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Two inequalities for
convex sets in the plane

P.R. Scott

Let K be a bounded, closed, convex set in the euclidean plane

having diameter d , width w , inradius r , and circumradius

R . We show that

(w-2r)d 5 2V3 r2

and

w(2R-d) 5 V3 (2-\/3)i?2 ,

where both these inequalities are best possible.

Let if tie a bounded, closed, convex set in the euclidean plane. We

denote the area, perimeter, diameter, (minimal) width, inradius, and

circumradius of K by A, p , d, W, r , and S respectively. There are

many known inequalities amongst the quantities A, p, d, w, r , and R

(see, for example, [/], [2]). The two inequalities established in the

present paper appear to be new.

THEOREM 1. (w-2r)d 5 2\̂ 3 r2 , with equality when and only when K

is an equilateral triangle of side length 2sFi r .

Proof. We observe that a largest circle inscribed in -K must either

contain two boundary points of K which are ends of a diameter of the

circle, or else it contains three boundary points il, V, W of X which

form the vertices of an acute angled triangle (see, for example, [3]).

In the first case, w = 2r , and the theorem is trivially true. In
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the second case, the tangents to the circle at U, V, W form a triangle,

hXYZ say. Since & is convex, K is contained in A W Z . In fact,

since we are interested in maximizing the width and diameter of K , we may

take K to be

We notice that for a triangle, the diameter is the length of a longest

side, and the width is the altitude to that side. Thus

wd = 2A = pr

and

{w-2r)d = r{p-2d) .

Hence it is sufficient for us to maximize p - 2d for a fixed value of

Y x Z

Using the notation in the diagram, let us assume that x 2: y > z .

Now

p - 2d = {x+y+z) - 2x

= y + s - x

= 2x' .

Since r = x' tan(£/2) , and r is fixed, the maximum value of x'

will be assumed when (X is as small as possible, subject to the

constraint x 2 y 2 z . This occurs when IX = TT/3 (= IJ = /Z) ; that is,

when and only when t\XYZ is equilateral. For this equilateral triangle,
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d = 2V3 r , w = 32* , (w-2r)d = 2\/3 r .

Hence for any convex set X ,

(w-2r)d < 2 i § r 2 ,

as required.

THEOREM 2. u(2ff-d) £ V3{2-V3)R2 ,with equality when and only when K

is a Reuleaux triangle of width V3 R .

Proof. I t is known [3] that if K has circumradius R , then

V3 R £ d £ 2fl . Also, w £ d , so for any d ,

(2R-d)w £ (2R-d)d .

Now /(d) = (2R-d)d is a decreasing function of d , and so takes its

maximum value for d = 1/3 if . Hence

(2R-d)w £ (2-\/3)l/3 i?2 .

For equality here we require a set K having w = d ; that is, K must

be a set of constant width. Finally, it is known, [3], that the only set

of constant width which satisfies d = V3 R is the Reuleaux triangle of

width V3 R . This completes the proof.
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