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BOUNDEDNESS OF SOME INTEGRAL OPERATORS

MARIA J. CARRO AND JAVIER SORIA

ABSTRACT ~ We apply the expression for the norm of a function 1n the weighted
Lorentz space, with respect to the distribution function, to obtain as a simple conse-
quence some weighted inequalities for integral operators

1. Introduction. Given a measure space M and a function k: M x R* — R*, we
define the operator

Tif () = /OOO k(x, Df (t) dt.

The boundedness of this operator
(1) Ti: L (wo) — L' (dp),

for nonincreasing functions, where wy is a nonnegative locally integrable function (that
is a weight) in R* and dp is a measure on M, has been widely studied for particular
choices of the kernel &k (see [1], [2], [6], [7], ...).

In particular, if k(x,t) = x~'a(tx~"), the weak boundedness of

Ti L (w) — L(w),

with w| a weight in R*, has been completely solved by K. Andersen in [1]. If a satisfies
some extra condition, he also gets the strong boundedness of the operator 7;: L (w) —
L’ (w). A related work can be found in [S] where the authors consider the boundedness of
a particular case of the operator T}, with k(x, ) = xjo.x(1)p(t / x) but with no monotone
restriction on the functions f.

In [7], E. Sawyer solved question (1), for 1 < pog, p;, via the study of 7} whenever
this operator can be easily identified and its boundedness easily studied. His argument is
based upon a duality type result for nonincreasing functions (see Theorem 3.1). Results
about particular cases of operators T; have many other proofs (see [2], [6], .. .).

Our point of view consists mainly in studying this type of question as a consequence
of the boundedness of an operator 7T associated to 7 in the weighted Lorentz spaces. To
be precise, let AZ(w) be the space of all measurable functions f on a measure space N

such that ||f
and w1s a locally integrable function (that is, a weight) and f; denotes the rearrangement

00 (£ P t/p H 3
Ay = (fo (f(, (x)) w(x) dx) < +00, where o is a o-finite measure on A
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function with respect to the measure do. Then, we try to characterize the measures o; and
the weights w; such that T A{,’g(wo) — A{,"} (wy),orT: A{,"(’)(wo) — Ag'l'”(wl) are bounded,

where the weak space AP>°(w) is defined as in [4], namely

A7(y) 1/p
Hf”Apm(W) = supy(/ T w() dt) < 400.
’ y>0 O

Given a o-finite measure o on A, we shall denote by o(4) = [4 do(x) and M) =
J({x D f)] > y}) When do(x) = u(x) dx, we shall write u(A), Af and f; respectively.
Finally, if we are working with the Lebesgue measure, u is omitted and we simply write
|A|, A or f*. We shall write L] (w) to denote the set of all nonincreasing functions in
LP(w). The expression f & g will indicate the existence of two positive constants a and
b such that af < g < bf, and constants such as C may change from one occurrence to
the next.

The paper is organized as follows. In Section 2, the boundedness of the operator
Ty: L (wg) — LP'(w)) is completely solved in the range 0 < py < 1, pg < py
as a consequence of a more general result (see Theorem 2.4 and Proposition 2.5). In
Section 3, we study the weak boundedness of Tj: ALl (wo) — AL (w;) whenever T
satisfies a weak monotone property condition. Also, if 7;f is a nonincreasing function
for f nonincreasing, then we get a characterization of the boundedness of the operator
Ti: Lee
mentioned above. In Section 4, we finish with a very simple proof of the boundedness
of the generalized Hardy operator and its generalized conjugate operator, for the case
LP(w). This proof is closely related to the (also very simple) proof of Neugebauer for the

Hardy operator (see [6]).

(wg) — LP+*°(wy) which gives another proof of the result of K. Andersen we

2. Case 0 < py < 1. In [4], the following formula using the distribution function
was proved.

THEOREM 2.1.  Let (N, 0) be a measure space and w a weight in R*. Then, for
0 < p < o0, we get

[y wayd=p [7 ([ wo i) ay.

To prove it, it suffices to check it for simple functions.

It is trivial to show that for particular choices of k we can obtain both the Hardy opera-
tor Sf(x) = x| Jo f(®)dt and its conjugate §f(x) = fxo"f(t)t’l dt. Then, a first application
of Theorem 2.1 is given by the following result.

COROLLARY 2.2. (i) If f is a nonincreasing function, [°k(x,t)f(t)dt =
152 1 k(x, 1) dt dy.

(i) S¢EN(x) = f5° min(1, A7 (y)/x) dx.

(i) S(() = [ log" (AT () /x) dy.

By standard arguments using a dyadic decomposition, one can easily obtain the fol-
lowing discretization formula, (see [4]).

https://doi.org/10.4153/CJM-1993-064-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-064-2

BOUNDEDNESS OF INTEGRAL OPERATORS 1157

COROLLARY 2.3.  For every measurable function f in AL (w), and 0 < p < 00,

+00 A7(2k) 1/p
Hf”A’”’(w) R (kzzw 2]"'(./0 W) dt)) .

The main result of this section is the following:

THEOREM 2.4.  Let (N, do) and (M, du) be two o-finite measure spaces. Given a
measurable function f in N, we can define Tf(x) = T (f})(x) for every x € M. Let
0o be another o-finite measure in AN and wy a weight in R*. Then, if 0 < py < 1 and
po < pi, the operator T: A0 (wo) — LP'(du) is bounded if and only if, there exists a
constant C > 0 such that

@ (/M(/OJ(A) k(x, 1) dt)m du(x)) " < C<l/(:u(A) o) dx) 1/,,0’

for all measurable sets A in N.

PROOF. To prove the necessity condition, it is enough to apply the hypothesis to the
characteristic functionf = y4.
Conversely, condition (2) implies that

(/M </0’\7<” k(e dt>m d#(x)) " <C (./ov”(y) wo(Xx) dx> l/p().

Then, if p; < 1, we get using Theorem 2.1 and Corollary 2.3, that

(s (7o) anco) " = (/M (7 [ ke aray)” du(x)) "
o ) 1/p
= (/M (./omym*%/o&m kx, ’)d’), dYJ du(X))

< C(.[foy’nfn (/()A,""(_v) wol®) dx)p./,,o dy) u/,,,’

Finally, since po /pi < 1, using again Corollary 2.3, we get
/p

0
~
~ “fH/\ﬁg(Wo)'

90 (v
(e o)™ < [ [ pries)
Now, forp; > 1,
70 =T = [ [ kxndidy.
' Jo Jo
Hence, by Minkowski integral inequality and the hypothesis,

00|l rAZ(Y)
paan < [ kendd| oy

P (dp)

| 7f

<C OOO (./()A/mm wo(x) dx) l/p”dy.
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Finally, since py < 1, we get, by Corollary 2.3,

i O X
1y < € () wotodx) dy = ClF I, .

PROPOSITION 2.5.  Let wy and wy be two weights in R*, 0 < po < 1 and py < pi.
Then, the operator Ty: L (wo) — LP'(wy) is bounded, if and only if, for every r > 0,

'dec
< C< [ woo dx> s

(/:’(/0 k(x, 1) dt)p]wl(x) dx)

|/I71

PROOF. To prove the necessity condition, it is enough to apply the hypothesis to the
characteristic function f = xg,. Conversely, by Theorem 2.4, with both ¢ and o equals
the Lebesgue measure, and du(x) = w;(x) dx, we obtain that Tf = T,f for every nonin-
creasing function and T: A”°(wp) — L7'(w)). It now remains to observe that ngc(wo) is
a subspace of A”9(wy). n

PROPOSITION 2.6.  Let ug, u; be two weights in R" and wy, w| two weights in R*.
Then, if 0 < py < 1andpo <pj,
(a)

I/Pl

00 1/po
<C ( /0 S Pwo(x) dx) ,

(/o% (,% /Oxf:l(s)ds)plwl(x)dx)

if and only if,

“® [ wi(x) Hp uo(A) 1/po
(/0 wi(x) dx + u | (AY / dx) < C(/o wo(x)dx> )

u (A xP

for every measurable set A C R".
(b) The Hardy operator S is bounded from L1’

dec

(/0 wi(x) dx + 1 ./m wilx) dx) " < c(/o wo(x) dx)'/p“,

r xp]

(wo) into L' (w)) if and only if,

for every r > 0.

PROOF. It suffices to consider M = R*, Al = R", du(x) = wi(x)dx, do(x) =
uy (x) dx, doo(x) = ug(x) dx and k(x, 1) = x~! X[0.}(?) in Theorem 2.4. [ ]

REMARK 2.7.  If Mf is the Hardy-Littlewood maximal function of f and using the fact
that (Mf)*(x) ~ S(f*)(x), the above proposition gives a characterization of the weights
up, wo and w) for which M is bounded from A} (wp) into A”'(w)), for 0 < py < 1 and
po < pi. If p > 1, the characterization of the boundedness of M in A”(w) was first given
by Arifio and Muckenhoupt in [2]. In the case 1 < py,p; and uy = 1, the boundedness
of M from A”(wy) into A”'(w) was proved by E. Sawyer in [7].
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PROPOSITION 2.8.  Let ug, u; be two weights in R" and wg, wy two weights in R*.
Then, if 0 <po < 1andpy < py,
(a)

1/po

Uooo ([ Hw %MWW‘) dX) e C( b oy dx) :

if and only if,

| 1/p
e

for every measurable set A C R".
(b) The conjugate Hardy operator § is bounded from L7°

[ (e (2)

forevery r > 0.

(wo) into LP'(w)) if and only

Pi

1/pi
wl(x)dx) ' SC(/Orwo(x)dx)l/po,

PROOF. It suffices to consider M = R*, Al = R", du(x) = wi(x)dx, do(x) =
uy(x) dx and k(x,t) = t~'x[x.00)(¢) in Theorem 2.4. .

Another easy application of Theorem 2.4 is the boundedness of the Calder6n op-
erator. Recall that for 1 < rp < r < 00,1 < qo,q1 < 00,9 # qr andm =
(1/g0 —1/q1)/(1/ro — 1/r)) the Calderén operator is defined by

SF() = 114 /Otms'/"’f(s)? +rl /:Os‘/'lf(s)%f.

This operator plays an important role in the theory of rearrangement invariant spaces
(see [3]). Let us write S' for the first integral term and $? for the second one, so that
S=S'+5%

PROPOSITION 2.9.  Let (N, 09) and (N, 01) be two o-finite measure spaces. Then,
if 0 <po < 1landpy < p), we get that
(a)
IS 7 oy < ClA N oy

if and only if,
A p
(/0" xm/ro=1/a0pi g () dx + oy (AP0 /oo x P 0w, (x) dx) ’

a1 (A)!/m
00(A) 1/po
<
<c(f woCdx)

for every measurable set A C \.
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(b) )
IS°G )Moy < Cllf g
if and only if,
1/po

( /0”1“”””‘ P9 (0 (A) — XM Ty () dx)l/p‘ <c(/f o) ax)

for every measurable set A C .

PROOF. (a) It suffices to consider M = R*, A = Ny, du(x) = wi(x)dx, do(x) =
doy(x) and k(x,1) = x~ /91" /70= y (0w (¢) in Theorem 2.4.

(b) It suffices to consider k(x, 1) = x~ /4 ¢'/" =1y n o) (1) and M, N, dy, do, doy as
in (a), in Theorem 2.4. n

3. Some results in the case py > 0. The following result is due to E. Sawyer
(see [7]) and it will be used very often in what follows.

THEOREM 3.1.  Suppose 1 < p < +00 and that v(x) and g(x) are nonnegative
measurable functions on R, with v locally integrable. Then

3

Lo fogx)dx ( 00 v \P' % -7’ )‘/ r 150 g(t) dt
sup ~ (x) (1) dt d +
(Jee fopvix dx) /" b (e oo (o) e (I vinyr)'"”

where the supremum is taken over all nonnegative and nonincreasing functions f .
Moreover; the right side of (3) can be replaced with the integral

(/OOO (/ox g(n) dt)pL1 (/0" o) dt>l_plg(x) dx) 1/,,1'

Using the ideas developed in [1], we can give an easy proof for the < inequality.

PROOF.  For the > inequality we have to consider the function

_ (80 Pt
foy = (f Rv(s)ds d’) ’

(see [7]). Conversely, set

i\ WP
oy g p=1, -p' 152 g(s)ds\” :
h(t) = ([ ([) g(s) ds) (/0 v(s) ds) v(x) dx + (W) ) .
Then,
| egtodr = [ fgoncone " dx

’

< ([* rem e a) ([T wswdr) "
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Applying Fubini to the second factor in the previous inequality we obtain the right hand
side of (3). For the first factor, we observe that

h(x)? < ( /0 " o(t) dt)il (/O () dt)

and thus, by Theorem 2.1,

00 00 Ar()
[ reomregdc=p [T [P e cogeo dedy.

Integrating by parts the inner integral and erasing the negative terms one has that the
previous expression can be bounded, up to multiplicative constants, by

/Oooypfl (/O)\j»(y) 2(x) dx) h*P()\f‘(y)) dy
S I/O‘:’pr_| (/O)\/.(y) v(x) dx) dy N /Omfp(x)v(x) de. =

Using this result, E. Sawyer proves that if [§° w(x) dx = +00, then the dual space of
AL(w) can be identified with the space I', (W), defined by the norm

Wil sy = ( /O“G N0 ds>p/w(x) dx) ! < +00,

where w(x) = (x~! [ w(®)dr) " w(x).
For p < 1, we also have (see [4]) the following result.

THEOREM 3.2.  Suppose p < | and that v(x) and g(x) are nonnegative measurable
Sfunctions on R* with v locally integrable. Then

o fogyde ) r »
sup (fgoof(x)ﬂv(x) dx)l/p ~ 225(/0 gx) dx(/o v(x) dx) )

where the supremum is taken over all nonnegative and nonincreasing functions f.
The first inmediate consequence is the following.

THEOREM 3.3.  Let Tif(x) = [5° k(x, t)f () dt and let us assume that Tf is a nonin-
creasing function whenever f is a nonincreasing function. Then, the operator
Ty: L2 (wo) — APY>(wy) is bounded if and only if,

(a)ifpo > 1,

0 ((/Ooo (/oyk(z, ) a’t)p‘/j ([)y wo(f) dt> 7p6Wo(y) dy) 1/}

>0
+ /OOO Kz, t)dt(/ooo wo(s)ds)l/po) ([Z w,(s)ds)l/m < +00,

JO
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(b)ifpo < 1,

Sup(sup(/o k(z,x)dx) (/ wo(x)dx)l/p") (_/OZWI(S)dS>l/FI o

>0 \r>0

Az (v I
PROOF  Observe that to show that sup,.,y(/fy" 401 (x) dx) Im < Wf 7oy 1t 18
enough to consider values of y equals 7;f(z) for all z, and thus, we have to see that

sup ka(z)( [ mi@ar) < oy

for all nonincreasing f This 1s equivalent to showing that
sup ( sup Lf @) ) ([ wi(x) dx) < C < +00,
220\ \ferL’ (wy) W”U’O(m»)

and Theorems 3 1 and 3 2, lead us to the conclusion =

In particular, if k(x,#) = x 'a(tx™") this was proved by K Andersen (see [1]) The fol-
lowing two results give us the weak boundedness of an integral operator when 1t satisfies
a monotone type condition

THEOREM 3 4 Let Tyf (x) = [5° k(x, t)f (¢) dt and let us assume that, for every x, there
exists a measurable set I, of positive measure such that Tif (x) < Tif(t), for every t € I,
and every f, and if Tyf (x) < Tif (t) for some f, thent € Iy Then, Ty, AL2(wo) — AL ©(wy)
1s bounded if and only tf,

(a)ifpo > 1,

sup((“uo k(z, )HIJ’U( o) / k(z,t)dt(fo Wo(s)ds> 1/po)

>0 g
(/Ou'(”wl(t)dt>l/p') < 400,

(b)ifpo <1,

S“p(S”p(/;r kena)([woordr) ([ wiar) l/p,) o

>0 \r>0

PROOF  Let f € AL2(wo) and assume that f > 0 Then, for every ¢ € I,
|7 ko) ds < Tif )
and, hence, 1f we write £ < [§° k(x, ) (s) ds, we get

ui(l) < ui(s)ds = Mg (§)

/{-t T ()>E}
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Then,

e[ mwas) " <e( [ was) "

A () 1/p
<supy( [ wisrds) " = 1Ty < Ol
y>0 “l “o

Therefore, taking the supremum over all £ < ( 152 k(x, $)f (s) ds), we get
X k(x, d ui () 1/p
psup BN (100 1) <
>0\ f ”f”/\ﬁg(w(,) 0

and we get the conclusion by Theorems 3.1 and 3.2.
Conversely, we shall only prove (a) (the proof of (b) is entirely analogous). Let f > 0
in Al2(wo) and set x; such that if sup,, [5° k(x, $)f (s) ds > 2%, then Tif (x;) = 2. Then,

since,
Ar (YY)
P < JP1 K
ITif =0y < Csup? L i as,
and
Mgp@)= [y @ dx < ),
we get,

1Ux)

155, < Csup( [ ko) ([ it ds)

<C 14 k L. —1 ,
< Cup 1, (Ihes. 6"

+ /0 * k(. 1) dt( /0 = wols) ds)*'/p") ( fo ) ) ds>

P
< Csup 1 .

“o

The following result will give us the strong boundedness of the operator T}, for a par-
ticular choice of k. As a consequence, we partially obtain a result of E. Sawyer (see [7]).

THEOREM 3.5. Let 1 < pg < p; and let k(x,t) = X0 (1)¢(t), where ¢ is a nonin-
creasing locally integrable function in R*. Then, if wy is a nondecreasing weight in R*,
the operator Ty: LI° (wg) — LP'(wy) is bounded if and only if,

dec

=0 ((/om ( /omm(maﬁ(t) dt)p6 L))pa dx) 1/

20 (J5 wo() dt

+/0Z ¢>(t)dt</0OO wo)l/po) (/ZOO wl(t)dt)l/m < +00.
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PROOF. To prove the necessary condition, we observe that k(x, r) satisfies the hy-
pothesis of the previous theorem and since L7>°(w) = AL ™(1) we get the result as in
Theorem 3.4. Conversely, we proceed as in Theorem 3.4, but in this case we observe that
2 & [, f(s)¢(s) ds and hence if we call f; = fx(0.,_,)» We get

ITF 0y < CE(/;J"(SW(S) a’S)pI (/:O wi(s) ds)

<y () ernnods) ([ ds)

JeL ™

00 7/ pMIn(X 0 5 1/pg
< CZ Hfjlllln(m,)(([) (/0 o () dt )I __ﬂ&)ﬁ dx) I

(fé wo(t) dt

+ ./(;X/ o(1) dt(./()Oo Wo)l/m) (/:o wi(s) ds)

J

X, I’|/P0
< €L Willv < CZ(/X Flpwls —x-1)ds)

Pi/po D
< CZ(/ f(s)wo(v)ds> < CH]‘H’U‘,(,(WU). "
JEL
The same proof works for k(x,f) = X[xo0)®(t), k(x,1) = X090, k(x, 1) =
Xixm,00)@() or in general for k(x,1) = X[p),00)(®)O(1) and k(x,t) = X[0,,01(H)(1) for
every monotone function ¢. Therefore, this can be applied to the Calder6n operator. The
corresponding results for pg < 1 follow from Proposition 2.5.

4. Generalized Hardy operator. The following results are well known and they
have been proved by several authors in many different ways (see [2], [6], [1]). We give,
however, a quite simple proof using Theorem 2.1.

THEOREM 4.1.  Let p > 1 and D(x) = [§ #(t) dt. Then, the generalized Hardy oper-
ator

Saf () = (D( S |, Foowr

satisfies that
HS(Af“U’(W) < CHfHU'(W)

for all f nonincreasing if and only if,

0 w(x)

x
D(xy

O(ry /r < C/Or w(x) dx.

PROOF. To prove the necessary condition one just has to apply the hypothesis to
= xon-
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Conversely, let us observe that
39 X/t =1
([rwswa) =p ['([foowds) oo
X 1 t p-l
:P[O (% , [ (9)9(s) ds) FOD@Y o) dt.
Let us write g(¢) = (ﬁ B f()(s) ds)pil f(t). Hence,

Il =7 [ ([ sty ¢(r>dr)5%d)

Now, since g is a nonincreasing function we get by Theorem 2.1,
X 4 . 00 Ag(y) 1
| s@waytomdr= [~ [* xonODy () drdy
1 foo ) P
=~ ®(min(A;(3.x) ) dy

Therefore,

”Sqif”mw) / / ( Ae(), x)) (Iv)v(().cx)l dx

A (¥) w(x)
= .[) ‘/0 w(x)dx+(I)”()\gQ))> /::y) Y0 dxdy
<c f” / MO dxdy = € /m 2COW(x) dx

p—1

= I (q,( A f(s)qb(s)ds) Flown) dx

< CllfllronlISafll o = CIFllmanllSaf s

where the last inequality is obtained by using Holder’s inequality. [

THEOREM 4.2.  Let p > 1 and ®(x) = [; ¢(t) dt. Then, the generalized conjugate
Hardy operator

S0 = [0,

satisfies that ||Syf || rowy < ClIf || row) for all f nonincreasing, if and only if

TR ,
/0 (log @)) w(x) dx < C/0 w(x) dx.

PROOF.  One has to follow the same steps as in the previous proof but in this case we
use the identity

([ o) =p [ [romers) f()¢()¢(t)
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and write g(1) = ([ f(9)9(5) 5 ) £). .

REMARK 4.3. We observe that in Theorems 4.1 and 4.2 we can also prove, as a
consequence of Proposition 2.5, the boundedness of these generalized Hardy operators
in the case of p < 1.
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