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SUMMARY
The effect of migration and recombination on the equilibrium struc-

ture of populations subject to a common symmetric selection regime in
all habitats is studied. Attention is restricted to a class of symmetric
polymorphic equilibria which have been studied in two-deme systems by
Bazykin (1972) and Karlin & McGregor (1972) for one locus and by
Christiansen & Feldman (1975) for two loci. With increased migration
and recombination the heterozygosity increases unless it is already at
the maximum level. Although the populaton system as a whole is always
at linkage equilibrium, the magnitude of linkage disequilibrium in the in-
dividual demes may either increase or decrease with more migration and
recombination. In general, the less the migration and the less the recom-
bination between interacting loci, the greater the possibilities of poly-
morphic equilibria.

1. INTRODUCTION

Subdivided populations often manifest different allele and gamete frequencies
in different demes. Although the disparities may be due to migration mitigating
selection which favours different alleles or gametes in different habitats as has
been studied extensively as clines (e.g. Haldane, 1948; Karlin & Richter-Dyn,
1976), such disparities may also be present when the same selection regime is in
force in all the habitats (Bazykin, 1972; Karlin & McGregor, 1972; Christiansen &
Feldman, 1975). We extend the models of these three papers to more habitats,
more loci, and more alleles. In particular, we present restrictions on the viability
parameters, migration rate, and recombination distribution which allow the
existence of a stable polymorphism with allele (and gamete) frequencies varying
among the demes.

This paper offers a complementary perspective on one of the models developed
in our previous paper (Karlin & Campbell, 1978). In that paper we studied the
stability of the central polymorphism (equal frequencies of all gamete types in all
demes) when a symmetric selection regime (that of Lewontin & Kojima (1960)
or generalizations to more loci and/or alleles (Karlin, 1979)) is in force in each
habitat, but the selection regime varies among the habitats. One conclusion was
that, although the central polymorphism can be either stable or unstable for all
recombination distributions and migration rates for appropriate selection para-
meters, if the viability parameters are such that the stability of the central equi-
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librium depends on the recombination and migration rates, then more recombina-
tion and/or migration transforms the central equilibrium from unstable to stable.

In the present work we assume that a common symmetric selection regime is
manifested in all the habitats. With suitable constraints on the selection regime,
recombination distribution, and migration rate, there will be a stable equilibrium
configuration which will display polymorphism in all demes; but each deme will
be distinguished from the others by which gamete type or collection of gamete
types is most prevalent. We note that the equilibria studied here can only exist
if the central polymorphism is unstable for all recombination distributions and
migration rates; when they do exist, more migration and or recombination will
cause the disparity between the gamete frequencies in the various demes to
diminish. (Concomitantly these equilibria will become unstable and then cease
to exist.)

One facet of population systems which our previous study of central poly-
morphic equilibria does not encompass is linkage disequilibrium, since equal
frequency of all gamete types necessarily entails linkage equilibrium. However,
the persistent nature of linkage disequilibrium has long been recognized (Robbins,
1918) although there is no general agreement on its definition when more than two
loci are involved (see Bennett, 1954, and Hill, 1976). Many authors have investi-
gated how pervasive linkage disequilibrium should be in subdivided populations
(e.g. Sinnock & Singh, 1972; Nei & Li, 1973; Prout 1973; Feldman & Christiansen,
1975). Because of the symmetry assumptions we impose as well as the fact that
we have not determined the whole equilibrium structure for the selection-
migration regimes we consider, quantitative conclusions concerning the likelihood
of linkage disequilibrium in subdivided populations are not appropriate. How-
ever, some features of linkage disequilibrium are illustrated by the model.

The equilibria which we study often manifest linkage disequilibrium. In some
cases more migration and/or recombination increases the amount of linkage
disequilibrium, while under other circumstances increasing migration and/or
recombination decreases the amount of linkage disequilibrium (for selection
values which provide stability for these equilibria). But the linkage disequi-
librium is a local phenomenon associated with the individual demes. The sym-
metry assumptions which we employ provide that the population-system as a whole
is at linkage equilibrium, in particular at the central polymorphism which would
be unstable if all the demes had the same gamete frequencies. This illustrates the
Wahlund effect which in the absence of selection allows global linkage disequi-
librium despite local linkage equilibrium due to random drift in the allele fre-
quencies as well as global linkage equilibrium with local disequilibrium (Feldman
& Christiansen, 1975).

As with our previous paper (Karlin & Campbell, 1978), the following results are
attained employing the Kronecker (tensor) product structure which is inherent
to the symmetric selection regimes which we consider here and provides many
insights into the nature of genetic frequency transformations (Karlin & Liberman,
1976, 1978; Karlin, 1978, 1979; Karlin & Avni, 1980). It is neither the purpose of
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this paper nor appropriate to this journal to present the analytic machinery here.
Instead, we merely state the available analytic results which are needed for the
analyses presented below.

The high degree of symmetry which is built into these models in order to allow
tractable analytical results does not compromise these results since the models
are structurally stable (sensu Karlin & McGregor, 1972) providing validity for
qualitative conclusions when the assumptions are not quite satisfied. Although the
equilibria are not of interest in their own right when they are not stable, they help
delineate the total equilibrium structure, and thus when they degenerate into the
central equilibrium is of interest.

We commence the sequel with a review of one-locus disruptive selection in two
habitats (Bazykin, 1972; Karlin & McGregor, 1972) and the bonafide multi-locus
case studied by Christiansen & Feldman (1975). We then indicate how the extant
results are extended with examples entailing three loci in two habitats; two and
three loci in four habitats, and three loci in eight habitats. The discussion con-
siders how these results apply to more general systems than discussed in the main
body, including several alleles per locus, different numbers of demes, and applica-
tions to numerical studies.

2. THE PROTOTYPE: ONE LOCUS WITH TWO ALLELES
The possibility of maintaining a spatially inhomogeneous polymorphism (i.e.

the allele frequencies vary among the demes) by selection-migration balance in a
subdivided population in a uniform environment (i.e. the viability parameters
are the same in all habitats) was demonstrated by Bazykin (1972) and Karlin &
McGregor (1972). They posited a single locus with two alleles (say A and a) in a
population divided into two demes. Both the selection regime and the migration
pattern were symmetric. We shall represent the symmetric selection regime common
to both environments with the viability parameters:

a = homozygous (A A or aa) viability, (1)

/? = heterozygous (Aa) viability.

Migration is specified by the backward migration matrix

m l-my (2)

If fi > a (overdominance) and 0 < m < 1, it was shown that the only stable
equilibrium entails equal frequency of both alleles in each deme: the central poly-
morphism. The fixation states (either the A -allele is fixed in both demes or the
a-allele is fixed in both demes) are unstable equilibria. However, if a > /? (under-
dominance) and (a—y?)//? > 6m —4m2, there is a stable polymorphic equilibrium
with the frequency of the .4-allele in one deme equal to the frequency of the
a-allele in the other (these frequencies are given by \ ± *J[1 — 4ma/(a—/?)]). These
equilibria approach the central polymorphism as migration increases, but they
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become unstable (at m = £{3 —^[9 —4(a—/?)/<*]}) before they degenerate into
the central polymorphism (at m = (a —/?)/4a).

3. BALANCED HALF-CENTRAL SYMMETRIC EQUILIBRIA

The above example was extended to two loci with two alleles at each locus (say
A, a and B, b, respectively) by Christiansen & Feldman (1975). They posited the
same symmetric migration structure as above and the symmetric Lewontin-
Kojima (1960) selection regime specified by the viabilities

a = viability of double homozygotes (e.g. AABB),
Pi = viability if A -locus is heterozygous and S-locus is homozygous (e.g. AaBB),
fi2 = viability if A -locus is homozygous and 5-locus is heterozygous (e.g.

AABb),
y = viability if both loci heterozygous (i.e. AaBb). (3)

Among the equilibria which they studied were complementary equilibria:

freq (AB) = freq (ab) = [(1 + ?/)/4] freq (Ab) = freq (aB) = (1 - T/)/4 in deme 1,
freq (AB) = freq (ab) = [(1 - v/)/4] freq (.46) = freq (aB) = (1 +i/)/4 in deme 2

(-l^ti^l), (4)

which are analogs of the one-locus equilibria. They gave the necessary condition
for existence of a stable equilibrium of this nature with sufficiently slight migration
and recombination, which is a + y - ^ — / ? 2

# > 0- As migration and recombination
increase, the equilibria approach the central polymorphism (r/ approaches 0), but the
equilibria become unstable before the central polymorphism is attained.

I t is noteworthy that the magnitude of the local linkage disequilibrium de-
creases as migration and recombination increase (hence 7] decreases) although the
population as a whole is always in linkage equilibrium.

A natural generalization of the Lewontin-Kojima selection regime for more loci
is the generalized symmetric selection regime of Karlin (1979). Viabilities depend
solely on which loci are heterozygous (versus homozygous) and not which alleles
are present at the particular loci. For up to three loci it is specified by viability
parameters

a = viability if all loci homozygous,

/? = viability if exactly one locus is heterozygous,

y = viability if exactly two loci are heterozygous,

8 = viability if exactly three loci are heterozygous. (5)

In order to allow differences among the loci we shall append subscripts to the ft's
indicating which locus is heterozygous and subscripts to the y's indicating which
locus is homozygous. A more concise notation extending to an arbitrary number
of loci is available in Karlin (1979).

Equilibrium for generalized symmetric selection regimes with no recombination
in a panmictic population which entail exactly half the possible gametic types in
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equal frequency have been dubbed half-central symmetric equilibria by Karlin
(1979) (all of the alleles may or may not be present). For two alleles per locus,
these equilibria include frequency (.4) = 1 for one locus, frequency (AB) =
frequency (ab) = \ for two loci, and frequency (ABC) = frequency (,46c) =
frequency (aBc) = frequency (abC) = J for three loci. There are 2 half-central
symmetric equilibria for one locus, 6 for two loci, and 14 for three loci; a cata-
logue of these equilibria for two and three loci appears in Karlin & Liberman
(1976).

The above examples for one and two loci entail balancing complementary half-
central equilibria in two-deme systems (i.e. both equilibria together contain all
possible gamete types). The allele frequencies in each deme are an average of the
frequencies of the central polymorphism and the frequencies of one of the half-
central equilibria. Analogous equilibria ensue from complementary half-central
equilibria with any number of loci. We present the existence and stability criteria
for these equilibria for the particular half-central equilibria (and their comple-
ments) cited above. These formulae require slight modification for different choices
of the constituent half-central equilibria. Notation is chosen to reflect the unity of
this problem with respect to the number of loci.

It is convenient to introduce two statistics of the selection regime

( a + fi (for one locus),
a + fii+02 + Y (for t w o loci)>

s + 7x + 72 + 73 + s (for t h r e e

!

a — fi (for one locus),
a ~ Pi ~ fa + 7 (for t w o

a-A-A-A) + 7i + 72 + 73-S (for three loci). (7)

Because we only present examples for three or fewer loci here, the concise represen-
tation of recombination given in Karlin & Liberman (1978) is not necessary and
we shall employ the standard parameters

r (for two loci) (8)
and

r (for the split A/BC)
s (for the split C/AB)
t (for the split BjAG),

(for three loci). (9)

A necessary condition for existence of stable equilibria as specified above (cf.
Table 1) is

7A > 0. (10)
This reduces to a > fi for one locus (underdominance). It is a necessary condition
for the stability of the half-central equilibrium in a single panmictic deme with no
recombination (Karlin & Liberman, 1976; Karlin, 1979; Karlin & Avni,
1980).

The value for rj (actually values since symmetry provides that + rj describe the

https://doi.org/10.1017/S0016672300019649 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300019649


34

Two demes

type

One
locus

Two
loci

Three
loci

a

AB

Ab

aB

ab

ABC

ABc

AbC

Abe

aBC

aBc

abC

abc

Deme
I

1+V
2

1-V
2

1 + V
4

1-V
4

1-V

4

1+V
4

1+V
8

1-V

8

1-V
8

1 + V
8

1-V

8

1+V
8

1+V
8

1-V

Deme
II

i-vy
2

1+V
2 J

1 - 1 /
4

1+V
4

1 +77
4

1-V
4

1-1/
8

l + i /
8

1 + V
8

1-1/
8

1+V
8

1-1/
8

1-1/
8

1 + V
8 8
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Table 1

Deme
I

- 9 + S-0

8

Four denies

Deme
II

Deme
III

Does not apply

l+i/-g-0 1

4

L-y+g-0
8

Deme

rv

8

Gamete frequencies for the balanced half-central and quarter-central equilibria
(0 < ij, £,0 < 1). The choice v = S = 0 = 0 gives the central polymorphism. When the equi-
libria are stable v> C> and 0 are close to 1. We specialize to v = C = 0 for the explicit calcula-
tions in the text.

same equilibrium under relabelling the demes) is given above (§2) for one locus.
For two loci it is specified by

t = [(l-2m) (ys + 7A-4r>/)-ys]/yA. (11)
For three loci the equation is

7/2 = [(l-2m)(yE + yA-4r(7 2 + r3)-4s(ri-f y2)-4<(7l + y 3 ) ) - r £ ] / r A . (12)

Employing these values for 7]2, i.e. assuming we have determined the frequencies
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at the equilibrium, we can verify necessary conditions for stability of the equi-
librium involving only the recombination parameters or only the migration rates.
The former conditions are

for two loci and

[7s + 7A - 4r(72 + 7 3 ) " 4«(7i + 72) - «(7i + 7a)) (7s - i
for three loci. If we instead employ the parameter m the stability criterion is
independent of the number of loci:

< 1. (15)

These inequalities are expressed in terms of the recombination and migration
parameters (and not y2) if we substitute (11) or (12) into (13), (14), or (15) for

4. BALANCED QUARTER-CENTRAL SYMMETRIC EQUILIBRIA

The above methods are not restricted to two-deme systems. If two or more loci
are present (we illustrate with two and three loci) there may be a stable equilibrium
in a system of four demes with each deme manifesting an excess (compared to the
central equilibrium) of exactly one quarter of the gamete types while the popula-
tion system as a whole manifests the central polymorphism. The selection regime
(5) and recombination distribution ((8), (9)) as described above are appropriate,
but in order to incorporate four demes we must expand the backward migration
matrix to

(i — 3m m m m

m 1 — 3m m m
1. (16)

m m 1 — 3m m

m m m l — 3m/

The equilibria we study are of the form given in Table 1. The frequencies in the
individual demes are averages of the frequencies associated with the central
polymorphism and the quarter-central equilibria given in Karlin & Liberman
(1976). In particular, we employ the quarter symmetric equilibria freq (AB) = 1
for two loci, freq (ABC) = freq (abc) = \ for three loci, and their complements
(cf. Table 1).

The gamete frequencies for equilibria of the form given in Table 1 satisfy a
system of three cubics in three variables. However, if we slightly strengthen the
symmetry assumptions, the system collapses to a single cubic in one unknown
which is readily solvable since one of the roots is zero. We assume

for three loci. Under these assumptions, an equilibrium of the type given in Table
1 (with rj = £ = 6) will satisfy

= 0 (17)
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for two loci and

= 0 (18)
for three loci.

We note that rj does not occur in these quadratics solely as a square because
changing the signum of rj does not correspond to relabelling the demes as is the
case with only two demes. The two-locus quadratic is not independent of the
recombination rate because of the assumption (1 — 2r) y = ft.

The explicit stability criteria, although accessible, are not concise and are there-
fore omitted. However, we know by the theory of small parameters (Karlin &
McGregor, 1972) that, since stability of the quarter symmetric equilibria in single
panmictic population with no recombination and instability of the central poly-
morphism for all levels of recombination are necessary for the existence of balanced
quarter symmetric equilibria, the equilibria will be stable (when they exist) for
sufficiently slight migration and recombination, and they will become unstable
before they merge into the central polymorphism as migration and recombination
are increased.

As a complement to the circumstance with two loci in just two demes, two loci
in four demes manifest negligible local linkage disequilibrium for negligible migra-
tion and recombination; but the amount of linkage disequilibrium initially in-
creases with more migration and recombination although it reverts to zero as
panmixia is attained.

5. BALANCED EIGHTH-CENTRAL SYMMETRIC EQUILIBRIA

Analogous to one locus in two demes and two loci in four demes, there are
equilibria for three loci characterized by the prevalence of a different gamete type
in each of eight demes for sufficiently slight migration and recombination if the
fixation states are stable in single panmictic populations. The stability criterion for
the fixation states (Karlin & Liberman, 1976) is

a > max (/?, y, 8). (19)

Equihbria of this type will become unstable and then merge into the central poly-
morphism with increased migration and recombination.

6. DISCUSSION

Bazykin (1972) and Karlin & McGregor (1972) demonstrated that an environ-
ment which allows only stable monomorphic equihbria for a panmictic population
can maintain a stable polymorphism if the population is subdivided into demes.
Christiansen & Feldman (1975) extended their result to two loci allowing the study
of the effect of recombination as well as migration on polymorphism. We present
the natural extension of these models to more demes, more loci, and more alleles.
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The present work complements our previous study (Karlin & Campbell, 1978)
which analysed the central polymorphism (equal frequency of all gamete types).
In that work the selection and recombination regimes varied among the habitats
and it was found that more migration and more recombination enhanced the
stability of the central polymorphism. The present work assumes a common
selection-recombination regime in all habitats and focuses on equilibria which
only exist if the central polymorphism is unstable for all levels and forms of
recombination.

Level of heterozygosity. Some of the equilibria which we studied (e.g. two loci in
two demes) have the maximum level of heterozygosity (£) at each locus for all
levels of migration and recombination as occurs with the central polymorphism.
Other classes of equilibria (e.g. two loci in four demes), however, have negligible
heterozygosity when migration and recombination are negligible which increases
toward the maximum level with more migration and recombination. In no case
does heterozygosity decrease with more migration and recombination.

Linkage disequilibrium. The system as a whole manifests the central poly-
morphism for all the equilibria studied here and hence global linkage disequi-
librium is zero. However, the central polymorphism is not manifested in the
individual demes and local linkage disequilibrium often occurs. In some cases
(e.g. two loci in two demes) the magnitude of local linkage disequilibrium de-
creases with more migration and more recombination. Other circumstances (e.g.
two alleles in four demes) provide an increase in the magnitude of local linkage
disequilibrium with more migration and recombination if the level of migration
and recombination is low.

Selection structure. The above examples have assumed two alleles at each locus
with selection dependent solely on which loci are homozygous (versus hetero-
zygous) and not which alleles are at the loci. (In fact, the worked-out examples
assume that viability depends only on how many loci are homozygous and not
which loci are homozygous.) The assumption of two alleles per locus has been made
solely for clarity of exposition, inasmuch as the single-deme model for arbitrary
numbers of alleles at each locus with fitness depending solely on which loci are
homozygous has been analysed extensively (Karlin & Avni, 1980) and allows
polymorphisms balanced by migration as presented above (more alleles require
more demes).

The symmetry assumptions are incorporated to allow concise formulae. But the
results have general qualitative applicability because the model is structurally
stable (i.e. the qualitative behaviour of the system is not changed by small
deviations in the parameter values).

The symmetry assumptions can be somewhat weakened if there are several
alleles at the loci. This is accomplished by considering each locus as a cluster of
tightly linked loci or superlocus (Karlin, 1979) so that each allele of the superlocus
is a gamete type for the cluster of tightly linked loci. The above selection con-
straints on the constituent loci of the superlocus allow a more general selection
regime on the alleles of the superlocus. The multilocus character is retained if
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there are several superloci with negligible recombination among their constituent
loci but significant recombination between the superloci.

Migration structure. The migration pattern is a form of island migration
(Deakin, 1966) which superimposes a sedentary tendency on total panmixia.
The uniformity of the selection regime allows that dem.es as physical entities are
not important; rather, if clustering the demes provides the appropriate number
(e.g. 2, 4, 8) of virtual demes and the net migration rates among the virtual demes
reflect homing superimposed on panmixia, the above models are pertinent.

An important aspect of these models is that they allow contrasting equilibrium
configurations under different subdivisions of the population. With several loci,
finer subdivision of a population provides more types of symmetric equilibria
which may exist. Although which equilibria are stable depends on the selection
regime and recombination distribution, passing to a finer subdivision of a popula-
tion will not destroy an equilibrium configuration or its stability, but may allow
other (stable) equilibria with less heterozygosity and more (local) linkage dis-
equilibrium to exist.

Other equilibria. Because the equilibrium structure becomes far more intricate
as the dimension increases, we are not able to present the complete equilibrium
structure as is done by Bazykin (1972), Karlin & McGregor (1972), and Christian-
sen & Feldman (1975). Even in those cases the symmetric equilibria described in
this paper do not subsume all the possible equilibrium configurations. However, these
symmetric equilibria which are interesting in then* own right if stable are equally
important if unstable for helping to delineate where stable equilibria must be.

This last feature is achieved most expeditiously by taking the results of this
paper in concert with previously known results for the fixation states (Karlin &
Liberman (1976) and the symmetric central polymorphism (Karlin & Campbell
(1978)). As an example, we noted in Karlin & Campbell (1978) that because the
central and fixation equilibrium can attain stability with more migration and more
recombination, there must be other equilibria which lose their stability with more
migration and more recombination. However, the non-central symmetric equi-
libria studied above can only exist if the central polymorphism is unstable for
any level or form of migration (and no recombination); hence the central equi-
librium remains unstable when these non-central equilibria become unstable with
increasing migration and is still unstable when these non-central symmetric equi-
libria degenerate into it. Therefore, different equilibria must complement the stabil-
ity of the fixation and symmetric equilibria. Of course, the existence of other (non-
symmetric, non-fixation) equilibria is known; e.g. there can be four other equilibria
with only one locus (Karlin & McGregor, 1972); even in a single deme there are other
equilibria (Karlin, 1979). These formulae help delineate circumstances for then;
existence.

Computer simulation. In general, computer studies of multilocus, multiallele
systems entail an unmanageable number of random parameters, and random
methods for locating equilibria. While sacrificing the global equilibrium structure
and putting constraints on the selection regime, these models permit the analysis
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of symmetric equilibria which are easily characterized in systems entailing numbers
of alleles and loci which would otherwise preclude analysis.

Effect of migration arid recombination on the equilibrium structure. The transience
of these non-central symmetric equilibria suggests a qualitative role which migra-
tion and recombination may play in the equilibrium structure of populations. Of
course, drawing general conclusions from one class of equilibria is tenuous. But
these equilibria are more likely to exist and be stable with low migration and tight
linkage. Hence the notion that removing population structure in passing to one
panmictic population and removing genome structure in passing to free recombi-
nation diminish the prospects for divers equilibria as posited in Karlin (1979)
is supported.
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at Stanford University and supported in part by the National Institutes of Health (Grant
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