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A long-standing problem is the characterization of subsets of the range of a vector
measure. It is known that the range of a countably additive vector measure is relatively
weakly compact and, in addition, possesses several interesting properties (see [2]). In [6]
it is proved that if m : 2—•A' is a countably additive vector measure, then the range of m
has not only the Banach-Saks property, but even the alternate Banach-Saks property. A
tantalizing conjecture, which we shall disprove in this article, is that the range of m has to
have, for some p > 1, the p-Banach-Saks property. Another conjecture, which has been
around for some time (see [2]) and is also disproved in this paper, is that weakly null
sequences in the range of a vector measure admit weakly-2-summable sub-sequences. In
fact, we shall show a weakly null sequence in the range of a countably additive vector
measure having, for every p < °°, no weakly-p-summable sub-sequences.

1. Preliminaries. In this paper, 2 is a a-field of subsets of a set 5, and (5, 2, m) is a
finite measure space; B(Z) denotes the space of all bounded 2-measurable functions—a
C(K) space; if 1 ^p ^ °°, p* denotes the conjugate number of p; if p = 1, lp- plays the
role of c().

DEFINITION 1.1. A sequence (xn) in a Banach space X is said to be weakly-p-
summable (p s 1) if there is a O 0 such that

'i II * = i II

for any (£n)e/p..
It is said to be p-Banach-Saks (see [8]), 1 <p < +», if

for some constant O 0 and all neN.
We shall say that the sequence (xn) is weakly-p-convergent (resp. p-Banach-Saks

convergent) to xeX if the sequence (xn—x) is weakly-p-summable (resp. p-Banach-
Saks). Obviously weakly-p-summable sequences are p*-Banach-Saks. The converse is, in
general, false: the sequence {n~m) is 2-Banach-Saks in U, but it is not 2-summable.

DEFINITION 1.2. An operator T e Z£{X, Y) is said to be weakly-p-compact, 1 £ p <°°,
if from the image of any bounded sequence in X it is possible to extract a weakly-p-
convergent sub-sequence. We shall denote by Wp the ideal of weakly-p-compact operators.

DEFINITION 1.3. A Banach space X is said to belong to Wp if id{X) e Wp; that is, if
any bounded sequence admits a weakly p-convergent sub-sequence. It is said to have the
p-Banach-Saks property (of Johnson) if any bounded sequence admits a p-Banach-Saks
convergent sub-sequence. It is said to have the Banach-Saks property (case p = 1) if
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bounded sequences admit sub-sequences having norm convergent arithmetic means.

EXAMPLES 1.4. Parts a) and b) are not difficult to obtain; c) can be seen in [4] and d)
in [5].

a) If \<p < oo, lp e Wr if and only if r >p*.
b) I f l < p < « , Lp(fi)e Wr\f and only if r >max(2,/?*).
c) Tsirelson's dual space T* is such that T* e Wp for all p > 1.
d) Super-reflexive spaces belong to some class Wp.

2. Properties of the range of a vector measure. Concerning sequential properties of
the range of a vector measure, a basic result, due to Anantharaman and Diestel, is that
weakly-2-summable sequences always lie inside the range of a vector measure: one just
has to check that the canonical basis of l2 is in the range of a vector measure, since
weakly-2-summable sequences are their continuous images. We show that this result is, in
a sense, the best possible.

EXAMPLE 2.1. A 2-Banach-Saks sequence which is not contained in the range of a
countably additive vector measure. Consider the Lorentz space d(c, 1) defined by the
sequence £ c, = Vn. The canonical basis of d(c, 1) is an unconditional basic sequence

and a 2-Banach-Saks sequence. On the other hand, it is proved in [8] that it is not a
weakly-2-summable sequence. The following Proposition of [2] settles the counter
example.

PROPOSITION 2.2. A normalized unconditional basic sequence in the range of a vector
measure is weakly-2-summable.

The proof runs as follows: a normalized basic sequence (xn) in the range of a vector
measure can be translated into a normalized weakly null sequence (/„) in some space
L,(A). For a given x* eX*, the sequence {x*(xn) ./„} is, together with (*„), unconditio-
nally summable; thus, from Orlicz' theorem, it is norm-2-summable, and therefore (xn) is
weakly-2-summable.

A positive result in the characterization of ranges of vector measures is:

THEOREM 2.3. Let X be a Banach space of finite cotype. If m :I.—>X is a countably
additive vector measure, then the range of m is a weakly-2-compact set.

Proof. Consider the operator T:B(L)-+X, defined by T(xE) = m(E). Because X
does not contain c,, finitely represented, it follows from [10, p. 284] that there is a p > 1
such that T is absolutely-p-summing, and therefore it sub-factorizes through an L,,-space.
This and (1.4.b) imply T e W2.

All this leads one to ask whether the range of a vector measure might be a
weakly-2-compact set. The answer is strongly negative:

EXAMPLE 2.4. Let Y be the following weakly compact set of L,[0,1]:

Y = {focp: cp :[0, l]-»[0,1] is bijective and bi-measurable}

where the function/ e L,[0,1] is chosen so that the sequence ((/•„,/))„ does not belong to
any lp for l<p<<». This is possible because the sequence (rn) is equivalent to the
canonical basis of /,; since weakly-p-summable and weakly*-p-summable are equivalent
notions, one gets, for every p > 1, a function gp in L,[0,1] such that {{rn,gp))n does not
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belong to /,,. An easy consequence of Baire's theorem allows us to obtain the desired
function /.

Let (xtl) denote the following sequence of characteristic functions in L=[0, 1]:

*„(/) = max{rn+1(f),0}

where {/•„} denotes the sequence of Rademacher functions. This sequence (#„) is
weak*-convergent to \. Since Xn — \ = \. r,,, the sequence (#„ - 1 ) is not weakly-p-
summable in L«[0, 1] for every p.

By the Davis-Figiel-Johnson-Pelczynski factorization theorem, there exists a
reflexive Banach space X and an operator T : X—* Lt[0,l] such that Y<=T(Bx)- The
operator T* gives us a vector measure /i whose range is not weakly-p-compact for any p;
that is, the sequence {/*(#„)} does not admit weakly-p-convergent sub-sequences, since
the only possible accumulation point for {//(#„)} is 7"*CiX|«.i])- However this is not the
case: let A c N infinite and N = N()U Nu both infinite and such that

Let us choose the representation [0,1] = { —1,1}W. It is well-known that they are
Borel-equivalent, that is, there is a bijection bi-measurable [0, 1]—»{ —1,1}*". The
Rademacher functions become canonical projections, and every permutation of N induces
a bi-measurable bijection in [0, 1]. Let a be a permutation of N such that o(Nl) = A.
Now, if (p is the induced function by a then

neA neoiNi) neNt

COROLLARY 2.5. The range of a countably additive vector measure need not have the
p-Banach-Saks property for p>\.

Proof. It has been proved in [5] that the p-Banach-Saks property implies the Wr

property for all r>p*.

It is well-known that if the unit ball of a Banach space lies inside the range of a
countably additive vector measure then the space is super-reflexive. To obtain the desired
counter-examples we shall use a variation of (2.3).

THEOREM 2.6. If the unit ball of X lies inside the range of a countably additive vector
measure, then X e\V2.

Proof. The operator T:B(I.)^>X of the proof of (2.3) is surjective. From [9,
Corollary 11] it follows that T, and consequently id(X), belong to W2.

COROLLARY 2.7. The unit ball of Tsirelson's 2-convexified space T* and, for
0 < y < 10~6, of Tirilman's space 7](2, y), do not lie inside the range of acountably additive
vector measure.

Proof. Let X be any of those spaces. We show that if X e W2 and X* e W2 then X
(and X*) contain a copy of l2: X e W2 implies that X contains a semi-normalized
weakly-2-summable basic sequence (*„); since the sequence of associated biorthogonal
functionals (JC*) contains a weakly-2-summable sub-sequence (**), it follows that the
sequence (xk) is equivalent to the canonical /2-basis.
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We only need to verify that X $ W2. Since X* is a space of type 2 having an
unconditional basis, and does not contain a copy of l2 (see [3]), the following result
implies that A"* e W2.

PROPOSITION 2.8. Let X be a reflexive Banach space with an unconditional basis. If X
is of Rademacher type p, then X e Wp..

Proof. Since X is reflexive, we can assume that (xn) is a weakly null sequence in X.
If it is norm-null, then there is nothing to prove. If not, we apply the Bessaga-Pelczynski
selection principle to obtain an unconditional basic sub-sequence (xk), and so for any
sequence (a-,,) in the unit ball of lp we have:

II || n ||

<xkxk < K. X akrk(t)xk L
i II l l * = i II

where (/-„) is the Rademacher sequence.
On integrating this inequality, as we may, we get:

akxk l ^ K . f \ \ t «krk(t)xk i d t ^ K . C \\(ak \\xk\\)\\lp < K . C \\(ak)\\lr,
II -A) l l * = l II

since X has Rademacher type p. This proves that X e Wp. as required.

Since Lorentz function spaces A(W,p) and Lorentz sequence spaces d(a,p) contain
a subspace isomorphic to /,, (see [7] and [1]), from this, (2.6) and (1.4.a) it follows:

COROLLARY 2.9. / / 1 <p <2 the unit ball of a Lorentz spaces A(W,p) and d(a,p)
does not lie inside the range of a countably additive vector measure.
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NOTE ADDED IN PROOF. Proposition 2.8 has been improved, omitting the hypothesis
of an unconditional basis, by Farmer and Johnson, Polynomial Schur and polynomial
Dunford-Pettis properties, Contemporary Math. AMS. 144 (1993), 95-105, and by Ito
and Okado, Applications of spreading methods to regular methods of summability and
growth rate of Cesaro means, J. Math. Soc. Japan 44 (1992), 591-612.
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