distributions of secondary droplets measured at various heights (Hc) in the rain
field for (a) RR = 140 mm h−1 and (b) RR = 381 mm h−1. (c,d) Heat-map scatter plots of droplet radius vs
maximum height from numerical simulation for (c) RR = 140 mm h−1 and (d) RR = 381 mm h−1. (e) The
liquid water content ρL(h) varying with height. The raindrops are excluded from data in plot (e). Here, α and
β in (a,b) refer to the slopes of the two power-law regions.

Reynolds number, Re = 2R|U|/νa, where νa is the air kinetic viscosity. The relationship
between CD and Re proposed by Cheng (2009) for solid spherical particles,

CD = 24
Re

(1 + 0.27Re)0.43 + 0.47[1 − exp(−0.04Re0.38)], (3.6)

is used in the calculation. It should be mentioned that when a 3-D model is used,
the maximum heights for tiny droplets given in figure 6(c,d) vary only slightly due to
the contribution of the velocity component in the z-direction in the calculation of |U|.
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However, these small variations do not significantly affect the conclusions drawn below
since the vertical motion of large droplets, which account for a major portion of the total
water calculation, is dominated by the gravity.

The velocities and locations of the upward-motion droplets shown in figure 2(a,c)
(Hc = 4.0 and 4.4 cm, respectively) were used as the initial conditions of the simulation
under the two rain conditions. The resulting heat-map scatter plots of the maximum height,
Nmx(R, hmax) vs droplet radius at RR = 140 and 381 mm h−1 are shown in figure 6(c,d),
respectively. As can be seen from figure 6(c), the maximum height that can be reached
by a droplet with a radius of 0.3 mm is approximately 0.33 m at RR = 140 mm h−1. This
height is similar to that given by Lehmann et al. (2021) for the calculation of a single
3 mm diameter raindrop impacting a flat water surface. Based on the function N(R, h) as
computed by the droplet trajectory model with the initial conditions from the experimental
measurements at the lowest height at the two rain rate conditions, ρL(h) is computed and
plotted vs h in figure 6(e). The values of ρL(Hc) calculated directly from the experimental
data at each measurement height are also included in the plot. From the figure, one can see
that the predicted and measured values of ρL match well. Fitting the data to an exponential
function yields

ρL(h) = A exp
(

− h
B

)
, (3.7)

where A= 49.4 kg m−3, B= 0.0345 m−1 when RR= 140 mm h−1, and A= 68.24 kg m−3,
B = 0.04 m−1 when RR = 381 mm h−1. It is noted that incoming raindrops which add a
constant value to ρL(h) are not included in the results shown in figure 6. The computations
of ρL(h) exclude the immeasurable tiny droplets (R < 0.05 mm) that are trapped near the
water surface due to air resistance, see figure 6(c,d).

Direct correlations between water surface features and secondary droplets in the rain
field are not investigated in the present study due to a lack of surface measurements.
However, the present results may still shed at least some light on the relative importance of
the surface dynamics. Figure 6(c,d) shows that the maximum heights of secondary droplets
at RR = 140 mm h−1 fall in the range 0 to 0.33 m and this range increases markedly from
0 to 0.45 m at RR = 381 mm h−1. As depicted in § 2, at both rain rates the raindrops
have the same radius, due to their generation by the same set of identical needles, while
different rain rates are obtained by changing the water height in the rain generator, i.e.
varying the drip rate. If the raindrops were falling on a calm water surface, according
to the numerical simulations with one impacting droplet size (Lehmann et al. 2021), the
ranges of the maximum heights of secondary droplets should be the same under the two
rain conditions. The difference between the two ranges mentioned above indicates that
the maximum heights must be strongly influenced by the water surface shape and motion
characteristics that depend on rain rate. The slope difference between the two curves of
the liquid water content vs height ρL(h) for the two rain rates in figure 6(e) also indicates
the effect of these water surface characteristics.

4. Conclusions

In the present paper, secondary droplets generated by the impact of raindrops on a water
surface are measured in a laboratory rain facility. Raindrops discharged at a height of 2.3 m
above the pool impact the water surface at a speed of 5.6 m s−1, which is approximately
72 % of the terminal velocity of raindrops of the same diameter under natural conditions.
The radii (diameters) and velocities of secondary droplets generated by the raindrop
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impacts are measured at various heights with a cinematic digital in-line holographic
technique that employs a coherent laser beam and a high-speed movie camera.

The experimental results show that the radius (diameter) distribution of secondary
droplets generated by raindrop impacts varies dramatically with height. The range of the
vertical ejection velocities for a given size of droplet decreases with increasing droplet
radius and the heat-map scatter plots of radius vs vertical velocity component contain three
regions with each region corresponding to a different mechanism of droplet generation or
behaviour. The liquid water content due to the presence of secondary droplets near the
air–water interface decreases exponentially with increasing height.

The secondary droplets generated by raindrops impacting the ocean surface transport
mass, momentum and energy from the ocean back to the atmosphere. The mixing features
in the atmospheric surface layer reported in the present study are important to understand
the underlying physics of such transports. The joint distributions of radius and upward
velocity of the secondary droplets near the water surface are useful for determining the
interfacial flux of sea sprays from the ocean to the atmosphere (Lewis & Schwartz 2004).
The jet breakup mechanisms play an important role in exploring interfacial production flux
of sprays while the collision-breakup mechanism and the vertical profile of liquid water
content are fundamental to the effective flux through a horizontal plane.
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