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Abstract

Suppose that I'* is the positive cone of a totally ordered abelian group I', and (A, I'*, @) is a system
consisting of a C*-algebra A, an action @ of I'" by extendible endomorphisms of A. We prove that the
partial-isometric crossed product A Xgi” I'* is a full corner in the subalgebra of L3, A)), and that if
@ is an action by automorphisms of A, then it is the isometric crossed product (Br+ ® A) x!*° I'*, which
is therefore a full corner in the usual crossed product of system by a group of automorphisms. We use

these realizations to identify the ideal of A xgis" I'* such that the quotient is the isometric crossed product
AXSOT,
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1. Introduction

Let I' be a totally ordered abelian group, and I'* := {x € I : x > 0} the positive cone of
I'. A dynamical system (A, I'*, @) is a system consisting of a C*-algebra A, an action
a:T* — EndA of T'* by endomorphisms «, of A such that @y =id4. Since we do
not require the algebra A to have an identity element, we need to assume that every
endomorphism «, extends to a strictly continuous endomorphism @, of the multiplier
algebra M(A) as it is used in [1, 9], and note that extendibility of @, may imply
@ (Iyay) # 1ma)-

A partial-isometric covariant representation, the analogue of isometric covariant
representation, of the system (A, I'*, @) is defined in [10] where the endomorphisms
a, are represented by partial isometries instead of isometries. The partial-isometric
crossed product A xP*°T* is defined there as the Toeplitz algebra studied in [6]
associated to a product system of Hilbert bimodules arising from the underlying
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dynamical system (A, I'*, @). This algebra is universal for covariant partial-isometric
representations of the system.

The success of the theory of isometric crossed products [2—4, 11-13] has led
the authors of [10] to study the structure of the partial-isometric crossed product
of the distinguished system (Br+, I'*, 7), where 7, acts on the subalgebra Br- of £°(I'")
as the right translation. However, the analogous view of isometric crossed products
as full corners in crossed products by groups [1, 8, 16] for partial-isometric crossed
products remains unavailable. This is the main task undertaken in the present work.

We construct a covariant partial-isometric representation of (A, I'*, @) in the C*-
algebra L(£(I'*, A)) of adjointable operators on the Hilbert A-module £*(I'*, A),
and we show that the corresponding representation of the crossed product is an
isomorphism of A x5°° I'* onto a full corner in the subalgebra of L(£*(I'*, A)). We
use the idea from [7] for the construction: the embedding 7, of A into L(£*('*, A)),
together with the isometric representation S : It — L(£2(T'*, A)), satisfies the equation
714(a)S, = Sym(ay(a)) for all a € A and x € I'*, and then the algebra 74+ o) generated
by m(A) and S(I'") contains A x5°° I'" as a full corner. However, since the results
in [7] are developed to compute and to show that KK-groups of 741+ ) and A are
equivalent, the theory is set for unital C*-algebras and unital endomorphisms: if the
algebra is not unital, they use the smallest unitization algebra A and then the extension
of endomorphism on A is unital.

Here we use the (largest unitization) multiplier algebra M(A) of A, and every
endomorphism is extendible to M(A). So we generalize the arguments in [7] to the
context of multiplier algebra. When endomorphisms in a given system are unital, then
we are in the context of [7], so that the C*-algebra A x5"° I'* enjoys all properties of
the algebra 74 r+4) described in [7]. Moreover, if the action is automorphic action
then we show that A x5°° I'* is a full corner in the crossed product by group action.

Using the corner realization of A x5 I'*, we identify the kernel of the natural
surjective homomorphism iy X ir+ : A X5*° 't — A x° T'* induced by the canonical
isometric covariant pair (ia, ir+) of (A, ', @), to get the exact sequence of [7] and the
Pimsner—Voiculescu exact sequence in [14].

We begin the paper with a preliminary section containing background material
about partial-isometric and isometric crossed products, and then identify the spanning
elements of the kernel of the natural homomorphism from the partial-isometric crossed
product onto the isometric crossed product of a system (A, ", @). In Section 3 we
construct a covariant partial-isometric representation of (A, I'*, @) in LT+, A)) for
which it gives an isomorphism of A x5°° I'* onto a full corner of the subalgebra of
L(£3(T*, A)). In Section 4 we show that when the semigroup I'* is N the kernel of
that natural homomorphism is a full corner in the algebra of compact operators on
{*(N, A). We discuss in Section 5 the theory of partial-isometric crossed products for
systems by automorphic actions of the semigroups I'*. We show that A x5°° T is a
full corner in the classical crossed product (Br ® A) X I' of a dynamical system by a
group of automorphisms.
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2. Preliminaries

A partial isometry V on a Hilbert space H is an operator which satisfies ||V h|| = ||A]|
for all he (ker V)*. A bounded operator V is a partial isometry if and only if
VV*V =V, and then the adjoint V* is a partial isometry too. Furthermore, the two
operators V*V and VV* are the orthogonal projections on the initial space (ker V)*
and the range VH, respectively. So an element v of a C*-algebra A is called a partial
isometry if vw*v = v.

A partial-isometric representation of I'* on a Hilbert space H is amap V: Tt —
B(H) such that V := V(s) is a partial isometry and V,V, = Vy,, for every s, r € ['*. The
product ST of two partial isometries S and 7 is not always a partial isometry, unless
S*S commutes with 77" [10, Proposition 2.1]. A partial isometry S is called a power
partial isometry if S” is a partial isometry for every n € N. So a partial isometric
representation of N is determined by a single power partial isometry V; because
V, =V{. [10, Proposition 3.2] says that if V is a partial-isometric representation of
I'*, then every V; is a power partial isometry, and V;V; commutes with V,V;, ViV
commutes with V;'V,.

A covariant partial-isometric representation of (A,I'*, @) on a Hilbert space H is
a pair (7, V) consisting of a nondegenerate representation 7 : A — B(H) and a partial-
isometric representation V : I'" — B(H) which satisfies

n(ag(a)) = Vsn(a)V: and  VVir(a) =nr(a)V;V, forsel*, acA.

Every covariant representation (m, V) of (A,I'",a) extends to a covariant
representation (7w, V) of (M(A), I'*, @). [10, Lemma 4.3] shows that (77, V) is a covariant
representation of (A, I'*, @) if and only if

n(as(@)Vy=Vr(a) and V,V;=m(ayl)) forsel", acA.

Every system (A, I'*, @) admits a nontrivial covariant partial-isometric representa-
tion [10, Example 4.6].

DerinTioN 2.1. A partial-isometric crossed product of (A, I'", @) is a triple (B, iy, ir+)
consisting of a C*-algebra B, a nondegenerate homomorphism iy : A — B, and a
partial-isometric representation ir+ : 'Y — M(B) such that:

(i)  the pair (iy, ir+) is a covariant representation of (A, I'*, @) in B;

(i1) for every covariant partial-isometric representation (r, V) of (A,I'*, @) on a
Hilbert space H there is a nondegenerate representation 7 X V of B on H which
satisfies (m X V) oig =mand (m X V) o ir+ = V; and

(iii) the C*-algebra B is spanned by {ir+(s)"ia(@)ir+(t) :a € A, s, t €T}

REmARK 2.2. Proposition 4.7 of [10] shows that such (B, i4, ir+) always exists, and it
is unique up to isomorphism: if (C, ja, jr+) is a triple that satisfies properties (i)—(iii)
then there is an isomorphism of B onto C which carries (i4, ir+) into (ja, jr+)-

We use the standard notation A X, I'* for the crossed product of (A, I'*, @), and we
write A x0°° T'* if we want to distinguish it from the other kind of crossed product.
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[10, Theorem 4.8] asserts that a covariant representation (rr, V) of (A, T, @) on H
induces a faithful representation 7 X V of A X, I'* if and only if 7 is faithful on (V H)*
for all s > 0, and this condition is equivalent to saying that r is faithful on the range of
(1-V;Vy) forall s > 0.

2.1. Isometric crossed products. The above definition of partial-isometric crossed
products is analogous to that for isometric crossed products: the endomorphisms «;
are implemented by partial isometries instead of isometries.

We recall that an isometric representation V of T'* on a Hilbert space H is a
homomorphism V : T — B(H) such that each V is an isometry and Vy,, = VV, for
all s,reI"". A pair (m, V), consisting of a nondegenerate representation 7 of A and
an isometric representation V of I'* on H, is a covariant isometric representation
of (A,T7, @) if n(ay(a)) = Vim(a)V; for all a€ A and s €. The isometric crossed
product A X3°T* is generated by a universal isometric covariant representation
(i, ir+), such that there is a bijection (m, V) +— m X V between covariant isometric
representations of (A,T*, @) and nondegenerate representations of A x°T*. We
note that some systems (A,I'*, @) may not have a nontrivial covariant isometric
representation, in which case their isometric crossed products give no information
about the systems.

When « : I'* — End(A) is an action of I'* such that every a, is an automorphism
of A, then every isometry V; in a covariant isometric representation (m, V) is a unitary.
Thus A x° I'* is isomorphic to the classical group crossed product A X, I'. For more
general situations, [1, 8] show that we get, by dilating the system (A, ", @), a C*-
algebra B and an action f3 of the group I' by automorphisms of B such that A xi° I'* is
isomorphic to the full corner p(B X, I')p where p is the unit 14) in B.

If (A, T*, @) is the distinguished system (Br+, I'", 7) of the unital C*-algebra Br+ :=
span{l, € £°('*) : s e I'*} spanned by the characteristic function

1 ifx>
=4 ="
0 ifx<s,

and the action 7 : I'* — End(Br-) is given by the translation on £*(I"*) which satisfies
7,(15) = 154,. Then [4] shows that any isometric representation V of I'* induces a
unital representation mry : 1, — V,V; of Br+ such that (7y, V) is a covariant isometric
representation of (Br+, I'*, 7), and the representation 7y X V of Br- ><1T5° I'* is faithful
provided all V; are nonunitary. Since the isometric representation given by the Toeplitz
representation T : s — T of ' on £2(I'*) is nonunitary, then 717 x T is an isomorphism
of Br+ X1%° T'* onto the Toeplitz algebra 7°(I').

We consider the two kinds of crossed products (A X1° T'*, iy, ir+) and (A x5°° T'™,
Ja» jr+) of a dynamical system (A, T'*, a). The equation

ir+(8)"ir+(8)ia(a) = ia(@)ir+(s)"ir+(s)

is automatic because i+ is an isometric representation of I'*.
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Therefore we have a covariant partial-isometric representation (i, ir+) of (A,I'", @)
in the C*-algebra A X®°T*, and the universal property of A x5 T* gives a
nondegenerate homomorphism

¢ =iy Xire  (AXEC T, ja, jro) — (A XSOT* i, ir+),
which satisfies ¢(jr+(x)* ja(a) jr+(y)) = ir-(x)*ia(a)ir+(y) for all a€ A and x,yeTI™*.
Consequently ¢ is surjective, and then we have a short exact sequence
0 — ker ¢ —> A xP*° T+ A xSt — 0.

In the next proposition, we identify spanning elements for the ideal ker ¢.
ProposiTioN 2.3. Suppose that (A, T'*, @) is a dynamical system. Then

ker ¢ = span{jr-(x)" ja(@)(1 = jr«(0)" jr-()) jr+(y) :a € A, x,y, t €T}, 2.1

Before we prove this proposition, we first want to show the following lemma.

Lemmva 2.4, For teI'", let P, be the projection 1 — jr+(t)" jr+(t). Then the set {P;:
t €T} is a family of increasing projections in the multiplier algebra M(A x5°° T'"),
which satisfy the following equations: js(a)P, = P,js(a) fora€ A andt €T,

PR (1 if x < P, ifx<
Pufer )" = {jn(y)*Px_y i;x Sy ad PoPys {Py ijix Y.
Proor. For s > tin T,
Py — P =(1— jr«(8)"jr+(s)) = (1 = jr+ ()" jr+(1))
= jr+ ()" jr+ (@) = jr+ ()" jr+(s)
= jr: @) jr+ () = jre (@) jr+(s = )" jr+(s = 1) jr+ (1)
= jr+ ()" Ps—yjr+ () = jr+ () Ps—y Py jr+(1)
= [Ps—ijr+ O] [Pyt jr+(®)].
So P, — P, >0, and hence P, > P,.
If x <y, then
Prjr-()" = (1 = jr«(x)" jr+ (X)) jr+ ()" jr+ (v = x)°
= [+ ()" = jr+ ()" jr+(0) jr+ () 1 jr« (v = )" = 0,
and if x >y,
Pojr-()" = jr+ ()" = jr+(x)" jr+ (x) jr+ ()"
= jr+(0)" = jre () jre (x = )" jir+ (x = 3) jr+ () jr= ()
= Jre )" = Jre ) jre (=) e (2 = 1) ja@,(1)
= e () = Jre )" ja@ (1) jr(x = )" jr+ (x = y)
= jr= " = Lir+ )" jr+ @) jr+ ) 1jr+ (x = )" jr+ (x = y)
= jr+ () Pr-y.
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Next we use the equation
Jre ()" jr-(x) jr+ ()" jr+(v) = jir+(max{x, y})* jr-(max{x, y}) for any x, y € T*,
to compute
PPy = (1= jr+(x)" jr« ()1 = jr«()" jr+(»)

=1— jre ()" jre(0) = jre )" jre () + jre ()" jr+ (0) jr« () jr+ ()
=1 - jr«(X)" jr+(x) = jr+ )" jr+(y) + jr+(max{x, y})* jr+(max{x, y})

P, ifx<y,
S \Py ifx>y.
This concludes the proof. O

Proor or ProrosiTion 2.3. We clarify that the right-hand side of (2.1), that
7 :=span{jr+(x)" ja(@(1 = jr+(®)" jr+(0)jr-(v) : a € A, and x,y,t €T}

is an ideal of (A x2°°T'*, j4, jr+), by showing that j4(b)T and jr+(s)Z, jr+(s)*T are
contained in 1 for all b€ A and s e I'". The last containment is trivial. For the first
two, we compute using the partial-isometric covariance of (ja, jr+) to get the following
equations forbe A, s, x eI'*:

Ja®) jr+ ()" = [jr+ (0 ja(B)]" = [ja(@x(0") jr« (01" = jr«(x)" ja(ax(b)),

and
Jre(x = 8)" jre (0)jr (0" = jr+ (x = ) Ja@x(1)  if s <x,
Jre(8)jre(x)" = { jr- () jr+ ()" = ja(@x(1) if s =x,
Jre(s = X) jre (0 jr+ (0" = ja(@s(D)jr(s —x)  if s> x
Consequently,
Ja®)jr+(x)" ja(@Pjr- () = jr+(x)" jalax(b)a)Pyjr+(y) € 1,
and

Jr+(9)jr+ ()" ja(@P1 jr+(y) = jr+(x = )" ja@x(Da) P, jr(y) € I

wheneverbe Aand ¢, s<xinI'*. If s > x, then

0 fort<s-—x,
Jr+(s = x)"Pr_(s-xy fort>s—ux.

Pijr+(s —x)" = {
Therefore

Jr+()jr+ ()" ja@Pjr+ (V) = ja@s(1) jr+(s = 2) ja(@Pyjr+()
= ja@s(1))ja(@s-(@)jr+(s = )Py jr(y)
= ja(@,(Dag-(@)[P:jr+(s = 01" jr+ (),
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which is the zero element of 7 for < s — x, and is the element
Ja@s(Das—x(@)Pi—(s-xjr+(s —x+y)of I fort>s—x.

S0 jr+(8)jr+ (x)* ja(@)P; jr+(y) belongs to I, and I is an ideal of A x5 I'*.

We now show the equation ker ¢ = 7. The inclusion I C ker ¢ follows from the fact
that 7 is an ideal of A x}°° I'*, and that ¢(P,) = 1 — ir+(t)*ir+(t) = 0 for all t € T*. For
the reverse inclusion, suppose that p is a nondegenerate representation of A x>°° I'*
on a Hilbert space H with kerp= 7. Then the pair (71:=po js4,V:=po jr+)is a
covariant partial-isometric representation of (A, I'*, @) on H. We claim that every V; is
an isometry. To see this, let (a,) be an approximate identity for A. Then

0 =p(jatan) = jr+ (@) jr+(®)) = m(a)(1 = V;V;)  forall 4,

and m(a,)(1 — V;'V,) converges strongly to 1 — V'V, in B(H). Therefore 1 — V'V, =0.
Consequently, the pair (77, V) is a covariant isometric representation of (A, I'", @) on
H, and hence there exists a nondegenerate representation i of (A xi° T'*, iy, ir-) on H
which satisfies ¥(is(a)) = p(ja(a)) and Y(ir+ (x)) =p(jr+(x)) forall a€ A and x eT™*.
So i o ¢ = p on the spanning elements of A x5 I'*, thus ker ¢ C ker p. m

Proposition 2.5. If I is a subgroup of R, then ker ¢ is an essential ideal of the crossed
product A x5 Tt

Proor. Let J be a nonzero ideal of A x5°° I'*. We want to show that J N ker ¢ # {0}.
Assume that ker ¢ # {0}. Take a nondegenerate representation 7 x V of A x5 I'*
on H such that kermx V =J. Since J # {0}, 7 X V is not a faithful representation.
Consequently, by [10, Theorem 4.8], 7 does not act faithfully on (V;H)"* for some
s €T"\{0} . So there is a # 0 in A such that 7(a)(1 — V; V) = 0. It follows from

0 =n(@)(1 - VVy)=rXxV(ja@d = jr-(s)"jr+(s)))

that j4(a)(1 — jr+(s)* jr+(s)) belongs to ker w X V =J. Moreover, js(a)(1 — jr+(s)" jr+(s))
is also contained in ker ¢ because ¢(P,) = 0, hence it is contained in ker ¢ N J.

Next we have to clarify that js(a)(1 — jr+(s)* jr+(s)) is nonzero. If it is zero,
then 1 — jr+(s)"jr+(s) = 0 because ja(a)# 0 by injectivity of j4. Thus jr+(s) is an
isometry, and so is jr+(ns) for every n € N. We claim that every jr+(x) is an isometry,
and consequently A x5°°T* is isomorphic to A X T'*. Therefore ker ¢ = 0, and
Jja@)(1 = jr+(s)* jr+(s)) cannot be zero.

To justify the claim, note that if x < s then s — x < s, and

Jre(s = x)" jr+(s) = jr+(s = X)" jr+ (s = x) jr+(s = (s = X))
= [jr+ (s = )" jr+ (s = 01 [jr+ (x0) jr+ ()" ] jr+ (x)
= Ljr+(0)jr+ () 1Ljr+ (s = %) jr+ (s — 0)]jr+(x)
= jr+(X)jr+(8)" jr+(s) = jr+(x).
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So the equation jp+(s)* = jr+(x)* jr+(s — x)* implies

L= jr+ ()" jre(s) = jre ()" jr+ (s = 0)" jr+ (s) = jr+ (X)" jr+ (%).

Thus jr:(x) is an isometry for every x < s. For x > s, by the Archimedean property of
I', there exists n, € N such that x < n,s, and since jr+(n,s) is an isometry, applying the
previous arguments, we see that jr+(x) is an isometry. O

3. The partial-isometric crossed product as a full corner

Suppose that (A, T'*, @) is a dynamical system, and consider the Hilbert A-module

O, A) = {f TH > A: Z f(X)* f(x) converges in the norm of A}

xel™*

with the module structure (f - a)(x) = f(x)a and (f, &) = X e+ f(x)"g(x) for f, g€
{*('*, A) and a € A. One may also wish to consider the Hilbert A-module £2(I'") ® A,
the completion of the vector space tensor product £>(I'*) ©® A, which has a right
(incomplete) inner product A-module structure (x® a) - b=x®aband (x® a,y® b) =
(v | x)a*b for x,y € *(T"*) and a, b € A. The two modules are naturally isomorphic via
the map defined by ¢ : x ® a = ¢(x ® a)(t) = x(t)a for x € 2(T*),t €T, a € A.

Let 7, : A — L(*(T*, A)) be a map of A into the C*-algebra L(¢*(I'*, A)) of
adjointable operators on £>(I'*, A), defined by

(@) )O) = a(a)f(t) foracA, fe*I,A).

It is a well-defined map as we can see that 7, (a) f € £2(I'*, A):

D (@@fO) (@@f®) = ). fo) aaaf@)

tel'* tel™

<lls@a)ll Y. f@)" 0.

tel'*

Moreover, m, is an injective *-homomorphism, which could be degenerate (for
example, when each of endomorphism a; acts on a unital algebra A and a,(1) # 1).
Let S € L(¢*(T'*, A)) be defined by

S

Then S;*S; =1, S.S,* # 1, and the pair (7,, S) satisfies the following equations for all
acA,tel":

na(@)S; = Smo(ai(a)) and (1 = 55 )ma(a) = mo(a)(1 = S;S,7). (3.1)
Next we consider the vector subspace of L(£2(I'*, A)) spanned by

{Sima(@)Sy :a€A, x,y€ ).
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Using the equations in (3.1), it is evident that this space is closed under the
multiplication and adjoint, and we therefore have a C*-subalgebra of L(£*(I'*, A)),
namely

To = 5pan{S,m,(a)Sy :a €A, x,y €T}, (3.2)

One can see that x e [ — S, € M(7,) is a semigroup of nonunitary isometries, and
m,(A)CT,. We show in Lemma 3.1 that 7, extends to the strictly continuous
homomorphism 7, on the multiplier algebra M(A), and the equations in (3.1) remain
valid.

The algebra 7, defined in (3.2) satisfies the following natural properties. If
(A,T*, @) and (B,T™, B) are two dynamical systems with extendible endomorphism
actions, let Symo(a)Sy and T.mp(b)Ty denote spanning elements for 7, and 7p,
respectively. If ¢ : A — B is a nondegenerate homomorphism such that ¢ o @, =5, 0 ¢
for every ¢t € I'*, then by using the identification £2(I'*, A) ®4 B ~ (*(I'*, B), we have a
homomorphism 74 : 7, — 7 which satisfies T¢(szrc,(a)S;) = Txﬂﬁ(qb(a))T;‘ foralla €
Aand x,y € I'*. Note that if ¢ is injective then so is 74. This property is consistent with
the extendibility of endomorphisms a; and ;. Since the canonical map ¢4 : A — M(A)
is injective and nondegenerate, it follows that we have an injective homomorphism
7, : Ta — T such that 7,,(7,) is an ideal of 75. Moreover, since the nondegenerate
homomorphism ¢ : A — B extends to ¢ on the multiplier algebras in which it satisfies
poa; = B, o ¢ forall t €T, ¢ induces the homomorphism 5 Ta =75 and satisfies
T5O Ty, =Ty O Ty,

Lemma 3.1. The homomorphism n, : A — M(T,) extends to the strictly continuous
homomorphism 1, on the multiplier algebra M(A), such that the pair (m,, S) satisfies
Mo (m)S; = S (@ (m)) and (1 = 5,8, )n,(m) =, (m)(1 = S,S,") for all m e M(A) and
rel™.

Proor. We want to find a projection p € M(7,) such that m,(a,) converges strictly to
p in M(7,) for an approximate identity (a,) in A.
Consider the map p defined on £2(T'*, A) by

(PN = a (1) f(0).
First we clarify that p(f) belongs to ¢2(I'"*, A) for all £ € £2(T**, A). Let t € T*. Then
(PO (p(MN@) = (@ (D) f(B) (@ () f(0) = fO) a, (1) f(@).
Since @,(1) is a positive element of M(A), it follows that
f@O () f@) <lla(DIf@)" f(0) < f@O) f@).
Consequently, 0 < 3, (p()O* p(F)(1) < Syer F(1) £(£) for every finite set F T,
Moreover, the sequence of partial sums of ¥,cr- ()" f(f) is Cauchy in A because

fe?([T*,A). Therefore 3 ,r(p(H)®)*p(f)(t) converges in A, and hence p(f) €
(T, A).
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One can see from the definition of p that it is a linear map, and the computations
below show it is adjointable, and such that p* = p and p? = p. So p is a projection in

LT, A)):

(P, &)= D (PH@)'8) = > @D f@) )= f&y@(1)g(®)

tel'* tel™* tel'*

= O (p&)D) = (. p(&))-

tel™*

To see that p belongs to M(7T,), direct computations for every f € {>(I'*, A) give the
equations [(p (Sxme(a)Sy)) f1(t) = [Sima(@x(D)a)Sy f1(2) and [((Sima(a)Sy) p) f1(1) =
[Sxﬂa(aﬁy(l))S;‘ f1(®). Thus p multiplies every spanning element of 7, into itself, so
PEM(TyL).

Now we want to prove that (7,(a,y))ca converges strictly to p in M(7,). For this
we show that ﬂa(aﬂ)ana(a)S;‘ and Sxﬂ(,(a)S;‘ﬂ(,(aﬂ) converge in 7, to przra(a)Sy*
and an{,(a)S;‘ p, respectively. Note that n,l(al)Sxm,(a)S;‘ = ana(ax(a/l)a)S;‘ €T,
and ana(a)S;na(aA) = Sxﬂa(aay(aﬁ))S;‘ €T,. Since a,(ay)a — @,(l)a in A by the
extendibility of a, it follows that S,7m,(a.(a Da)S; = Simo(@(1)a)Sy = p(Sima(a)Sy)
and

Sima(aay(@))Sy — Sima(a@y(1))Sy = (Sima(@)S))p  inTy.

Thus we have shown that 7, is extendible, and therefore 7, (14)) = p.

Next we want to clarify the equation 7,(m)Sy = S;7 (@ (m)) in M(T,). Let (a,)
be an approximate identity for A. The extendibility of x, implies m,(a,m) — 7w, (m)
strictly in M(7,), and hence 7, (a,m)S, — 7, (m)S, strictly in M(7,). But n,(a,m)S, =
Symo(ax(am)) converges strictly to Sim, (@ (m)) in M(7,). Therefore 7,(m)S, =
Sima(@y(m)). Similar arguments show that m,(m)(1 — S:S,") = (1 = 8,5, )m,(m) in
M(T,). |

We have already shown that 7, : A — M(7,) is extendible in Lemma 3.1. Therefore
we have a projection my(1y@))=p in M(T,). Note that p is the identity of
PM(T,)p, and my(a) = n,(1yayal pa)) = pro(a)p € pM(To)p. We claim that the
homomorphism n, : A - pM(7,)p is nondegenerate. To see this, let (a;) be an
approximate identity for A, and ¢ := S,7,(b)S ;‘ . Then mr,(ay)pép = Simo(a,(ay)b)S ; p
converges to S (@ (1)b)S,p=pép in pT,p. Similar arguments show that
p&pma(ay) — pép in pTop.

In the next proposition we show that the algebra p7, p is a partial-isometric crossed
product of (A, T, ).

ProrosiTioN 3.2. Suppose that (A,T*, @) is a system such that every a, € End(A) is
extendible. Let p = ,(1p4)), and let

ka:A— pTop and w:T" — M(pT.p)

https://doi.org/10.1017/51446788713000542 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788713000542

[11] The partial-isometric crossed products by semigroups of endomorphisms as full corners 155

be the maps defined by ka(a) = wo(a) and wy = pS;'p. Then the triple (pT op, ka, w)
is a partial-isometric crossed product of the system (A,I'", @), and therefore  :=
ka xw: (AXYT*, ig, v) > pTap is an isomorphism which satisfies Y(ia(a)) = ka(a)
and Y(vy) = w,. Moreover, A x5™° T'" is Morita equivalent to the algebra T,.

Before we prove the proposition, we show the following lemma.
Lemma 3.3. The pair (ka,w) forms a covariant partial-isometric representation
of (A,T*,a) in pTop, and the homomorphism ¢ :=ky xw:A X5 Tt — pT,p is
injective.
Proor. Each of w, is a partial isometry: w, = pS’p =nm(ax(1))S;] = wwiw, =
Ta(@x(1))S; = w,, and for x, y e ['* we have

Wiwy = To(@x(1D))S; T (@y(1))S = Mo (@) (@sxry(1))S 1iy = Wiy

The computations below show that (k4, w) satisfies the partial-isometric covariance
relations:

wika(@Wwy = To(@:(1))S [ma(@)S: 7o (@x(1))
= o(a@x(D)ma(@(@)mo(@x(1)) = mo(ax(a)) = ka(ax(a))
and
wiwika(a) = Sto(@x(1))S ma(a) = Sema(@x(Dax(@)S,
= xﬂa(ax(a)ax(l))s): = Sxﬂa(ax(a))ﬁ'a(ax(l))sx*
= ﬂa(a)Sxﬁa(ax(l))S; = ﬂa(a)wjgwx = kA(a)Wj;Wx-
So there exists a nondegenerate homomorphism ¢ := ks X w : A X2%° T+ - pT,p. We
want to see if it is injective. Put p7, p by a faithful and nondegenerate representation
v into a Hilbert space H. Then we want to prove that the representation y o ¢
of (AXY* T, i, v) on H is faithful. Let c=yogoiy and t=yo@ov. By [10,
Theorem 4.8], we have to show that o acts faithfully on the range of (1 — #;t,) for
every x>0inT*. If x>0inI", a€ A, and 0(a)lrange(1-:,) = 0, then we want to see
that a = 0. First note that o(a)(1 — ;1) =y o ¢(ia(a)(1 — vivy)), and
plia(a)(1 = vivy) = @(ia(@)(@(1) = p(vVivy)) = @lia(@)(p — e(V)@(vy))
= ka(a)(p — wiwy)
= M () (Te (1) = STt (@ (D))Ta(@(1))S,)
= Ma(@)(@o (1) — To(1)SS, Ta(1))
= ﬂ'a(a)(l - SxSx*)?Ta(l) = ﬂa(a)?ra(l)(l - SxSx*)
=ma(@)(1 = S:S)).

So o (a)(1 — t:t,) =0 implies 7, (a)(1 — S,S;)=0in L(L*(T*, A)). But for fe 2T+, A),

(1 = SSHNG) = {‘}(y) iﬁii o
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Thus evaluating the operator m,(a)(1 — S,S,’) on a chosen element f € 2T+, A) where
f)=a*fory=0and f(y)=0fory#0,

(ra(@)1 =SSN0 = {g>’(“)f R {ga oo

Therefore aa* =0 € A, and hence a = 0. m]

Proor or ProrosiTion 3.2. Let (p, W) be a covariant partial-isometric representation of
(A, T*, @) on a Hilbert space H. We want to construct a nondegenerate representation
® of pT,p on H such that (I)(pS[nC,(a)S;fp) =Wip(@W, for all a€ A, i, jeI'". It
follows from this equation that ®(k4(a)) = p(a) for all a € A, and a(w,-) =W;foriel"
because O (pr,(ay)S;p) = pla)W; for all i € I'", p(a,)W; converges strongly to W; in
B(H), and @(pra(ar)S;p) = ®(ma(a))@(pS; p) = pla)@(pS;p) converges strongly
to @(pS’p)in B(H).
So we want the representation @ to satisfy

Q)(Z AijpS iﬂa(ai,j)Sj‘p) = Z i jO(pS imo(ai j)S ;p) = Z Ai,jWipa; )W;.

We prove that this formula gives a well-defined linear map ® on span{pS ;m,(a)S j‘ p:
a€A, i, jeT")}, and simultaneously @ extends to p7,p by showing that
'Z A jWip(a; pWj|| < Z i ;pS imalai j)S ;p

Note that the nondegenerate representation p X W of (A x5 T*,is,v) on H
satisfies p X W(viia(a)v;) = W;p(a)W;, and the injective homomorphism ¢ : (A x5
['*,ix,v) = pTop in Lemma 3.3 satisfies p(viia(a)v;) = wika(@)w; = pSiﬂ'a(a)S;p.
Now we compute

Z i jWiplai pW;

i jer*

0 X W(Z Ai,jv;-kiA(ai,j)vj)

IA

Z /l,'qu;ﬁ iA (Cl,’,/’)\/j

= ‘P(Z /li,jV?iA(di,j)Vj)
= Z Ai jpS ima(ai j)S ;p

Next we verify that @ is a *-homomorphism. It certainly preserves the adjoint, and
we claim by our arguments below that it also preserves the multiplication. Note that

&= (pSina(@)S ;p) (pSma()S ,p)

by injectivity of ¢

pSimg(ac(1)b)S ;,p for j=n,
= pSimaaaj_,(@,(1)b))S ;7,1 P forj>n,
PS isn-jmo(@n-j(@a,(1)b)S,, p for j<n.
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Then the covariance of (o, W) gives (&) = (W p(a)W ) (W, p(a)W,,) for all cases of j
and n. So © preserves the multiplication. Thus @ is a representation of p7,p on H.

We want to see that ® is nondegenerate. The representation p of A is nondegenerate
and p(a) = ®(n,(a)), therefore

H =span{p(a)h:ac A, he H}
C span{®@(pSima(@)Sip)h:a€A,i, j€ I'*,heH),

so @ is nondegenerate. The C*-algebra p7,p is spanned by {w;."iA(a)w jta€A,l je
I} because wjia(@)w; = pSipra(@)pS’p = pSina(a)Sp. Thus pT,p and A xPIe T+
are isomorphic. '

Finally, we prove the fullness of A x5°° I'* in 7. It is enough by [15, Example
3.6] to show that 7,p7, is dense in 7, :spW{Sina(a)S; i, jeT*, ae A}. Take
a spanning element S;m,(a)S , €T, and an approximate identity (a,) for A. Then
S,-ﬂw(a)S;I =lim, S,-ﬂw(aa/l)S;, and since S,-ﬂ[,(aa/l)S;‘. =S (a)S ,pS Oﬂa(a/l)S; €
ToP7T . a linear combination of spanning elements in 7, can be approximated by
elements of 7, pT . Thus T, pT o = T,. ]

Remark 3.4. When dealing with systems (A, I'", @) in which @,(1) =1, p =7,(1) is
the identity of L(£>(T'*, A)), and the assertion of Proposition 3.2 says that A x5 I'*
is isomorphic to 7.

4. The partial-isometric crossed product of a system by a single endomorphism

In this section we consider a system (A, N, @) of a (nonunital) C*-algebra A and an
action a of N by extendible endomorphisms of A. The module ¢*(N, A) is the vector
space of sequences (x,) such that the series ),y X, x, converges in the norm of A, with
the module structure (x,) - a = (x,a) and the inner product {(x,), (V»)) = 2 ,ent X5 Yn-

The homomorphism 7, : A — L(?(N, A)) defined by m,(a)(x,) = (@.(a)x,) is
injective, and together with the nonunitary isometry S € £(£*(N, A)),

S(-x()’ X1, X2, . - ) = (0$ X0s X1, X2, . - ')s
satisfies the equation
n(a)S; =S in,(aj(a)) forallacA,ieN.

Note that S ,m,(ab*)(1 — §5*)S;, = 0r, where f(n) = a and f(i) = 0 fori # n, g(m) = b
and g(i) = 0 for i # m. So the C*-algebra K'(€*(N, A)) is
span{S ,m,(ab*)(1 — SS™)S, :n,meN,a,bec A}.
Let (A xij" N, ja, T) be the isometric crqssed product of (A, N, @), and consider the
natural homomorphism ¢ = (iy X T) : A x5*° N — A x1° N. From Proposition 2.3, we

know that
ker ¢ = span{v;,ia(a)(1 —v'v)v,:a €A, m,ne N} 4.1

We show in the next theorem that the ideal ker ¢ is a corner in A ® K(£*(I)).
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THeOREM 4.1. Suppose that (A, N, @) is a dynamical system in which every a, = a"
extends to a strictly continuous endomorphism on the multiplier algebra M(A) of
A. Let p=7,(1ya)) € LN, A)). Then the isomorphism  : A X5"° N — pT,p in
Proposition 3.2 takes the ideal ker ¢ of A X0°° N given by (4.1) isomorphically to the
full corner p[K(€(N, A))]p. So there is a short exact sequence of C*-algebras,

0 — PIK(EQ, A)]p — A XV N —> A X1 N — 0 (4.2)

where ¥Y(pS o (a)(1 = SS*)S,p) =v,ia(a)(1 = vV,

Proor. We compute the image y(u) of a spanning element u := v} is(a)(1 — v*v)v, of

ker ¢:
Y(u) = pSmpra(@y(l =vv)pS,p = pSuma(a)p — pS pS*p)pS,ps
pSpS” = @, (ST (1)S ™ = S7o(@(1))S ™
=85(Sm(a(1)) =S @(1S) =SS*p

and

S0 =Ro(1)(@(1)S )" = To(1)(S hTe(@n(1)))*
=T (@ (1))S, = @(1)S )" = S ,p.
Therefore

Y(,ia@)(d = vvIv,) = p (S ume(@)(l = SS7)S,) p. (4.3)
Since S, 7o (a)(1 —SS8*)S, =1lim, §,mo(aa’)(1 —SS§*)S, where (ay) is an approxi-
mate identity in A, and S ,7,(aa))(1 = SS*)S,, = O, for which & n, € 2(N, A) are
given by &(m) = a and &(i) = 0 for i # m, ny(n) = a, and n,(i) = 0 for i # n, it follows
that y/(u) € p[K(*(N, A))] p. Thus y(ker ¢) C p[K(£*(N, A))]p.

Conversely, by computations similar to those that lead to (4.3), pSm.(ab*)(1 —
SS)S,p =y is(ab*)(1 = v*v)v,). Hence pIK(E2(N, A)]p c y(ker ¢). This is full
because K(£>(IN, A))pK(£*(N, A)) is dense in K(£2(N, A)): for an approximate identity
(@) in A,

Suma(a)(1 —SSH)S, = li/lln Smmalaa))(1 —SS™)S )

and S ,me(aa)(1 =888, = (Snma(@)(1 = SS*)S )p(Soma(a)(l —SS$*)S, is con-
tained in K(£2(N, A))pK(£*(N, A)). o

ReEmark 4.2. The external tensor product {*(N) ® A and £2(N, A) are isomorphic as
Hilbert A-modules [15, Lemma 3.43], and the isomorphism is given by

o(f ®a)(n) = (f(0)a, f(Da, f2)a, ...) for f e *(N)and a € A.

The isomorphism ¢ : T € L(€*(N, A)) - ¢~ ' Ty € LI (N) ® A) satisfies ¢(6y,) = ¢!
O = 016 1 Tor all €, € C2(N, A). Therefore Y(K(£*(N, A))) = K(£2(N) ® A).
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So y(p) = ¢~ pp =: p is a projection in L(£>(N) ® A). To see how p acts on {2(N) ® A,
let f € (>(N), a € A and {e,} be the usual orthonormal basis in £2(N). Then p(f ® a) =
¢~ (pp(f ® @)), and

k
polf @) = (FOT (e = lim ¢ " (e 8 Ti(1a).
i=0

Therefore

k
p(f®a)=¢" (pe(f ® @) = lim ZO] fle;®a(Da,

and hence p[K (2N, A)p = pIK(EN) ® A)lp.

ExawmpLE 4.3. We now want to compare our results with [10, Section 6]. Consider
a system consisting of the C*-algebra ¢ :=span{l1, : n € N} of convergent sequences,
and the action 7 of N generated by the usual forward shift (nonunital endomorphism)
on ¢. The ideal ¢p:=5pan{l, —1,:x<y€N}, of sequences in ¢ convergent to 0,
is an extendible t-invariant in the sense of [I, 5]. So we can also consider the
systems (cy, N, 7) and (c/cy, N, T), where the action 7, of the quotient ¢/c¢y is given
by 7,(1,; + ¢¢) = 7,(1,) + ¢o. We show that the three rows of exact sequences in [10,
Theorem 6.1], are given by applying our results to (¢, N, 7), (¢g, N, 7) and (¢/cy, N, 7).

The crossed product ¢ x2*° N of (¢, N, 7) is, by [10, Proposition 5.1], the universal
algebra generated by a power partial isometry v: a covariant partial-isometric
representation (i, v) of (¢, N, 1) is defined by i.(1,) =v,v,. Let p=mn.(1) be the
projection in 7., and the partial-isometric representation w:n+ w, = pS;p of N
in pT..p gives a representation m, of ¢ where (1) =w,w}, such that (m,, w)
is a covariant partial-isometric representation of (¢,N,7) in p7¢.p. This «, is
the homomorphism k. : ¢ = p7¢.p defined by Proposition 3.2, and the covariant
representation (r,,, w) is (ke, w). So m, X w =k X w is an isomorphism of ¢ x?"™° N
onto the C*-algebra pT . p.

Moreover, the injective homomorphism ¥ : p [K(€*(N, ¢))] p — (¢ x2*° N, i, v) in
Theorem 4.1 satisfies

P(pSim-(1,)(1 =SS p) = viic(1,)(1 = vvIv; =vivy, (1 = vy,

and the latter is a spanning element g;fj of ker ¢r by [10, Lemma 6.2]. Consequently,
the ideal p[K(£2(N, ¢))]p, in our Theorem 4.1, is the C* algebra A = n*(ker ¢r) of
[10, Proposition 6.9], where the homomorphism ¢7 : ¢ X?™° N — 77(Z) is induced
by the Toeplitz representation n +— T,. Now the Toeplitz (isometric) representation
T:nw T, on *(N) gives the isomorphism of ¢ x!*° N onto the Toeplitz algebra
T(Z), and ¢y X1*° N onto the algebra K(¢£2(N)) of compact operators on ¢*(N). Then
the second row exact sequence in [10, Theorem 6.1] follows from the commutative
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diagram

O——p [K(g2(N’ c))]p 4\{}> ¢ ><Eiso N L) ¢ XEO N— 0

l‘l’ lid iT
)

0 — ker(or) ~ A ¢ X N = T(Z) 0

Next we proceed similarly for (cy, N, 7) and (¢/cy, N, 7) to get the first and
third row exact sequences of diagram (6.1) in [10, Theorem 6.1]. We know
from [5, Theorem 2.2] that ¢y x?"° N embeds in (¢ X!"™° N, i.,v) as the ideal D =
span{v;i.(1,— 1,)v;: s <t,i, j€N}, such that the quotient (¢ x5 N)/(co X5™° N) =
C/C() ><plso

> N. Then the isomorphism @ in [5, Corollary 3.1] together with the
isomorphism 7 in [10, Proposition 6.9] give the relations ¢o XD Ny 2 ker(pr) = A,
where the homomorphism ¢7- : ¢ X2*° N — 77(Z) is associated to the partial-isometric
representation n +— T,.

Let g = m:(1p(c,)) be the projection in M(7, ). Then
qlK(*(N, ¢)lq = span{gS mte(1y — Lye1)(1 = SS*)S5q 2 i, j < m}
and
Eijm = V(G oL = L)1 = SS)S5q) = &' = &l = frt e = Fnibc
where gl’.f‘j and fl”; are defined in [10, Lemma 6.2]. So &, is, by [10, Lemma 6.4],
the spanning element of the ideal 7 := ker(y7-) N ker(ypr). We use the isomorphism

m given by [10, Proposition 6.5] to identify 7 with Ay, leading to the commutative
diagram

0 —— g[K(E(N, €0))]lg — > o xP*° N ey X1 N ——0

J{‘P J{cp lT
T2 A — = ker(pr) £ A——= K(EQ) —>0

Finally, for the system (¢/cy, N, 7), we first note that it is equivariant to (C, N, id).
So in this case, we have rK(£*(N, C))r = K((*(N)), and C xI° N £ 7°(Z) where the
isomorphism p is given by the partial-isometric representation n +— 7T, and identify
(C X;SO N, jn) = C Xiq Z ~ (C*(Z), u) with the algebra C(T) of continuous functions on
T using 6 : jn(n) > u_, € C*(Z)  (z—~7") € C(T). Then we get the third row exact
sequence of diagram (6.1) of [10, Theorem 6.1]:

0

0 — K@) —>C PN > Cxi N ——= 0

~r, 7

T(Z) —2 = C(T)
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RemMark 4.4. We have seen in Example 4.3 the three row exact sequences of [10,
Diagram 6.1] computed from our results. The three column exact sequences can
actually be obtained by [5, Theorem 2.2, Corollary 3.1]. Although these do not
imply the commutativity of all rows and columns (because we have not obtained the
analogous theorem of [5, Theorem 2.2] for the algebra 7 (4 1)), nevertheless it follows
from our results that the algebras A and ‘A appearing in [10, Diagram 6.1] are Morita
equivalent to ¢ ® K(£2()) and ¢y ® K(£*(N)), respectively. This is helpful in particular
for describing the primitive ideal space of ¢ x?™° N.

ExampLE 4.5. If (A, N, @) is a system of a C*-algebra for which a(1) =1, then (4.2)
is the exact sequence of [7, Theorem 1.5]. This is because p = 7,(1) is the identity
of Tian.a)» $0 A X5*° N is isomorphic to T4, and p[K(E2(N, A))]p = K(C2(N, A)).
Let (Ao, "), be the limit of the direct sequence (A,) where A, = A for every n and
Qpen : A, = A, for n <m. All the bonding maps ' : A; — A, extend trivially to the
multiplier algebras and preserve the identity. Therefore (A x° N, j4, jn) = (Ao X,
Z, i, u) in which the isomorphism is given by t(jn(n)*ja(a)jn(m) = u;’;ioo(ﬂo(a))um,
and then the commutative diagram follows.

0 —— p[K(*(N, A)lp LA Xgiso N _¢ A XN 0

SN

00— KN, A) — %> Tiarta) — > Aay, Xao Z—> 0

5. The partial-isometric crossed product of a system by a semigroup of
automorphisms

Suppose that (A, T*, @) is a system of an action @ : T'" — AutA by automorphisms
on A, and consider the distinguished system (Br+,I",7) of the commutative C*-
algebra Br+ by a semigroup of endomorphisms 7, € End(Br+). Then x 7, ® a;!
defines an action y of I'" by endomorphisms of Br- ® A. So we have a system
(Br+ ® A, T'*, y) by a semigroup of endomorphisms. We prove in the proposition below
that the isometric crossed product (Br+ ® A) X T'* is A xg™ I'*.

ProposiTION 5.1. Suppose that « : T* — AutA is an action by automorphisms on a C*-
algebra A of the positive cone I'* of a totally ordered abelian group I. Then the partial-
isometric crossed product A X2°° T is isomorphic to the isometric crossed product
((Br+ ® A) xiys" I'*, j). More precisely, the C*-algebra (Br+ ® A) xiys" I'* together with
a pair of homomorphisms (ka, kr+): (A,T", @) > M((Br+ ® A) Xiyso I'*) defined by
ka(a) = jp.oa(1 ® a) and kr+(x) = jr+(x)* is a partial-isometric crossed product for
A, T, a).
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Proor. Every kr+(x) satisfies kr+(x)kr+(x)* = jr+(x)*jr«(x) =1, and (ka, kr+) is a
partial-isometric covariant representation for (A, I'*, @):

JBrroaA(1 ® ax(@)) = jr+(X)" jr+(X) jpea(1 ® @x(@)) jr+(X)" jr+(x)
= e (X jprea(t: ® ¢ (1 ® (@) jr-(x)
= jr+(0)" jpea(ly ® @) jr+(x)
= jr+(x)" jp.. (10) jal@) jr+(x)
= jr+(0)" jr+(x) jr+ (x)" ja(@) jr+ (x)
= jr+ (%) jrea(l ® @) jr+(x),

and jr+(x)jr+(X)* jea(l ® @) = jp.ea(1 ® @) jr+(x) jr+(x)* because jp . ea(ly®a)=
Ja@)jp, (L),

Suppose that (1, V) is a partial-isometric covariant representation of (A, I'", @) on
H. We want a nondegenerate representation 7 X V of the isometric crossed product
(Br+ ® A) xij" I'" which satisfies (7 X V) o ky(a) = n(a) and (7 X V) o kp+(x) = V, for
allacAand xeI™.

Since V,V; =1 for all xeI'*, x— VI is an isometric representation of I'*, and
therefore ny+(1,) = V;V, defines a representation mry- of Br+ such that (7y-, V*) is an
isometric covariant representation of (Br+, ", 7). Moreover, my» commutes with 7
because

ny-(1on(a) = ViVir(a) = n(@)V V. = n(a)ry-(1,).
Thus 7y~ ® 7 is a nondegenerate representation of Br+ ® A on H, and nry- @ n(1, ® a) =
my-(1y)m(a) = n(a)mwy-(1,). We clarify that (my- ® mr, V*) is in fact an isometric covariant
representation of the system (Br+ ® A, I'*, y):

v @ (T, ® @' (1, ® @) = 7y-(To(1)r(e; (@) = Vimy- (1) Vor(a; (@)
= V;nv*(ly)ﬂ(ozx(a;l(a)))Vx by piso covariance of (rr, V)
= Viny-(1ym(@)V, = Vi(my- @ n)(1, @ a)V,.

Then p := (my- ® 1) X V* is a nondegenerate representation of (Br+ ® A) xi;o I'* which
satisfies the requirements

plka(@) = p(jpea(l1 ® a)) =7y @ 1(1 ® a) = n(a)
and p(kr+(x)) = p(jr+(x)*) = V,. Finally, the span of {kp+(x)"ka(a)kr+(y)} is dense in
(Br+ ® A) xiys" I'* because
kr+(x) ka(@kr+(y) = jr+ )" jproa(lery ® a/;iy(a))jﬁ (x).
This concludes the proof. O

Proposition 5.1 gives an isomorphism & : (A x2*° T'*, i) — ((Br+ ® A) XBOT*, )
which satisfies k(ir+(x)) = jr+(x)* and k(is(a)) = jp..a(1 ® a). This isomorphism
maps the ideal ker ¢ of A x?"°° T'* in Proposition 2.3 isomorphically onto the ideal

7 :=span{jp..,,(1 ® @) jr-(O[1 = jr«(O)jr+ @O 1jr- ()" 1 a €A, x,y, t €T}
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of (Br+ ® A) ><in° I'*. We identify this ideal in Lemma 5.2. First we need to recall
from [1] the notion of extendible ideals. It was shown there that

Br+ o :=38panfl, — 1,:x<yel"}

is an extendible r-invariant ideal of Br«. Thus Br:. ® A is an extendible y-
invariant ideal of Br+ ® A. We can therefore consider the system (Br+ . ® A), I'*, y).
Extendibility of ideal is required to ensure that the crossed product (Br+ ., ® A) xiyso r+
embeds naturally as an ideal of (Br+ ® A) xiys‘) I'* such that the quotient is the crossed
product of the quotient algebra Br+ ® A/Br+« ® A [1, Theorem 3.1].

Levvia 5.2. The ideal I is (Br+ e ® A) X350 T,

Proor. We know from [1, Theorem 3.1] that the ideal (Br+ . ® A) xi;" I'* is spanned
by

() jpy, (I, — 1) ®@a@) jr«(w) : s <t,v,winT*, a € A}.
So to prove the lemma, it is enough to show that 7 and (Br+ . ® A) ><iySO I'* contain
each other.

We compute on their generator elements in next paragraph using the fact that
the covariant representation (jp. g4, jr+) gives a unital homomorphism jg.. which
commutes with the nondegenerate homomorphism j4, and that the pair (jp.,, jr+)is a
covariant representation of (Br+, I'*, 7). Each isometry jr+(x) is not a unitary, so the
pair (ja, jr+) fails to be a covariant representation of (A, I'*, ). However, it satisfies
the equation j, (@' (a))jr+(x) = jr+(x)ja(a) foralla € A and x e T'*.

Let £ be a spanning element of 7. If x<y and ¢ are in I'", then jr-(y)* =
Jr+(x)* jr+(y — x)* and

Jre [ = jr« () jr+ (0" 1 jr+ ()"
= (Jr+ () jr+ ()" = jr«(x + 1) jr+(x + ) jr+(y — )°
= Jprea((Le = L) ® Tyga)) jr+ (v = X)°,

SO

&= jprea((lx — L) ® @) jr+(y — x)°
= jl"*(y - x)*jBr+®A(7y—x((1x - 1x+t) ® (1))

= e = X el = 1,20 ® @5 (@),
If x> y, then jr(x) = jr+ (x — ¥) jr+(y) and

Jr+(O[L = jr+ () jr+ () 1 jr+ ()"
= jre(x = =M= = jr+ @ + O jr+ (v + 1)7]
= jre(x = ) ea((ly = L) ® Ly jre (x = )" e+ (x = y)
= Joa((1x = Lest) ® Ly jre(x = y),
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50 &= jp.ea((ly — 1) ®a)jr+(x —y), and therefore 7 is contained in (Br+ . ®
A) XyoT.

For the reverse inclusion, let 1= jp.ga((1;— 1)) ® a)jr+(x) be a generator of
(Br+e ® A) X3 T'". Then = ja(a)ljr+(s)jr+(s)" = jr+(@)jr+()"]jr+(x), and a similar
computation shows that

Ljr+(8)jr+(8)" = jr+(®) jr+ ()1 jr+ (x)
e (I = et = 8)jre(t = 8) 1jr=(s — x)°  forx<s<t,

=< jrr [ = jir+(t = x) jr+ (¢ — x)"] s<x<t,
0 fort=xors<t<ux,
which implies thaty € 7. O

An isometric crossed product is isomorphic to a full corner in the ordinary crossed
product by a dilated action. The action 7:I'* — End(Br+) is dilated to the action
7:I — Aut(Br) where 74(1,) = 1,4, acts on the algebra Br =spanf{l,:xel}. We
refer to [3, Lemma 3.2] to see that a dilation of (Br+ ® A,I'*,y) gives the system
(Br ® A, T, y), in which y., = 7 ® a~! acts by automorphisms on the algebra Br ® A.
The bonding homomorphism /i, for s € I'* is given by

hy:(1,®a)€eBr+ ® A (1, ®a)€espan{l,:y>-s}®A — Br®A.

This homomorphism extends to the multiplier algebras, which we write as ho, and
it carries the identity 1o ® 114y € M(Br- ® A) into the projection 710(10 ® Ly €
M(Br®A). Let

P = Jjpea(ho(lo ® 1aa)))

be the projection in the crossed product M((Br ® A) X, I'). Then it follows from [1,
Theorem 2.4] or [8, Theorem 2.4] that (Br- ® A) xi/so I'* is isomorphic onto the full
corner p [(Br ® A) X, I' p.

CoroLLARY 5.3. There is an isomorphism of A x2°° T onto the full corner pl(Br ®
A) X, T'lp of the crossed product (Br ® A) X, I, such that the ideal ker ¢ of A xore
I'" in Proposition 3.2 is isomorphic onto the ideal p[(Br. ® A) %, Il p, where
Bro =span{ly—1,:s<tel}.

CoROLLARY 5.4. Suppose that a : T'* — Aut(A) is the trivial action a, = identity for all
x, and let Cr denote the commutator ideal of the Toeplitz algebra T (I'). Then there is
a short exact sequence

0*>A®Cr—>AxgiS°F+¢—>AXQF*>O (5.1

Proor. We have already identified in Lemma 5.2 that the ideal 7 is (Br+ . ® A) X1,
I'". We know that we have a version of [17, Lemma 2.75] for isometric crossed

products, which says that if (C,T*, y) is a dynamical system and D is any C*-algebra,
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then (C ®max D) xiysgi 4" is isomorphic to (C ><iySO ') ®max D. Applying this to the

system (Br+ ., I'", 7) and the C*-algebra A,

(Breco ® A) X0 TF = (Brs oo X° T ® A= Cr ® A

and hence we obtain the exact sequence. O

Remark 5.5. Note that
AXPOT* = (Bre @ A) X595, T = (Br- X° T @ A = T(I) ® A,

™®id

and A ngio [t~Axu~A®C*T)~A®C(®I). So (5.1) is the exact sequence

0*>A®Cr*>A®T(r)*¢>A®C(f)*>O

which is the (maximal) tensor product with the algebra A to the well-known exact
sequence 0 > Cr —» 7 () —» C(I) — 0.

5.1. The Pimsner—Voiculescu extension. Consider a system (A,I'*, @) in which
every «, is an automorphism of A. Let (A X, I, ja, jr) be the corresponding group
crossed product. The Toeplitz algebra 7 (I') is the C*-algebra generated by the
semigroup {7 : x € '*} of nonunitary isometries T, and the commutator ideal Cr
of 7(I') generated by the elements T, T; — T,T,; for s <t is given by span{T,(1 —
T.THT; :r,u,tel*}of 7(I).

Consider the C*-subalgebra 7 py(I') of M((A X, ') ® 7(I')) generated by {js(a) ®
I:acA} and {jr(x)®T,:xel*}. Let S(I') be the ideal of 7py(I') generated by
{jal@) @ (T,T; —T,T;): s<teIl*, aeA}

We claim that (A xz BT, g, ir+) = Tpy(I), and the isomorphism takes the ideal
ker(¢) onto S(I'). To see this, let n(a) := ja(a)®1 and Vi := jr(x)*® T;. Then
(m, V) is a partial-isometric covariant representation of (A, I'*, o) in the C*-algebra
M((A X, T) ® 7). So we have a homomorphism ¢ : A X"’ T'* — (A x, I) ® 7(I')
such that

Y(ia(@) = ja(a) ® I and y(ir-(x)) = jr(x)* ® T; forac A, xeT*.
Moreover, fora € A and x > 0,

m(a)(1 = ViVy) = (jal@) @ D(1 = (jr(x) ® T)(jr(x)* ® Ty))
= (a@® 1) = (jal@ ® D(jr(x) ® T)(jr(x)" @ T;)
= (a@®D - (ja(@®TTy)
= jal@) @ (I — T, T).
Since T, T} # I, the equation nr(a)(1 — V;V,) = 0 must imply ji(a) =0in A X, I, and
hence a=0in A. So by [10, Theorem 4.8] the homomorphism ¥ is faithful. Thus
A xfy’ff’ ' ~y(A xz’flo ) =7pv(D).
The isomorphism i : A xgi_slo I't — Tpy(I) takes the ideal ker ¢ of A X,1 I'* to the
algebra S(I).

https://doi.org/10.1017/51446788713000542 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788713000542

166

S. Adji and S. Zahmatkesh [22]

CoroLLARY 5.6 (The Pimsner—Voiculescu extension). Let (A, N, @) be a system in
which a € Aut(A). Then there is an exact sequence 0 — A ® K(£?(N)) — Tpy —

A X, Z— 0.

Proor. Apply Theorem 4.1 to the system (A, N, a~ ), and then use the identifications

A le_slo N =~ Tpp(Z), ker ¢ ~ S(T') =~ K(£*(N, A)) and A X, Z ~ A X1 Z. O
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