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We present a new neoclassical transport model for large aspect ratio tokamaks where
the gradient scale lengths are of the size of the ion poloidal gyroradius. Previous work
on neoclassical transport across transport barriers assumed large density and potential
gradients but a small temperature gradient, or neglected the gradient of the mean parallel
flow. Using large aspect ratio and low collisionality expansions, we relax these restrictive
assumptions. We define a new set of variables based on conserved quantities, which
simplifies the drift kinetic equation whilst keeping strong gradients, and derive equations
describing the transport of particles, parallel momentum and energy by ions in the
banana regime. The poloidally varying parts of density and electric potential are included.
Studying contributions from both passing and trapped particles, we show that the resulting
transport is dominated by trapped particles. We find that a non-zero neoclassical particle
flux requires parallel momentum input which could be provided through interaction with
turbulence or impurities. We derive upper and lower bounds for the energy flux across a
transport barrier in both temperature and density and present example profiles and fluxes.
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1. Introduction

The pedestal, and transport barriers in general, play an important role in tokamak
performance (Wagner et al. 1984; Greenfield et al. 1997) and thus it is useful to find
a comprehensive transport model for these regions. In pedestals, for example, strong
gradients of temperature, density and radial electric field of the order of the inverse
ion poloidal gyroradius are observed (Viezzer et al. 2013). Moreover, it has been found
that the ion energy transport in pedestals is close to the neoclassical level (Viezzer
et al. 2018). Measurements of H-mode pedestals in Alcator C-Mod (Theiler et al. 2014;
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2 S. Trinczek and others

Churchill et al. 2015) and Asdex-Upgrade (Cruz-Zabala et al. 2022) have shown poloidal
variations of density, electric field and ion temperature that cannot be explained using
standard neoclassical theory. It is thus desirable to extend neoclassical theory for stronger
gradients, and logical to choose the ion poloidal gyroradius as the characteristic scale
length. Comparisons of experimental data with standard neoclassical theory (Hinton &
Hazeltine 1976) such as the one by Viezzer et al. (2018) miss finite poloidal gyroradius
effects.

Setting the scale length in transport barriers to be the poloidal gyroradius implies that
the poloidal component of the E × B-drift in large aspect ratio tokamaks becomes of the
order of the poloidal component of the parallel velocity. As a result, a strong radial electric
field shifts the trapped–passing boundary (Shaing, Hsu & Dominguez 1994a), and causes
an exponential decrease proportional to the radial electric field in plasma viscosity (Shaing
et al. 1994a) and radial heat flux (Kagan & Catto 2010; Shaing & Hsu 2012). The mean
parallel flow is also affected by a strong radial electric field and can change direction
(Kagan & Catto 2010). A strong shear in radial electric field causes orbit squeezing,
which reduces the heat flux and increases the trapped particle fraction for increasing radial
electric field shear (Shaing & Hazeltine 1992; Shaing, Hsu & Hazeltine 1994b).

Combining all these effects, Shaing & Hsu (2012) calculated the heat flux and mean
parallel velocity but they neglected the strong mean parallel velocity gradient and the
poloidal variation of the electric potential. Kagan & Catto (2008) and Catto et al. (2013)
have likewise developed extensions to neoclassical theory to allow for stronger density
gradients to calculate fluxes. In Kagan & Catto (2010) and Catto et al. (2011, 2013), the
density gradient was taken to be steep but the temperature gradient scale length had to
be much larger than the ion orbit width. Furthermore, they assumed a quadratic electric
potential profile and also neglected the poloidal variation of the potential.

Comparisons between analytical solutions and simulations have been carried out by
Landreman et al. (2014), which demonstrated the significance of source terms.

We will assume that the gradient length scale of potential, density and temperature is of
the order of the poloidal gyroradius and we will retain the poloidal variations of density
and potential. Assuming a large aspect ratio tokamak with circular flux surfaces in the
banana regime and including unspecified sources of particles, parallel momentum and
energy, we find equations for the ion distribution function, and a set of transport relations
for ions.

In § 2, we justify our choice of orderings physically, and we motivate our choice of
sources of particles, momentum and energy by considering the transition from the core
into a transport barrier. A more detailed discussion of trapped and passing particles
follows in § 3, where the shift of the trapped–passing boundary is derived and a new
set of variables based on conserved quantities is introduced. In § 4 we calculate the ion
distribution function in the trapped–barely passing and freely passing regions. We also
calculate the poloidally varying part of density and potential. The solvability conditions
for the equation containing the distribution function of the bulk ions are the density,
parallel momentum and energy conservation equations, calculated in § 5. The ion transport
equations are discussed further in § 6. We find that a non-zero parallel momentum input
is required to sustain a neoclassical particle flux and consider the possibility of interaction
with turbulence. For the energy flux, we derive upper and lower bounds and relate the
gradient lengths of temperature and density to the growth of neoclassical energy flux as
one moves into the transport barrier. We conclude by presenting some example profiles for
the ‘high flow’ case and the ‘low flow’ case. A summary of our results is given in § 7.

https://doi.org/10.1017/S0022377823000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000430


Neoclassical transport in strong gradient regions of large aspect ratio tokamaks 3

FIGURE 1. The total flux must be kept constant across the core and pedestal. The neoclassical
contribution increases in the pedestal whereas the turbulent fluxes decrease as turbulence
quenches. There is the possibility of interaction between turbulent and neoclassical transport
in the pedestal.

2. Orderings and phase space outline

In this paper we consider the transition from regions with large turbulent transport into
strong gradient regions. In a region of large turbulent transport, for example the core,
neoclassical transport gives a minor contribution because turbulent transport carries most
particles, momentum and energy. With the transition into a regime of low turbulence,
like a transport barrier, the same total fluxes must be kept but as turbulence decreases,
we anticipate that the turbulent transport goes down, too, and instead the fluxes must be
picked up by neoclassical transport. Thus, we expect a rise in neoclassical fluxes at the
transition from core to, for example, a pedestal (see figure 1). This argument is consistent
with the observation that the energy flux in the pedestal is close to its neoclassical value
(Viezzer et al. 2018). We will see, however, that this simple picture of the top of a transport
barrier has limitations. In § 6.1 we find constraints that prevent the neoclassical fluxes from
growing with radius.

Turbulence and neoclassical transport could interact in the transport barrier and hence
we need to include a source Σ in the neoclassical picture. This source represents any
possible input from turbulence as well as external injection of particles, momentum
and energy. The source must balance the neoclassical fluxes Σ/f ∼ n−1|∇ψ |(∂Γ/∂ψ) ∼
n−1T−1|∇ψ |(∂Q/∂ψ), where f is the distribution function, Γ is the neoclassical particle
flux, Q is the neoclassical energy flux, n is the density, T is the ion temperature and ψ is
the poloidal flux divided by 2π, which we use as a flux surface label. To estimate the size
ofΣ , we need the size of the neoclassical particle and energy fluxes. We consider trapped
and passing particles separately.

We can estimate the contributions from trapped and passing particles to particle and
energy transport by making random walk estimates. The diffusion coefficient D for
a random walk is D ∼ (�x)2/�t, with �x and �t the random walk size and time,
respectively. The neoclassical particle flux is thus

Γ ∼ (�x)2

�t
n
Ln
, (2.1)

where Ln = |∇ ln n|−1. In a large aspect ratio tokamak, where r/R ∼ ε � 1, r is the
minor radius and R is the major radius, the poloidal gyroradius is much bigger than the
gyroradius. For passing particles we will show that the orbit widths are �x ∼ ερp, where
ρp = qRρ/r is the ion poloidal gyroradius, q is the safety factor and ρ is the ion gyroradius.
The time between collisions is �t ∼ 1/ν, where ν is the collision frequency. The gradient
of density is assumed to be of the order of the poloidal gyroradius and so the particle flux
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due to passing particles is

Γp ∼ (ερp)
2ν

n
ρp

∼ εqνnρ. (2.2)

The orbit width for trapped particles will turn out to be �x ∼ √
ερp, the collisional time

is �t ∼ ε/ν and again the density gradient length is Ln ∼ ρp. The fraction of trapped
particles in phase space is only ∼ √

ε, and with that we arrive at a neoclassical particle
flux due to trapped particles of order

Γt ∼ √
ε(

√
ερp)

2 ν

ε

n
ρp

∼ q√
ε
νnρ. (2.3)

A comparison of the transport contribution from passing and trapped particles shows that
the particle flux due to trapped particles is much larger,

Γp

Γt
∼ ε3/2 � 1. (2.4)

The same estimate can be performed for the neoclassical energy flux when substituting the
energy gradient nT/LT for the particle density gradient n/Ln, where LT ∼ Ln ∼ ρp. In § 5
we find transport equations that are consistent with this estimate and show that transport
is dominated by trapped particles.

Using the sizes of particle and energy flux above, we can now give an estimate for the
source Σ that we have to introduce in the kinetic equation to mimic turbulence, particle,
momentum and energy sources. The gradient of the particle flux is

|∇ψ |∂Γ
∂ψ

∼ Γt

ρp
∼ √

εnν, (2.5)

and hence we include a source

Σ ∼ √
ενf . (2.6)

The random walk estimate of fluxes including source terms is accurate in the region of
strong gradients but it should be noted that, for weak gradients, random walk arguments
overestimate the neoclassical particle fluxes due to constrains imposed by intrinsic
ambipolarity. Intrinsic ambipolarity (Sugama & Horton 1998; Parra & Catto 2009; Calvo
& Parra 2012) is a property of neoclassical and turbulent particle fluxes in perfectly
axisymmetric tokamaks: these particle fluxes give zero radial current to lowest order in an
expansion in ρ/r regardless of the value of the radial electric field. This property is only
satisfied when the gradient length scales are much larger than the ion poloidal gyroradius.
When the gradient length scales are of the order of the ion poloidal gyroradius and sources
are included, the intrinsic ambipolarity constraint is relaxed as is found in this work and
before in Landreman et al. (2014). We will find the ion neoclassical particle flux to be
non-vanishing to lowest order in the presence of a parallel momentum source and discuss
these effects in more detail in § 6.1.

3. Fixed-θ variables

To calculate the particle orbits, we introduce a new set of variables: the fixed-θ variables,
which are based on the conserved quantities energy E , canonical angular momentum ψ∗
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and magnetic moment μ,

E = 1
2
v2 + ZeΦ

m
, ψ∗ = ψ − Iv‖

Ω
, μ = v2

⊥
2B
. (3.1a-c)

Here, v is the ion velocity, m is the ion mass, Ze is the charge, ψ is the flux function,
Ω is the Larmor frequency and B is the magnetic field strength. The electric potential is
Φ = φ + φθ . The piece φ is a flux function, φ = φ(ψ), and its size is given by eφ/T ∼ 1,
whereas φθ is the small poloidally varying part of the electric potential, so φθ = φθ(ψ, θ)
and eφθ/T ∼ ε. Here, θ is the poloidal angle. Throughout this work we will use that the
electric potential is of the form

φθ(ψ, θ) = φc(ψ) cos θ, (3.2)

which we will prove to be true in the banana regime for circular flux surfaces in § 4.4.
Energy, canonical angular momentum and magnetic moment are constant in time, so
following the trajectory of a single particle, we find

1
2
v2

‖ + μB + Ze
m
Φ(ψ, θ) = 1

2
v2

‖f + μBf + Ze
m
Φ(ψf , θf ), (3.3)

and

ψ − Iv‖
Ω

= ψf − Iv‖f

Ωf
, (3.4)

where the subscript f indicates the values of the respective quantities at a fixed poloidal
angle θf , which represents a reference point in the orbit of the particle. It is important to
note thatψf and v‖f are constants for each particle. For example, following the trajectory of
a passing particle, its velocity will deviate from v‖f , but, having assumed the conservation
laws above, the particle returns to its initial position ψf with the velocity v‖f after one
complete poloidal turn. Another particle on a different orbit will have a different v‖f and
ψf . Hence, the fixed-θ quantities can be understood as labels of orbits and will be used as
new phase space variables later on. The angle θf is left as a choice at this point, because
choosing θf = 0 only captures particles that are trapped on the low-field side whereas
setting θf = π captures particles trapped on the high-field side. We show in Appendix D.1
that it is important to take both sides into account when calculating trapped particle effects.

Using the standard large aspect ratio, circular-flux-surface tokamak, we can write the
magnitude of the magnetic field as

B � B0

(
1 − r

R
cos θ

)
(3.5)

to first order in the inverse aspect ratio ε. Here, B0 is the magnetic field on the magnetic
axis. For θf = 0, the magnetic field is

B � Bf

[
1 + r

R
(1 − cos θ)

]
, (3.6)

with Bf = B0(1 − r/R), whereas for θf = π the magnetic field can be written as

B � Bf

[
1 − r

R
(1 + cos θ)

]
, (3.7)

with Bf = B0(1 + r/R). Changing θf from θf = 0 to θf = π causes a jump in Bf of O(ε).
It will be important in Appendix D that this difference is small.
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In transport barriers, strong gradients in density, pressure and electric potential are
observed. We will assume that Ln ∼ LT ∼ LΦ ∼ ρp. Ordering the characteristic length of
the transport barrier to be of the order of the poloidal gyroradius implies that the poloidal
component of the E × B-drift is of the same order as the poloidal component of the parallel
velocity. The poloidal component of the E × B-drift is

c
B
(E × b̂) · ∇θ = cI

B
∂Φ

∂ψ
b̂ · ∇θ ≡ ub̂ · ∇θ + cI

B
∂φθ

∂ψ
b̂ · ∇θ. (3.8)

Here, E = −∇Φ is the electric field, c is the speed of light and b̂ = B/B, where the
magnetic field is B = I∇ζ + ∇ζ × ∇ψ and ζ is the toroidal angle. We have defined the
velocity

u = cI
B
∂φ

∂ψ
. (3.9)

Note that we use Δψ ∼ Ivt/Ω and thus u ∼ vt, where vt is the thermal speed. Due to
our choice of ordering, u and the parallel velocity v‖ are of the same size. The poloidal
velocity in this case is (

v‖b̂ + c
B

E × b̂
)

· ∇θ � (
v‖ + u

)
b̂ · ∇θ. (3.10)

Particles are trapped on banana orbits if their poloidal velocity goes to zero at any point
on their orbit. In the case of strong radial electric field this requires v‖ + u = 0 instead of
the usual trapping condition v‖ = 0, as was first argued by Shaing et al. (1994a). It follows
that particles with a parallel velocity close to −u, where u is not necessarily small, are
trapped. It has been previously shown that in this case the width of the trapped–barely
passing region in velocity space is ∼√

εvt (Shaing & Hazeltine 1992). We re-derive this
result by calculating the deviations in radial position and velocity of particles on trapped
orbits in Appendix A. Passing particles do not get reflected. One can divide the phase
space into the freely passing region where v‖ + u ∼ vt and the trapped–barely passing
region v‖ + u ∼ √

εvt.
For freely passing particles, we show in Appendix A.1 that v‖ − v‖f ∼ εvt andψ − ψf ∼

ερpRBp, where Bp is the poloidal magnetic field. Thus, the deviations in parallel velocity
and radial location are small in ε. The deviations become large and diverge when v‖ +
u becomes small. This is the trapped–barely passing region. For trapped–barely passing
particles, the differences are still small but larger by

√
ε, so v‖ − v‖f ∼ √

εvt and ψ −
ψf ∼ √

ερpRBp as can be found in Appendix A.2.
From (A13), which was first derived in this form by Shaing et al. (1994a) (see their

(22)), we can deduce that particles are trapped for

(v‖f + uf )
2

2
≤
{

Sf

[(
μBf − v‖f uf

) ( B
Bf

− 1
)

+ Ze
m
(φθ − φθ f )

]}∣∣∣∣
max

. (3.11)

The quantity S is the squeezing factor as defined by (Hazeltine 1989)

S = 1 + cI2

BΩ
∂2φ

∂ψ2
. (3.12)

Equation (3.11) implies that v‖f + uf ∼ √|Sf |εvt, which is consistent with Shaing &
Hazeltine (1992). In our case, Sf ∼ 1 and ε � 1 and hence v‖f � −uf holds, to lowest
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FIGURE 2. Orbits of passing (green) and trapped (red) particles which follow from (A4) and
(A16a,b) are shown for r/R = 0.1 and circular flux surfaces (blue). We chose θf = 0, φθ = 0,
μBf /v

2
t = 1, Ωfψf /(Ivt) = 1, uf /vt = 1.5 and Sf = 1.5. We use v‖f /vt = −uf /vt + 5 for the

example passing particle trajectory and v‖f /vt = −u/vt + 0.2 for the trapped particle trajectory.
The spatial coordinates X and Y determine the position in the poloidal plane with respect to
the magnetic axis. To make the orbits visible, we have chosen a flux surface with radius r =√

X2 + Y2 = Ωψf /(Ivt), but note that we assume r � Ωψf /(Ivt) in the rest of the paper. The
deviation from the flux surface are much larger for trapped particles than for passing particles.

order, in the trapped–barely passing region. We can rewrite (3.11) setting v‖f � −uf

(v‖f + uf )
2

2
≤
{

Sf

[(
μBf + u2

f

) ( B
Bf

− 1
)

+ Ze
m
(φθ − φθ f )

]}∣∣∣∣
max

. (3.13)

Now we see that the term on the right-hand side containing u2
f is the centrifugal force

that pushes particles towards the outboard midplane and is small in low flow neoclassical
theory. Here, both the magnetic mirror force and the centrifugal force can trap particles on
the outboard side. For φc > 0, the electric potential can oppose the magnetic mirror and
the centrifugal force and if the electrostatic force is strong enough, it can cause trapping
of particles on the inboard side. This will become relevant in Appendix D.

Example orbits for trapped and passing particles for a circular-flux-surface tokamak are
shown in figure 2. In the figure, we emphasise the difference between the width of trapped
and passing particle orbits.

4. Banana regime

The drift kinetic equation follows from an expansion of the Vlasov equation in ρ/L.
In our case, this expansion is equivalent to an expansion in ε because ρ/L ∼ ρ/ρp ∼ ε,
where ρ/R � ε2. Keeping only terms to O(ε3Ωf ), the steady state drift kinetic equation
for an ion distribution function f (ψ, θ, v‖, μ) is

(
v‖b̂ + vE

)
· ∇θ ∂f

∂θ
+ (vE + vM) · ∇ψ ∂f

∂ψ

+
[
b̂ + v‖

Ω
b̂ ×

(
b̂ · ∇b̂

)]
·
(

−μ∇B + Ze
m

E
)
∂f
∂v‖

= C[ f , f ] +Σ, (4.1)
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where vE is the E × B-drift, vM = μb̂ × ∇B/Ω + v2
‖ b̂ × (b̂ · ∇b̂)/Ω is the magnetic drift,

C[ f , f ] is the Fokker–Planck ion–ion collision operator and we include a source Σ ∼√
ενf , which is consistent with our estimate in § 2. Note that we neglect terms small in ε

and ion–electron collisions that are small in
√

me/m, where me is the electron mass. It is
convenient to make a change of variables from (v‖, ψ) to the fixed-θ variables (v‖f , ψf ).
The resulting drift kinetic equation is

θ̇
∂f
∂θ

∣∣∣∣
v‖f ,ψf

= C[ f , f ] +Σ, (4.2)

where θ̇ = (v‖b̂ + vE) · ∇θ , f = f (ψf , θ, v‖f , μ) and the derivative in θ is holding v‖f

and ψf fixed. To lowest order in the inverse aspect ratio, one can approximate θ̇ � (v‖ +
u)/qR � ε1/2vt/qR. Assuming that the collisionality is in the banana regime qRν/vt �
ε3/2, the system is, to lowest order in collision frequency, described by

v‖ + u
qR

∂f
∂θ

= 0 (4.3)

and, hence, f is to lowest order independent of θ . Thus, any poloidal variations in density,
mean flow velocity or temperature must be small.

To determine the dependence of f on ψf , v‖f and μ, we define the transit average, which
is the average over one orbit of a particle. For passing particles, the transit average is

〈F〉τ = 1
τ

∫ 2π

0

dθ
θ̇
F , (4.4)

where

τ =
∫ 2π

0

dθ
θ̇
. (4.5)

Using the approximate form of θ̇ , the transit average for trapped particles is

〈F〉τ = qR
τ

∫ θb

−θb

dθ
v‖ + u

F(v‖ + u > 0)+ qR
τ

∫ θb

−θb

dθ
|v‖ + u|F(v‖ + u < 0), (4.6)

where

τ = 2qR
∫ θb

−θb

dθ
|v‖ + u| (4.7)

and θb is the bounce angle, determined by v‖ + u = 0. Transit averaging (4.2) gives

〈C[ f , f ]〉τ = −〈Σ〉τ . (4.8)

To lowest order in ε, the source 〈Σ〉τ ∼ √
ενf is negligible, and the solution is a

θ -independent Maxwellian in fixed-θ variables,

fMf = n(ψf )

(
m

2πT(ψf )

)3/2

exp

(
−m

(
v‖f − V‖(ψf )

)2

2T(ψf )
− mμBf

T(ψf )

)
. (4.9)

Note that, unlike usual neoclassical theory, we keep the mean parallel velocity V‖ ∼ v‖.
To zeroth order in ε particles do not leave their flux surface or experience a change in their
parallel velocity going through one orbit, that is, ψ � ψf and v‖ � v‖f .
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The dependence of T on ψf might be surprising because strong temperature gradients
usually drive deviations away from a Maxwellian equilibrium. If the time scale associated
with the ion energy flux Q, given by nT/|∇ψ |(∂Q/∂ψ) is longer than the ion–ion collision
time, and the orbit widths are of the same order as the transport barrier, there is no
temperature gradient because all particles have reached thermodynamic equilibrium and
have been able to sample the entire volume. This is why the temperature gradient was
assumed to be small in Kagan & Catto (2010) and Catto et al. (2013). However, by having
introduced the large aspect ratio expansion, the gradient lengths can be of the same size as
the poloidal gyroradius whilst still being much larger than the ion orbit width. In this way,
we can get a Maxwellian to lowest order and a strong temperature gradient at the same
time.

We define the next-order solution as

f = fMf + h(ψf , v‖f , μ) = fM + g(ψ, θ, v‖, μ), (4.10)

where fM is the Maxwellian in (4.9) evaluated at the particle variables ψ, v‖ and μ,

fM = n(ψ)
(

m
2πT(ψ)

)3/2

exp

(
−m

(
v‖ − V‖(ψ)

)2

2T(ψ)
− mμB(ψ, θ)

T(ψ)

)
, (4.11)

and h ∼ g ∼ √
εfM are the O(

√
ε) corrections to the Maxwellian. One needs to be careful

about the distinction between h and g. Whilst h is the distribution function in the fixed-θ
variables and can be interpreted as the distribution of orbits, g is a function of the variables
ψ , v‖ and μ and it is the distribution function of particles in the classic sense.

In the banana regime, the collision frequency satisfies qRν/vt � ε3/2. The collisionality
is small enough that, in both the freely passing and the trapped–barely passing region,
orbits can be completed before particles collide. Consequently, h does not depend on θ to
next order as θ̇∂h/∂θ ∼ ε1/2vth/qR, while C[h, fM] + C[ fM, h] ∼ νh/ε. Thus, following
(4.3), h does not depend on θ . The large aspect ratio expansion is crucial from here on. We
expand g = h + fMf − fM in orders of

√
ε,

g = g0 + g1 + · · · where gn ∼ ε(n+1)/2fM. (4.12)

We will call the solution in the freely passing region, where |v‖f + uf |  √
εvt, the

freely passing distribution function gp, and the solution in the trapped–barely passing
region, where |v‖f + uf | ∼ √

εvt, the trapped–barely passing distribution function gt. Note
that, for convenience, we use the superscript t for the trapped–barely passing region even
though gt also includes the distribution of barely passing particles. The function gt only
exists in a small region of phase space, where |v‖f + uf | ∼ √

εvt. Thus, the contribution
of gt can be interpreted as a discontinuity in gp. We will find that it is sufficient to set
g ≈ gp in the entire phase space and determine from the solution for gt the jump and
derivative discontinuity conditions at v‖ = −u for gp. A sketch of g and how gt is reduced
to a discontinuity is shown in figure 3.

Within the trapped–barely passing region only – the region shaded in pink in
figure 3(a) – we introduce the velocity variable w ≡ v‖ + u ∼ √

εvt which is defined
such that, within the trapped–barely passing region, the region of overlap with the passing
particle region maps to w → ±∞, whereas from the point of view of the passing particle
region, the region of overlap is still located at v‖ + u → 0. The new variable w effectively
stretches out the trapped–barely passing region. We require that the outer limiting solutions
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(a) (b)

FIGURE 3. (a) This is a sketch of the distribution function g. The region of trapped–barely
passing particles (pink) is small whereas the passing region (white) covers most of velocity
space. (b) The contribution coming from trapped–barely passing particles is approximated as a
discontinuity of the passing particle distribution function and its derivatives in velocity space.

for gt match the two inner limiting solutions of gp, such that

gt(w → ∞) = gp(v‖ → −u+) and gt(w → −∞) = gp(v‖ → −u−), (4.13a,b)

as well as

∂gt

∂w

∣∣∣∣
w→∞

= ∂gp

∂v‖

∣∣∣∣
v‖→−u+

and
∂gt

∂w

∣∣∣∣
w→−∞

= ∂gp

∂v‖

∣∣∣∣
v‖→−u−

. (4.14a,b)

The jump condition at the trapped–passing boundary becomes

�gp = gt
0(w → ∞)− gt

0(w → −∞). (4.15)

The jump condition measures the difference between the co- and counter-moving barely
passing particle distribution across the trapped–barely passing region.

In order for this jump to remain finite, the derivative of gt
0 must tend to zero at ±∞. The

discontinuity condition in the derivatives thus requires the next-order correction

Δ

(
∂gp

∂v‖

)
= ∂gt

1

∂w

∣∣∣∣
w→∞

− ∂gt
1

∂w

∣∣∣∣
w→−∞

. (4.16)

The jump and derivative discontinuity conditions follow from the solution of (4.8), for
which we need an expression for the ion–ion collision operator. The lowest-order solution
is a Maxwellian, so we can linearise the collision operator around fM using (4.10),

C[ f , f ] � C[ fM, g] + C[g, fM] ≡ C(l)[g]. (4.17)

Here, we have used that the collision operator acting on the Maxwellians vanishes. We
neglect the smaller, nonlinear contribution C[g, g]. The linearised collision operator is

C(l)[g] = λ∇v ·
[∫

d3v′fMf ′
M∇ω∇ωω ·

(
∇v

(
g
fM

)
− ∇v′

(
g′

f ′
M

))]

= ∇v ·
[

fMM · ∇v

(
g
fM

)
− λfM

∫
Vtbp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gt′

f ′
M

)

−λfM

∫
Vp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]
, (4.18)
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where λ = 2πZ4e4 logΛ/m2 and logΛ is the Coulomb logarithm. The integrals are over
the trapped–barely passing region Vtbp and the freely passing region Vp, respectively, and
ω = v − v′. We have introduced the matrix

M = λ
∫

d3v′f ′
M∇ω∇ωω

= ν⊥
4

(
|v − V‖b̂|2I − (v − V‖b̂)(v − V‖b̂)

)
+ ν‖

2
(v − V‖b̂)(v − V‖b̂), (4.19)

ν⊥ = 3
√

π

2
ν
Ξ(x)− Ψ (x)

x3
, ν‖ = 3

√
π

2
ν
Ψ (x)

x3
, and ν = 4

√
πZ4e4n logΛ
3T3/2m1/2

,

(4.20a-c)

where x = √
m/(2T)|v − V‖b̂|, Ξ(x) = erf(x) = (2/

√
π)
∫ x

0 exp(−y2) dy, Ψ (x) = (Ξ −
xΞ ′)/(2x2). The term proportional to ν⊥ describes pitch angle scattering and the term
proportional to ν‖ represents energy diffusion.

We proceed to find the correction g. We expand (4.8) in orders of
√
ε and find to

O(νfM/
√
ε) the jump condition �gp in § 4.1 and to O(νfM) the derivative discontinuity

condition Δ(∂gp/∂v‖) in § 4.2. The distribution function gp as well as poloidal variations
of density and potential enter at O(

√
ενfM) and are presented in §§ 4.3 and 4.4

4.1. Jump condition
The solution in the trapped–barely passing region gives the jump and derivative
discontinuity conditions for gp. We start by finding an expression for the jump condition
(4.15) by collecting terms to O(νfM/

√
ε) in (4.8). The results of this subsection were

already derived in a similar way by Shaing et al. (1994a). We reproduce the calculations
to this order before presenting the higher-order calculations where we find significant
differences with previous work.

The equation to solve for gt
0 is

〈C(l)[g]〉τ = 0. (4.21)

Changing to the fixed-θ variables and keeping only terms of O(νfM/
√
ε) of the collision

operator in (4.18) yields

C(l)[g] � ∇vwf · ∂

∂wf

[
fMM · ∇vwf

∂(gt/fM)

∂wf

]
. (4.22)

Only the derivatives with respect to wf ≡ v‖f + uf are kept because they are larger than the
other velocity derivatives by 1/

√
ε. This is because in the trapped–barely passing region

wf ∼ √
εvt and hence we assume ∂gt/∂wf ∼ gt/(

√
εvt). Using fixed-θ variables is also

convenient because the matching between the trapped–barely passing and freely passing
region will hold for all θ . It follows from (A17) that

∇vwf =
[
w + Su

(
Bf /B − 1

)]
b̂ − S

(
Bf /B − 1

)
v⊥

wf
� w

wf
b̂. (4.23)

Thus, the linear collision operator to lowest order is

C(l)[g] � w
wf

∂

∂wf

[
M‖

w
wf

∂gt
0

∂wf

]
, (4.24)
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where we have introduced the parallel component of M

M‖ ≡ b̂ · M · b̂ � ν⊥
2
μB + ν‖

2
(u + V‖)2. (4.25)

Here, we have used that v‖ � −u for trapped–barely passing particles. The collision
frequencies ν‖ and ν⊥ are evaluated at x � √

m[(u + V‖)2 + 2μB]/(2T).
To determine gt

0, we use (4.10) and expand the lowest-order solution around a
Maxwellian in the variables (ψ, v‖, μ)

f = fMf + h(ψf , v‖f , μ) � fM + (ψf − ψ)

[
∂

∂ψ
ln p + m(v‖ − V‖)

T
∂V‖
∂ψ

+
(

m(v‖ − V‖)2

2T
+ mμB

T
− 5

2

)
∂

∂ψ
ln T

]
fM

− m(v‖ − V‖)
T

(v‖f − v‖)fM + h(ψ, v‖, μ). (4.26)

The radial derivative of the magnetic field is small and the term mμ/T(∂B/∂ψ) ∼
∂/∂ψ ln B ∼ 1/(Ir) can be dropped. This result can be rewritten using the velocity variable
w = v‖ + u, the relations (A16a,b), and the fact that v‖ � −u in the trapped–barely passing
region

f � fM − I
SΩ

(
w − wf

)DfM(v‖ = −u)+ h, (4.27)

where we have defined

D = ∂

∂ψ
ln p − m(u + V‖)

T

(
∂V‖
∂ψ

− Ω

I

)
+
(

m(u + V‖)2

2T
+ mμB

T
− 5

2

)
∂

∂ψ
ln T.

(4.28)

To avoid cluttering our notation, we will not distinguish between fixed-θ variables and
(ψ, v‖, μ) in most terms as they are almost the same. We will only keep the distinction
between the two types of variables in places where they appear subtracted from each other,
e.g. when we need v‖ − v‖f or ψ − ψf .

One can define the auxiliary function h̄, which is a function of fixed-θ variables only, as

h̄ = h + I
Ω

wf

S
DfM(v‖ = −u), (4.29)

and with that we find

gt
0 = h̄ − I

Ω

w
S
DfM(v‖ = −u). (4.30)

The trapped–barely passing region contains both barely passing particles and trapped
particles and we need to distinguish between the two. The trapped–barely passing
boundary for ions trapped on the low- (high-) field side for S > 0 (S < 0) and θf = 0
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is

w2
tpb = 4S

[(
μB + u2) r

R
− Zeφc

m

]
. (4.31)

The trapped–barely passing boundary for ions trapped on the low- (high-) field side for
S > 0 (S < 0) and θf = π is

w2
tpb = 4S

[
Zeφc

m
− (
μB + u2) r

R

]
. (4.32)

A more detailed discussion about the distinction between the two cases, is presented in
Appendix D. For barely passing particles, for which w2

f ≥ w2
tpb holds, one can change from

transit averages to flux surface averages by using that〈
w
wf
(· · · )

〉
τ

= 1
τ

∫
dθ
w

qR
w
wf
(· · · ) = 2πqR

τwf
〈· · · 〉ψ (4.33)

where 〈· · · 〉ψ = 1/(2π)
∫

dθ(· · · ) is the flux surface average. Then, using expression
(4.30) and (∂w/∂wf ) � wf /w, the transit averaged collision operator becomes

〈C(l)[g]〉τ � 2πqR
τwf

∂

∂wf

{
M‖

[ 〈w〉ψ
wf

∂ h̄
∂wf

− I
ΩS

DfM(v‖ = −u)
]}
. (4.34)

For trapped particles, which obey w2
f ≤ w2

tpb, the contribution gt
0 − h̄ is odd in w and hence

it follows from (4.6) and (4.30) that

〈C(l)[g − h̄]〉τ = −
〈

w
wf

∂

∂wf

[
M‖

I
ΩS

DfM(v‖ = −u)
]〉

τ

= 1
τ

∫ θb

−θb

dθ
wf

qR
∂

∂wf

[
M‖

I
ΩS

DfM(v‖ = −u)
]

− 1
τ

∫ θb

−θb

dθ
wf

qR
∂

∂wf

[
M‖

I
ΩS

DfM(v‖ = −u)
]

= 0. (4.35)

It then follows from (4.21) and (4.34) that

M‖
τ 〈w2〉τ

wf

∂ h̄
∂wf

= K, (4.36)

where K is a constant. M‖ is constant in wf and

τ 〈w2〉τ
wf

= qR
∫ θb

−θb

dθ
w
wf

= qR
∫ θb

−θb

dθ
√

1 − κ2 sin2(θ/2), (4.37)

where κ2 is defined in (D4), such that for wf → 0, κ2 → ∞ as θb → 0. Hence,
τ 〈w2〉τ /wf → 0 for wf → 0 and consequently K = 0 and ∂ h̄/∂wf = 0. For trapped
particles, we find from (4.30) that

∂gt
0

∂wf
= − I

ΩS
wf

w
DfM(v‖ = −u). (4.38)

The contribution 〈C(l)[g − h̄]〉τ is not zero for barely passing particles because particles do
not bounce, so there is no change in the sign of w and thus the transit average of a function
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FIGURE 4. The distribution function gt in the trapped and barely passing region is symmetric
around w = 0 and goes towards the same constants for any value of θ at w → ±∞. Here, we
chose IvtDfM(v‖ = −u)/(ΩS) = 1, g(ψf ,wf = 0, μ) = −1.2, wtpb = ±1.5 and wf is in units
of thermal velocity. The jump is �gp = −2.0685.

that is odd in w does not vanish. Using (4.34) with the boundary condition ∂gt
0/∂wf → 0

for wf → ∞, we find that the derivative of the distribution function for barely passing
particles is

∂gt
0

∂wf
= I
ΩS

(
wf

〈w〉ψ − wf

w

)
DfM(v‖ = −u), (4.39)

where we have used ∂w/∂wf � wf /w. For the jump condition (4.15) we need to integrate
(4.38) and (4.39) over wf . We will show in § 4.3 that in the freely passing particle region,
the distribution function is independent of θ to lowest order and hence the jump condition
must be independent of θ as well. Thus, the jump condition must satisfy

�gp =
∫ ∞

−∞
dwf

∂gt
0

∂wf
=
〈∫ ∞

−∞
dwf

∂gt
0

∂wf

〉
ψ

. (4.40)

We calculate this integral in Appendix D using the potential φθ = φc cos θ (see § 4.4). The
final result is

�gp = −2.758
I
ΩS

√∣∣∣∣S
[
(μB + u2)

r
R

− Ze
m
φc

]∣∣∣∣DfM(v‖ = −u). (4.41)

The distribution function gt in (B1) can be plotted using the integrals from Appendix D.
The results for different values of θ are shown in figure 4. We find that the derivative is
discontinuous at the trapped–passing boundary, and that the jump (4.41) is the same for
any value of θ .

4.2. Derivative discontinuity condition
We proceed to derive an expression for the discontinuity condition (4.16). For the jump
condition, we have to consider terms of O(νfM/

√
ε). For the derivative discontinuity

condition, we still consider the trapped–barely passing particles but need to go to higher
order in

√
ε and collect terms of O(νfM). Going back to (4.21), we perform the change of
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variables in the collision operator (4.18) and only keep terms of O(νfM) or larger to get

C(l)[g] � 1
J

∂

∂wf

[
J fM∇vwf · M · ∇v

(
gt

fM

)]

+ 1
J

∂

∂μ

[
J fM∇vμ · M · ∇vwf

∂(gt
0/fM)

∂wf

]

+ 1
J

∂

∂ψf

[
J fM∇vψf · M · ∇vwf

∂(gt
0/fM)

∂wf

]
, (4.42)

where

J = det
(

∂(r, v)
∂(ψf , θ, ζ,wf , μ, ϕ)

)
� 1

B · ∇θ
1

∇vwf · (∇vμ× ∇vϕ)
� qRwf

w
(4.43)

is the Jacobian (note that we used (4.23) to obtain the last equality), ϕ is the gyroangle
with ∇vϕ = b̂ × v/v2

⊥ and

∇vμ = v⊥
B
, ∇vψf = ∇v(ψf − ψ) � I

ΩS

(
w
wf

− 1
)

b̂, (4.44a,b)

for which we have used (A16a,b). The Maxwellians in the second and third terms of (4.42)
are evaluated at v‖ = −u. Recall that the derivatives with respect to wf are bigger by 1/

√
ε

than the derivatives with respect to μ and ψf .
We argued in (4.16) that the parallel velocity derivative of gt

1 is required for the
derivative discontinuity condition. This derivative is of order

√
εfM and hence gt

1 only
appears in the first term of (4.42), where the second derivative in parallel velocity of gt

1
produces a term of O(νfM). In all other terms that involve smaller derivatives with respect
to μ and ψf , only gt

0 enters to this order. We show in Appendix C that taking the transit
average of the collision operator yields

〈C(l)[g]〉τ � 1
wf τ

∂

∂wf

[
fMwf τ

〈
∇vwf · M · ∇v

(
gt

fM

)〉
τ

]

+ 1
wf τ

∂

∂μ

[
2μfMwf τM⊥

〈
w
wf

∂(gt
0/fM)

∂wf

〉
τ

]

+ 1
wf τ

∂

∂ψf

[
fMwf τ

I
ΩS

M‖

〈(
w
wf

− 1
)

w
wf

∂(gt
0/fM)

∂wf

〉
τ

]
= 0. (4.45)

Here, we introduced the component of M

M⊥ ≡ v⊥
|v⊥|2 · M · b̂ � (−u − V‖)

(
−ν⊥

4
+ ν‖

2

)
, (4.46)

and set v‖ = −u in the arguments of ν‖ and ν⊥, which is a good approximation in the
trapped–barely passing region.

The first term in (4.45) contains the derivative of gt
1 that is needed for the discontinuity

condition. The distribution function for trapped–barely passing particles, gt, has to match

https://doi.org/10.1017/S0022377823000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000430


16 S. Trinczek and others

with gp at the boundary between the trapped–barely passing region and the freely passing
region, and thus

wf

〈
∇vwf · M · ∇v

(
gt

fM

)〉
τ

� wb̂ · M · ∇v

(
gp

fM

)
(4.47)

for w → ±∞. Hence, the solution for the discontinuity condition (4.16) in the banana
regime takes the form

Δ

[
wτ b̂ · M · ∇v

(
gp

fM

)]
fM

= − ∂

∂μ

[
fM

∫ ∞

−∞
dwf wf τ2μM⊥

〈
w
wf

∂(gt
0/fM)

∂wf

〉
τ

]

− ∂

∂ψf

[
fM

I
ΩS

∫ ∞

−∞
dwf wf τM‖

〈(
w
wf

− 1
)

w
wf

∂(gt
0/fM)

∂wf

〉
τ

]
, (4.48)

where we have multiplied (4.45) by wf τ and integrated over wf . Note that on the left-hand
side of the equation wτ � 2πqR. Following the steps in Appendix D.2 and recalling
(4.40), we arrive at

Δ

[
b̂ · M · ∇v

(
gp

fM

)]
fM = − ∂

∂μ
(2μM⊥�gp)+ ∂

∂ψf

(
I
ΩS

M‖�gp

)
, (4.49)

where �gp is given in (4.41).
We have found the jump and derivative discontinuity conditions. Next, an equation for

the freely passing region is derived which completes an approximate description of the
entire velocity space.

4.3. The freely passing region
The freely passing particle distribution function enters to O(

√
ενfM) in (4.8). The explicit

expression of the collision operator in (4.18) is substituted into the simplified drift kinetic
equation (4.8), which gives〈

∇v ·
[

fMM · ∇v

(
gp

fM

)
− λfM

∫
Vp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]〉
τ

− λ
〈
∇v ·

[
fM

∫
Vtbp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gt′

f ′
M

)]〉
τ

= −〈Σ〉τ . (4.50)

The distribution function g ∼ √
εfM and the gradient acting on gt′ gives a factor of 1/

√
εvt.

In the third term on the right-hand side ∇v′gt′ ∼ fM/vt and Vtbp ∼ √
εv3

t , so all three terms
on the left-hand side are of O(

√
ενfM).

We combine the first two terms in (4.50) and define the linearised freely passing
collision operator

C(l)
p [g] ≡ ∇v ·

[
fMM · ∇v

(
gp

fM

)
− λfM

∫
Vp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]
(4.51)
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to write (4.50) as

〈C(l)
p [g]〉τ − λ

〈
∇v ·

[
fM

∫
Vtbp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gt′

f ′
M

)]〉
τ

= −〈Σ〉τ . (4.52)

This is the equation for the passing distribution function. Equation (4.52) has solvability
conditions, which are the moment equations we calculate in § 5. To obtain the moment
equations, the jump and derivative discontinuity conditions in (4.41) and (4.48) are needed.

We are interested in the poloidal variations of density, mean parallel flow velocity,
temperature and electric potential, for which the θ -dependent part of gp, gp − 〈gp〉ψ , is
of interest. We argued that h only depends on θ via the dependence of ψf and v‖f on θ .
Since gp = hp + fMf − fM and fMf − fM ∼ εfM, gp � hp to lowest order. The θ -dependent
part of gp is given by the next order

gp − 〈gp〉ψ � fMf − fM − 〈 fMf − fM〉ψ
� (

ψf − ψ − 〈ψf − ψ〉ψ
) ∂ fM

∂ψ
+ (
v‖f − v‖ − 〈v‖f − v‖〉ψ

) ∂ fM

∂v‖
+ mμ

T

(
B − 〈B〉ψ

)
fM

= − Ir
ΩR

(
v2

‖ + μB
)

cos θ − ZeφθR/(mr)

v‖ + u

[
∂

∂ψ
ln p + m(v‖ − V‖)

T

(
∂V‖
∂ψ

− Ω

I

)

+
(

m(v‖ − V‖)2

2T
+ mμB

T
− 5

2

)
∂

∂ψ
ln T

]
fM − r

R
cos θ

m
T

[
v‖(v‖ − V‖)+ μB

]
fM,

(4.53)

where we have used the relations (A5) and (A6) as well as Bf /B − 〈Bf /B〉ψ = (r/R) cos θ .
The θ -dependent part of the distribution function is of O(εfM) and consequently the
θ -independent part of gp is bigger than gp − 〈gp〉ψ by order

√
ε. In Appendix B we show

that the θ dependent part of the solution for gt
0 matches with (4.53).

4.4. Poloidal variations and electric potential
In the tokamak core, trapped particles are located around v‖ = 0, and for a Maxwellian
with V‖ = 0 the number of passing particles with v‖ > 0 and v‖ < 0 is the same to lowest
order. The trapped–passing boundary in our ordering is shifted such that trapped particles
are located around v‖ = −u. The lowest-order distribution function is still a Maxwellian,
but it has a mean parallel velocity V‖. For V‖ �= −u, this implies that the number of passing
particles with v‖ + u > 0 and v‖ + u < 0 is different. This discrepancy causes a poloidal
variation in density, mean parallel velocity, temperature and poloidal potential.

If, for example, the magnetic drifts are pointing downwards, as shown in figure 5,
particles with a positive (negative) poloidal velocity are being pushed inwards (outwards)
with respect to their flux surface at θ = 0 and outwards (inwards) at θ = π. Let us assume
a density gradient such that there is higher density inside a flux surface than there is
outside. In this case, there are more particles with positive poloidal velocity at θ = 0 than
there are particles with negative poloidal velocity (see figure 5a), because particles with
positive poloidal velocity come from the high density region. At θ = π, the opposite is
true, because the orbits of particles with positive poloidal velocity come from the low
density region (see figure 5b). Thus, for a shifted trapped–passing boundary in the strong
gradient case, the number of particles with positive and negative poloidal velocity are
different to lowest order in ε and ρ/r and density varies poloidally within a flux surface.
For comparison, the same effect occurs in standard low flow neoclassical theory, but the
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(a) (b)

FIGURE 5. (a) At θ = 0, particles with a positive poloidal velocity (red) are pushed inwards,
completing their orbits through a region of higher density, and particles with a negative poloidal
velocity (blue) are pushed outwards, completing their orbits through a region of lower density.
Hence, red particles are more numerous than blue particles. (b) At θ = π on the same flux
surface, the opposite is the case and there are fewer red particles than there are blue particles.
If red particles are more numerous than blue particles and the density is higher at smaller radii,
there will be a higher density at θ = 0 than at θ = π and there is poloidal variation of density
within a flux surface.

number of particles with positive and negative poloidal velocity is the same to lowest order
in ρ/r and these effects cancel out. The asymmetry in the passing particle distribution
function in the strong gradient case gives a poloidal density variation of O(ε), whereas, in
standard low flow neoclassical theory, the poloidal density variation is much smaller. The
same argument can be constructed for poloidal variation of temperature and mean parallel
flow.

The small poloidal variation of density, nθ , is

nθ (ψ, θ) =
∫

d3vg −
〈∫

d3vg
〉
ψ

. (4.54)

The integration is over the entire range of the parallel velocity and hence over both,
the trapped–barely passing and freely passing regions. The freely passing region is the
part of velocity space for which v‖ is not close to −u. Importantly, the freely passing
distribution function (4.53) diverges at v‖ = −u. This divergence is picked up by the
trapped distribution function gt. As a result, the integration over phase space is split up
into an integration over gt in the trapped–barely passing region and a principal value
integral over gp which captures the freely passing region while ignoring the divergence
near v‖ = −u. Contribution from the divergence is accounted for by the integral of the
distribution function gt in the trapped–barely passing region. For trapped particles, it
follows directly from (B1) that

∫
dμ
∫

trapped
dw 2πBgt −

〈∫
dμ
∫

trapped
dw 2πBgt

〉
ψ

= 0. (4.55)

For barely passing and freely passing particles, the flux surface average of the density can
be replaced by the integral over the flux surface averaged distribution function because the
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FIGURE 6. The function J defined in (4.58) as a function of ȳ = √
m/(2T)(u + V‖).

θ -dependence of B is small. Thus, (4.54) can be written as

nθ =
∫

dμ
∫

barely passing
dw 2πB(gt − 〈gt〉ψ)+

∫
dμ
[

PV
∫

dv‖2πB(gp − 〈gp〉ψ)
]
,

(4.56)

where the first term only contains the barely passing particles. However, this contribution
vanishes to lowest order because gt

0 − 〈gt
0〉ψ is odd in w, which follows from (B10).

The integration of the second term in (4.56) is performed in Appendix E, where the
θ -dependent part of the distribution function is taken from (4.53). The result is

nθ = −n
Ir
ΩR

{√
2T
m

J

[(
mV2

‖
T

cos θ + cos θ − ZeφθR
Tr

)(
∂

∂ψ
ln p − 3

2
∂

∂ψ
ln T

)

+ cos θ
∂

∂ψ
ln T

]
+
[

1 − 2
√

m
2T
(V‖ + u)J

]{
(V‖ − u) cos θ

(
∂

∂ψ
ln p − 3

2
∂

∂ψ
ln T

)

− (V‖ + u)

[(
mV2

‖
2T

+ 1
2

)
cos θ − ZeφθR

2Tr

]
∂

∂ψ
ln T +

(
∂V‖
∂ψ

− Ω

I

)[(
mu2

T
+ 1

−m(V‖ + u)2

T

)
cos θ − ZeφθR

Tr

]}
+
[

1 + 2
m(V‖ + u)2

2T
− 4

( m
2T

)3/2
(V‖ + u)3J

]

× cos θ
(
∂V‖
∂ψ

− Ω

I
+ V‖ − u

2
∂

∂ψ
ln T

)}
− 2n

r
R

cos θ, (4.57)

where we introduced the function

J =
√

π

2
exp

(
−m(u + V‖)2

2T

)
erfi

(√
m
2T
(u + V‖)

)
, (4.58)

which is plotted in figure 6 and erfi(x) = (2/
√

π)
∫ x

0 exp(t2) dt. The orbit width of passing
particles is of order ε and hence the poloidal variation in density is of order ε as well.

The poloidal variation in density creates a poloidal variation in electric potential φθ that
is determined via quasineutrality. Assuming a Boltzmann response of the electrons, the
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quasineutrality condition yields

Z
∫

d3v g −
〈
Z
∫

d3v g
〉
ψ

= ene

Te
φθ . (4.59)

Looking at (4.57) we find that the potential has the form φθ = φc cos θ , and the
quasineutrality condition (4.59) yields{

ene

Te
− Z2neI

TΩ

[√
2T
m

J
(
∂

∂ψ
ln p − 3

2
∂

∂ψ
ln T

)
+
[

1 − 2
√

m
2T
(V‖ + u)J

](
∂V‖
∂ψ

− Ω

I

−(V‖ + u)
2

∂

∂ψ
ln T

)]}
φc = −Zn

Ir
ΩR

{√
2T
m

J

[(
mV2

‖
T

+ 1

)

×
(
∂

∂ψ
ln p − 3

2
∂

∂ψ
ln T

)
+ ∂

∂ψ
ln T

]
+
[

1 − 2
√

m
2T
(V‖ + u)J

]

×
[
(V‖ − u)

(
∂

∂ψ
ln p − 3

2
∂

∂ψ
ln T

)

+
(
∂V‖
∂ψ

− Ω

I

)(
mu2

T
+ 1 − m(V‖ + u)2

T

)
− V‖ + u

2

(
mV2

‖
T

+ 1

)
∂

∂ψ
ln T

]

+
[

1 + 2
m
2T
(V‖ + u)2 − 4

( m
2T

)3/2
(V‖ + u)3J

](
∂V‖
∂ψ

− Ω

I
+ V‖ − u

2
∂

∂ψ
ln T

)}

− 2Zn
r
R
. (4.60)

For φc > 0, the maximum of the potential is on the low-field side of the plasma, so the
potential can trap particles on the high-field side for S > 0. For φc < 0 and S > 0,
the potential reaches its maximum on the high-field side and it can trap particles on the
low-field side if electrostatic trapping dominates over magnetic trapping and centrifugal
force.

Charge exchange recombination spectroscopy measurements in both Alcator C-Mod
(Theiler et al. 2014; Churchill et al. 2015) and ASDEX-Upgrade (Cruz-Zabala et al. 2022)
have observed poloidal variation in impurity density and temperatures in the pedestal of
H-mode plasmas. These experiments also demonstrated that the main ion temperature and
radial electric field cannot simultaneously be flux functions. This is consistent with our
calculation and argumentation of poloidal variation in the electric potential and density.

We have found expressions for the distribution function in the passing region and the
jump and derivative discontinuity condition given by the trapped–barely passing region,
and we have found the form of the poloidally varying component of the electric potential.
These expressions are needed to calculate the solvability conditions for (4.52).

5. Moment equations

In order to study the transport in the pedestal, we want to find particle, parallel
momentum and energy fluxes and how they give rise to profiles of n, T , u, V‖ and φc.
First, we integrate (4.52), for which the jump and derivative discontinuity conditions are
required, and find the solvability conditions, which are the equations for particle, parallel
momentum and energy conservation.
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The full derivation is explained in Appendix F, where we show that the particle
conservation equation

∂

∂ψf

(
− I
Ωm

F‖

)
=
∫

d3vf 〈Σ〉τ , (5.1)

is the result of integrating (4.52) over velocity space. Here,

F‖ = −
∫

dμ
2πmB

S
M‖�gp (5.2)

is the parallel force due to the friction between passing and trapped particles, and �gp is
the jump condition given in (4.41). The integration over d3vf is an integration over velocity
space in the fixed-θ variables, where d3vf = 2πB dμ dv‖f . The integration eliminated the
contribution from the freely passing particle distribution gp to the particle transport and
for this reason is a solvability condition: it must be satisfied regardless of the value of gp.
Trapped and barely passing particles dominate transport as we have estimated in § 2. We
can compare (5.1) with a typical continuity equation

∂Γ

∂ψf
=
〈∫

d3vf Σ

〉
ψ

, (5.3)

where the term on the left-hand side is the divergence in ψf of a particle flux Γ and the
term on the right-hand side is a source of particles. It follows directly from (5.1) and (5.3)
that the neoclassical ion particle flux is

Γ = − I
mΩ

F‖. (5.4)

The parallel force F‖ can drive a radial particle flux via an effect similar to the one that
gives the Ware pinch (Ware 1970).

The parallel momentum equation is the result of multiplying (4.52) by mv‖f and
integrating over velocity space. The equation becomes

∂

∂ψf

(
I
Ω

uF‖

)
+ F‖ = γ, (5.5)

where γ = ∫
d3vmv‖f 〈Σ〉τ is the parallel momentum input per unit volume. The

calculation that leads to (5.5) is presented in Appendix F.2. We can use the particle flux
(5.4) in (5.5) and arrive at

∂

∂ψf
(muΓ )+ mΩ

I
Γ = −γ, (5.6)

which is a relation purely between the particle flux, parallel momentum input and u. The
first term on the left-hand side of (5.6) is the flux of parallel momentum carried by the
trapped particles. The second term on the left is the force due to the friction between
trapped and passing particles. The term on the right-hand side of the equation is a source
of parallel momentum.
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As for the particle and parallel momentum equations, one can find the energy equation
by multiplying (4.52) by mv2

f /2 and integrating over velocity space to arrive at

∂

∂ψf

(
IT

mΩ
Θ

)
− uF‖ =

∫
d3vf

mv2
f

2
〈Σ〉τ , (5.7)

where

Θ =
∫

dμ
2πmB

S

(
mμB

T
+ mu2

2T

)
M‖�gp. (5.8)

The energy flux Q is defined similarly to Γ as

∂Q
∂ψf

− ZeΓ
∂φ

∂ψf
=
〈∫

d3vf
mv2

f

2
Σ

〉
ψ

. (5.9)

A comparison with (5.7) gives

Q = TI
mΩ

Θ. (5.10)

The flux of energy on the left-hand side of (5.7) contains both convective energy flux,
which is the energy carried by the particle flux, and a conduction energy flux. The second
term on the left of (5.9) is the work done by the radial electric field. The term on the right
represents energy injection.

The same equations for particle, parallel momentum and energy (5.1), (5.5) and (5.7)
can be found using moments of the original Fokker–Planck kinetic equation. At this point
we can switch from fixed-θ variables to normal variables and drop the subscript f because
the difference is small in ε.

We can substitute (4.25) for M‖ and the jump condition (4.41) into (5.2) to find the
particle flux from (5.4)

Γ = −2.758
I2πB

|S|3/2Ω2
n
( m

2πT

)3/2
√

T
m

∫
dμ exp

(
−m(u + V‖)2

2T
− mμB

T

)

×
√∣∣∣∣
(

mμB
T

+ mu2

T

)
r
R

− Ze
T
φc

∣∣∣∣ (ν⊥μB + ν‖(u + V‖)2
)D. (5.11)

Integration over x = √
mμB/T + m(u + V‖)2/(2T) gives the final form of Γ

Γ = −1.102
√

r
R

νI2p
|S|3/2mΩ2

{[
∂

∂ψ
ln p − m(u + V‖)

T

(
∂V‖
∂ψ

− Ω

I

)]
G1(ȳ, z̄)

−1.17
1
T
∂T
∂ψ

G2(ȳ, z̄)
}
, (5.12)
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(a) (b)

FIGURE 7. (a) A small shift in V‖ for V‖ not close to −u going from one surface (solid line)
to another flux surface (dashed line) causes a strong change of the number of trapped particles
(red area between curves) in the trapped–barely passing region (pink). (b) A small shift in V‖ for
V‖ close to −u gives only a small change in the number of trapped–barely passing particles (red
areas between curves cancel) in the trapped–barely passing region.

where ȳ = √
m/(2T)(u + V‖), z̄ = mu2/T − ZeφcR/(Tr),

G1(ȳ, z̄) ≡

∫ ∞

|ȳ|
dx k(x, ȳ, z̄)∫ ∞

0
dx 0.5x e−x2

[Ξ(x)− Ψ (x)]
= 7.51

∫ ∞

|ȳ|
dx k(x, ȳ, z̄), (5.13)

G2(ȳ, z̄) ≡

∫ ∞

|ȳ|
dx
(
x2 − 5/2

)
k(x, ȳ, z̄)∫ ∞

0
dx 0.5x

(
x2 − 5/2

)
e−x2

[Ξ(x)− Ψ (x)]

= −6.40
∫ ∞

|ȳ|
dx
(

x2 − 5
2

)
k(x, ȳ, z̄), (5.14)

and

k(x, ȳ, z̄) =
√

|x2 + z̄ − ȳ2|e−x2

{(
1
2

− ȳ2

2x2

)
[Ξ(x)− Ψ (x)] + ȳ2

x2
Ψ (x)

}
. (5.15)

The functions G1 and G2 are normalised to recover the standard neoclassical results when
ȳ = 0 = z̄, G1(0, 0) = 1 = G2(0, 0). The neoclassical ion particle flux in (5.12) depends
on the radial electric field through u (see (3.9)) and thus also through ȳ and z̄. We note
that the term in (5.12) proportional to [V‖ − (−u)]Ω/I is the particle flux due to the
parallel friction between trapped particles located around −u and the passing particles
with a mean velocity V‖. The term proportional to (u + V‖)∂V‖/(∂ψ) is related to a shift
in the Maxwellian and hence to the density gradient if the Maxwellian is not centred
around the trapped region, i.e. if V‖ + u is not small (see figure 7). The remaining terms
include the pressure and temperature gradients that usually drive radial particle flux but
here are modified by the integrals G1 and G2. Note that also the poloidal potential affects
transport as it enters in z̄.
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Similarly, Q is

Q = mu2

2
Γ − 1.463

√
r
R

νI2pT
|S|3/2mΩ2

{[
∂

∂ψ
ln p − m(u + V‖)

T

(
∂V‖
∂ψ

− Ω

I

)]
H1(ȳ, z̄)

−0.25
1
T
∂T
∂ψ

H2(ȳ, z̄)
}
, (5.16)

where

H1(ȳ, z̄) ≡

∫ ∞

|ȳ|
dx
(
x2 − ȳ2) k(x, ȳ, z̄)∫ ∞

0
dx 0.5x3e−x2

[Ξ(x)− Ψ (x)]
= 5.66

∫ ∞

|ȳ|
dx
(
x2 − ȳ2) k(x, ȳ, z̄), (5.17)

and

H2(ȳ, z̄) ≡

∫ ∞

|ȳ|
dx
(
x2 − ȳ2) (x2 − 5/2

)
k(x, ȳ, z̄)∫ ∞

0
dx 0.5x3 (x2 − 5/2

)
e−x2

[Ξ(x)− Ψ (x)]

= −22.63
∫ ∞

|ȳ|
dx
(
x2 − ȳ2) (x2 − 5

2

)
k(x, ȳ, z̄). (5.18)

Again, we introduce a convenient normalisation such that H1(0, 0) = 1 = H2(0, 0) in the
standard neoclassical limit. The dependence of the neoclassical ion energy flux (5.16) on
the radial electric field is hidden in u, ȳ and z̄.

We have found explicit expressions for particle (5.1), parallel momentum (5.5) and
energy conservation (5.7). Next, we want to compare our results with previous work. First,
we take the high flow and low flow neoclassical limit, and then we give a comparison of
our results with those by Catto et al. (2013) and Shaing & Hsu (2012).

In the high flow regime of the usual neoclassical theory (Hinton & Wong 1985), V‖ + u
and all gradients as well as source terms are small. If we take this limit in (5.6) and assume
that the source of parallel momentum γ is small, we find that

Γ = 0, (5.19)

which is consistent with the usual result in the high flow regime (Hinton & Wong 1985;
Catto, Bernstein & Tessarotto 1987). Using the particle flux equation (5.12), Γ̄ = 0 gives

∂

∂ψ
ln p + mΩ(V‖ + u)

IT
= 1.17

G2(ȳ, z̄)
G1(ȳ, z̄)

∂

∂ψ
ln T. (5.20)

We can use this in (5.16) to get the high flow energy flux

Q = −1.71
√

r
R

I2νTp
mΩ2

�Q̄
∂

∂ψ
ln T, (5.21)

where

�Q̄ ≡ H1(ȳ, z̄)G2(ȳ, z̄)− 0.21H2(ȳ, z̄)G1(ȳ, z̄)
G1(ȳ, z̄)

≥ 0. (5.22)
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The quantity �Q̄ is positive, which follows from

�Q̄ = −4.82

(∫ ∞

|ȳ|
dx x2k(x, ȳ, z̄)

)2

−
∫ ∞

|ȳ|
dx k(x, ȳ, z̄)

∫ ∞

|ȳ|
dx x4k(x, ȳ, z̄)∫ ∞

|ȳ|
dx k(x, ȳ, z̄)

(5.23)

and the Cauchy–Schwarz inequality(∫ ∞

|ȳ|
dx x2k(x, ȳ, z̄)

)2

≤
∫ ∞

|ȳ|
dx k(x, ȳ, z̄)

∫ ∞

|ȳ|
dx x4k(x, ȳ, z̄). (5.24)

Here, k(x, ȳ, z̄) is given in (5.15). Note that k > 0 becauseΞ − Ψ > 0, Ψ > 0 and x ≥ |ȳ|.
The quasineutrality condition (4.60) gives the poloidally varying electric potential in

the high flow limit, (
ene

Te
+ Z2nie

T

)
φc = −Zni

r
R

mu2

T
. (5.25)

The only contribution to the potential comes from the centrifugal force as all gradients and
m(V‖ + u)2/T terms are small while V‖ � −u ∼ vt.

The low flow neoclassical results can be retrieved by taking the limit of small radial
electric field, u/vt � 1, small mean parallel flow, V‖/vt � 1, and small gradients. It
follows from (5.25) that the poloidal variation of the potential is small so that we can
set z̄ = 0 in the arguments of G1, G2, H1 and H2. Without a source of parallel momentum
γ = 0, (5.6) gives Γ = 0, so the mean parallel flow follows directly from (5.20)

V‖ = − IT
mΩ

(
∂

∂ψ
ln p + Ze

T
∂Φ

∂ψ
− 1.17

∂

∂ψ
ln T

)
. (5.26)

The neoclassical energy flux Q then follows directly from (5.21) for�Q̄ = 0.79 and reads

Q = −1.35
√

r
R

I2νpT
mΩ2

∂

∂ψ
ln T, (5.27)

in agreement with Hinton & Wong (1985) and Catto et al. (1987).
We can compare our results with those of Catto et al. (2013) by taking the limit of small

temperature gradient and small V‖. We are able to retrieve the same energy flux if we set
φθ = 0, Γ = 0 and correct an error in Catto et al. (2011) and pointed out by Shaing & Hsu
(2012). The calculation is presented in detail in Appendix G.1.

The energy flux Q in (5.16) is proportional to |S|−3/2 and decays ∼ exp(−ȳ2) which
is consistent with the results of strong radial electric field and radial electric field shear
obtained by Shaing & Hazeltine (1992) and Shaing & Hsu (2012). We compare our
results in the limit (I/Ω)(∂V‖/∂ψ) � 1 and Γ = 0 with those of Shaing & Hsu (2012)
in Appendix G.2. We find the same particle and energy equations if we account for a
discrepancy in the function k(x, ȳ, z̄).

Comparisons with numerical results can be made in certain limits. The global code
PERFECT requires weak temperature gradients and could be checked against our results
in the limit of small temperature gradient (Landreman et al. 2014). Other codes such as
the axisymmetric versions of XGC (Chang, Ku & Weitzner 2004), Gkeyll (Hakim et al.
2020) and COGENT (Dorf et al. 2012) could be used to reproduce aspects of the strong
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gradient fluxes and poloidal variation. In the next section, we impose radial force balance
(see (6.1)) which needs to be reconsidered carefully when comparing the following results
with numerical evaluations of fluxes.

6. Transport equations and flux conditions

We work with (5.6), (5.12) and (5.16) to find relations between the particle flux Γ , the
parallel momentum input γ , the energy flux Q and the physical quantities T , n, u, V‖ and
φc. Given Γ and Q as functions of ψ , and boundary conditions at the top or bottom of the
transport barrier, we can integrate the equations to obtain the profiles of T , n, u, V‖ and φc.

So far, we have an equation for the particle flux (5.12), the parallel momentum equation
(5.6), the energy flux (5.16) and quasineutrality (4.60). We are missing an equation for the
radial electric field to be able to relate Γ , γ and Q with T , n, u, V‖ and φc. The equation
for the radial electric field is provided by the conservation of toroidal angular momentum,
but the necessary derivation is beyond the scope of this paper. For the purpose of the
following calculations, we assume that for the ions, the pressure gradient is the dominant
contribution in the radial force balance (Kagan & Catto 2008; McDermott et al. 2009;
Viezzer et al. 2013). Hence, we impose

Zen
∂Φ

∂ψ
+ ∂p
∂ψ

= 0, (6.1)

which can be written as
∂

∂ψ
ln n = −Ωmu

IT
− ∂

∂ψ
ln T. (6.2)

We introduce the new, dimensionless quantities

ū =
√

m
2T0

u, V̄ =
√

m
2T0

V‖, T̄ = T
T0
, n̄ = n

n0
, φ̄c = ZeφcR

T0r
(6.3a-e)

∂

∂ψ̄
= I
Ω

√
2T0

m
∂

∂ψ
, z̄ = T̄−1 (2ū2 − φ̄c

)
, ȳ = ū + V̄√

T̄
, (6.4a-c)

where T0 is the ion temperature and n0 the ion density at the boundary ψ = 0. In the
banana regime, the normalised fluxes are

Γ̄ = Γ

n0I

√
2T0r
mR

ν0

Ω

, Q̄ = Q

n0I

√
2T0r
mR

T0
ν0

Ω

, γ̄ = γ

ν0n0
√

2mT0r/R
, (6.5a-c)

where ν0 is the collision frequency at the boundary. Changing to these dimensionless
variables, we arrive at the following set of equations for the banana regime: The particle
flux equation from (5.12) and (6.2) is

Γ̄ = −0.55
n̄2

|S|3/2T̄3/2

{[
−2ū − 2(ū + V̄)

(
∂V̄
∂ψ̄

− 1
)]

G1(ȳ, z̄)− 1.17
∂T̄
∂ψ̄

G2(ȳ, z̄)
}
.

(6.6)

The parallel momentum equation from (5.6) is

ū
∂Γ̄

∂ψ̄
+ SΓ̄ = −γ̄ . (6.7)
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The energy flux equation from (5.12), (5.16) and (6.2) is

Q̄ = ū2Γ̄ − 0.73
n̄2

|S|3/2T̄1/2

{[
−2ū − 2(ū + V̄)

(
∂V̄
∂ψ̄

− 1
)]

H1(ȳ, z̄)

−0.25
∂T̄
∂ψ̄

H2(ȳ, z̄)
}
. (6.8)

The pressure balance equation from (6.2) gives

∂

∂ψ̄
ln n̄ = −2

ū
T̄

− ∂

∂ψ̄
ln T̄, (6.9)

and the equation for the potential, which can be derived from (4.60), is{
1 − ZTe

T0

1
T̄

[√
T̄J
(

−2
ū
T̄

− 3
2
∂

∂ψ̄
ln T̄

)

+
(

1 − 2
V̄ + ū√

T̄
J
)(

∂V̄
∂ψ̄

− 1 − V̄ + ū
2

∂

∂ψ̄
ln T

)]}
z̄

= ZTe

T0

1
T̄

{√
T̄J
[(

2
V̄2 − ū2

T̄
+ 1

)(
−2

ū
T̄

− 3
2
∂

∂ψ̄
ln T̄

)
+ ∂

∂ψ̄
ln T̄

]

+
[

1 − 2
V̄ + ū√

T̄
J
] [
(V̄ − ū)

(
−2

ū
T̄

− 3
2
∂

∂ψ̄
ln T̄

)

+
(
∂V̄
∂ψ̄

− 1
)(

1 − 2
(V̄ + ū)2

T̄

)
− (V̄ + ū)

(
V̄2 − ū2

T̄
+ 1

2

)
∂

∂ψ̄
ln T̄

]

+
[

1 + 2
(V̄ + ū)2

T̄
− 4

(V̄ + ū)3

T̄3/2
J
](

∂V̄
∂ψ̄

− 1 + V̄ − ū
2

∂

∂ψ̄
ln T̄

)
+ 2 + 2

T0

ZTe
ū2

}
.

(6.10)

The functions J, G1, G2, H1 and H2 are given in (4.58), (5.13), (5.14), (5.17) and (5.18).
This set of equations is the most important result of our calculation and allow a discussion
of the neoclassical transport of ions in strong gradient regions.

We can integrate equations (6.6)–(6.10) relating n̄, T̄ , ū, V̄ and z̄ numerically by
imposing boundary conditions at the top of the transport barrier and specifying particle,
parallel momentum and energy sources to find profiles in the pedestal. We discuss the
implications for particle (§ 6.1) and energy flux (§ 6.2) before presenting some example
profiles (§ 6.3).

6.1. Particle flux and parallel momentum injection
In order to understand the appearance of a neoclassical particle flux, we analyse the parallel
momentum equation (6.7). In edge transport barriers, measurements of the radial electric
field have shown that in the pedestal ∂φ/∂ψ > 0 and thus ū > 0 (McDermott et al. 2009).
We assumed that in the pedestal ū ∼ 1. However, at the boundary to the large turbulent
transport region, where our model connects to the usual neoclassical regime of small
gradients in density and temperature, ū � 1. Thus, we are looking for solutions with a
growing positive ū as one moves into the transport barrier. Importantly, if there is no
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(a) (b)

FIGURE 8. (a) The entire particle flux is carried by turbulence and the neoclassical particle
flux stays negligible. (b) Turbulence interacts with neoclassical physics and supplies a parallel
momentum source that allows a growing neoclassical particle flux.

parallel momentum input, the particle flux must decay to ensure that ū grows, because it
follows from (6.7) that

Γ̄ ∝ exp
(

−
∫

dψ̄
S
ū

)
. (6.11)

For ū > 0 and S > 0, the neoclassical particle flux Γ̄ decreases and is even smaller inside
a transport barrier than outside when γ̄ = 0.

We argued in § 2 that at the inner edge of a transport barrier there is a region of large
turbulent transport and small collisional transport whereas in the transport barrier, we find
a region of low turbulence. In order to keep up the same total flux, the neoclassical fluxes
must increase and pick up the decreasing turbulent fluxes (see figure 1). However, this
initial picture is too simple as it disagrees with our analysis of the decreasing particle flux.
One option to solve the contradiction is that the particle flux is still carried by turbulence
because the neoclassical fluxes never pick up the turbulent contribution. There must be
enough turbulence in the transport barrier to carry the entire particle flux – recall that at
this point we are only discussing the particle flux and not the energy flux. So even if the
entire particle flux is carried by turbulence, the energy flux could still be neoclassical (see
figure 8a). The second option is that the particle flux is truly neoclassical in the transport
barrier, but turbulence or impurities supply the necessary parallel momentum source γ
so that (6.11) is not valid. Somehow, and we cannot specify at this point how exactly,
turbulence or impurities interact with neoclassical transport and appear as a source of
parallel momentum (see figure 8b). The difference between the two options is that in the
first picture, the neoclassical particle flux is close to zero whereas in the second picture
the particle flux is in large part neoclassical because turbulence or impurities produce γ̄ .
This picture is consistent with previous results by Landreman & Ernst (2012) about the
necessity of sources for non-zero steady state transport in the edge. Without the source, no
ion neoclassical particle flux develops in the pedestal.

The neoclassical ion particle flux is larger than the electron particle flux by O(
√

m/me).
Unlike in the weak gradient region, where intrinsic ambipolarity prevents different sizes
of electron and ion particle fluxes, the neoclassical ion particle flux in the strong gradient
region can be significantly larger than the neoclassical electron particle flux in the presence
of sources if the total particle fluxes which include both the turbulent and neoclassical parts
obey ambipolarity. Intrinsic ambipolarity (Sugama & Horton 1998; Parra & Catto 2009;
Calvo & Parra 2012) does not hold in the strong gradient limit where gradient length scales
are of the order of ρp.

It is also worth pointing out that Γ̄ and γ̄ are necessarily of opposite sign if |Γ̄ | grows
as one moves into the transport barrier. An outwards neoclassical ion particle flux requires
a negative parallel momentum injection.
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(a) (b)

FIGURE 9. (a) The quantity �Q̄ in (5.22) as a function of ȳ for different values of z̄. (b) The
quantity �Q̄ as a function of z̄ for different values of ȳ.

6.2. Energy flux
Next, we want to discuss the energy flux equation (6.8). In transport barriers, T̄ and n̄
decrease. One can use this behaviour to estimate the energy flux in this case. Combining
(6.6) and (6.8) to solve for ∂T̄/∂ψ̄ as a function of Q̄ and Γ̄ yields

∂T̄
∂ψ̄

= − 1.17
|S|3/2T̄1/2

n̄2︸ ︷︷ ︸
>0

1
�Q̄︸︷︷︸
≥0

{
Q̄ −

[
ū2 + 1.33T̄

H1(ȳ, z̄)
G1(ȳ, z̄)

]
Γ̄

}
, (6.12)

where �Q̄ was defined in (5.22). Figure 9 shows �Q̄ for different values of ȳ and z̄. It
is large for small ȳ, symmetric in ȳ with a maximum at ȳ = 0, and asymmetric in z̄ with
larger values for z̄ > 0. When z̄ increases so does the number of trapped particles. Thus,
�Q̄ is large when there are many trapped particles.

In order to get a negative temperature gradient, the expression in braces in (6.12) must
be positive. Thus, we find a lower bound for the energy flux

Q̄ ≥ Q̄min =
[

ū2 + 1.33T̄
H1(ȳ, z̄)
G1(ȳ, z̄)

]
Γ̄ . (6.13)

The factor multiplying Γ̄ is positive because ū2 ≥ 0, T̄ ≥ 0, and k > 0 and x ≥ |ȳ| in (5.13)
and (5.17). From this, we see that it is not possible to only have neoclassical particle flux
and zero neoclassical energy flux. As long as there is neoclassical particle flux, energy
will get advected by that particle flux. Thus the energy flux will be in the same direction
as the particle flux. The quantity Q̄min is shown in figure 10. It is large for large |ȳ| and
small z̄.

Surprisingly, a negative density gradient imposes an upper boundary for Q̄. From (6.9)
it follows that for ∂ n̄/∂ψ̄ < 0

2n̄
T̄

ū > 1.17
|S|3/2
n̄T̄1/2

Q̄ − Q̄min

�Q̄
, (6.14)

and thus we find that in order for T̄ and n̄ to decay simultaneously, the neoclassical energy
flux has to be

Q̄min < Q̄ < Q̄min + 1.71
n̄2ū

T̄1/2|S|3/2�Q̄. (6.15)
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(a) (b)

FIGURE 10. (a) The quantity Q̄min defined in (6.13) as a function of ȳ for different values of z̄,
where ū = 0, T̄ = 1 and Γ̄ = 1 (b) The quantity Q̄min as a function of z̄ for different values of ȳ,
where ū = 0, T̄ = 1 and Γ̄ = 1.

For zero neoclassical particle flux, the maximum energy flux for decaying density and
temperature profiles, is

Q̄max = 1.71
n̄2ū

T̄1/2|S|3/2�Q̄. (6.16)

If the density falls off faster than the temperature in such a way that n̄2/
√

T̄ → 0, which
can be expressed as

Ln̄ < 4LT̄, (6.17)

then the upper bound of the energy flux in (6.15) also decreases unless it is compensated
by a stronger growth in ū�Q̄/|S|3/2. In most H-mode pedestals, (6.17) is observed (Viezzer
et al. 2016, 2018). It follows, that in order to achieve a growing neoclassical energy flux,
it is necessary that ū�Q̄/|S|3/2 increases. Thus, the radial electric field seems to play
an important role for the neoclassical energy flux at the top of transport barriers. Note,
however, that the result in (6.15) relies strongly on the assumption made in (6.1) between
the pressure gradient and the electric field, which is only applicable in the pedestal and
not self-consistently derived. A more thorough discussion of this relation will be necessary
and we leave it for future work. For now, using (6.2), the estimate (6.15) holds. We already
argued in § 6.1 that ū is positive and growing at the transition from core to pedestal. The
quantity �Q̄ is large for large |z̄| and small ȳ (see figure 9). This is consistent because
large |z̄| leads to an increased number of trapped particles. Transport is dominated by
trapped particles, so more trapped particles allow for a larger energy flux. Small ȳ likewise
maximises the number of trapped particles because the trapped region is located close to
the maximum of the lowest-order Maxwellian.

In I-mode pedestals, the temperature falls off much faster than the density (Walk et al.
2014). In this case, (6.17) would not necessarily hold and the neoclassical heat flux could
grow with a weaker radial electric field than in H-mode.

6.3. Example profiles
To show some example solutions of (6.6)–(6.10), we can take profiles of ion and electron
temperature and density loosely based on those measured by Viezzer et al. (2016). With
these profiles, we calculate fluxes, velocities and electric potential.
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(b)(a)

(c) (d )

FIGURE 11. Input profiles of ion temperature, electron temperature T̄e = Te/T0 and density
based on the profiles reported by Viezzer et al. (2016), as well as the corresponding ū and V̄ . The
red profile for V̄ is the usual neoclassical result for the mean parallel velocity as given by (5.26)
and the blue curve is the ‘high flow’ profile as given by (6.18). Vertical dashed lines indicate
the position of the top of the pedestal ψ̄ = 0.8 and the point of maximum pressure gradient and
minimum radial electric field ψ̄ = 0.965.

The integration of the mean parallel flow turns out to be very sensitive to the boundary
conditions and source terms. Thus, we leave the discussion of the mean parallel flow
solutions for future work, and instead only consider cases of known mean parallel flow.
The two profiles we discuss for V̄ are the ‘high flow’ case and the ‘low flow’ case. Here,
‘high flow’ and ‘low flow’ only refers to the relationship between the mean parallel flow
and the gradients of the density, temperature and potential and not to the usual stricter
limits that we have discussed at the end of § 5.

For the ‘high flow’ profile, we set

V̄ = −ū. (6.18)

In this case, there is no friction between trapped and passing particles and the particle flux
due to a shift in the Maxwellian is small because fM is centred around the trapped particle
region (see discussion below (5.15)). For the ‘low flow’ profile, we replace condition (6.18)
with the usual neoclassical solution (5.26).

The profile of ū follows directly from assumption (6.9) and consequently V̄ is given by
(6.18) for the first case or (5.26) for the second case. The quantities T̄ , n̄, V̄ , and ū based on
realistic profiles or assumptions are presented in figure 11. The input profiles are further
discussed in Appendix H.

The graphs in figures 11 and 12 show the transition between core and pedestal nicely
in the sense that at ψ̄ = 0, which corresponds to ρpol = 0.8 in Viezzer et al. (2016), the
profiles of density and temperature are still relatively flat. We see the expected growth of
ū in the strong gradient region starting at ψ̄ = 0.8 (first dashed line in figure 12) which
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(b)(a)

(c) (d )

FIGURE 12. Calculated fluxes and poloidally varying potential from the profiles in figure 11.
The blue profiles are the solutions with condition (6.18) whereas the red profiles show the
solution with the usual neoclassical parallel velocity (5.26). The yellow energy flux is the usual
neoclassical result (5.27). Vertical dashed lines highlight the top of the pedestal ψ̄ = 0.8 and the
point of maximum pressure gradient and minimum radial electric field ψ̄ = 0.965.

relaxes when the pressure gradient reduces again beyond the dashed line at ψ̄ = 0.965.
For V̄ , we see the difference between ‘high flow’ and standard ‘low flow’ neoclassical
theory. The solution for V̄ from (6.18) exceeds the standard ‘low flow’ neoclassical result
in the pedestal by about a factor of two but becomes as small as the standard ‘low flow’
neoclassical result at the boundary to the core.

Equation (6.10) gives z̄, with which Γ̄ can be calculated from (6.6). Then, the energy
flux can be calculated using (6.8). Lastly, the parallel momentum input that is necessary
to sustain the particle flux follows from (6.7). The four graphs for Γ̄ , Q̄, γ̄ , and φ̄c are
presented in figure 12.

The poloidally varying part of the potential is much stronger and changes sign in the
pedestal region for V̄ = −ū. The neoclassical particle flux, which is close to zero in the
core requires parallel momentum input to grow. In the case with condition (6.18), the
particle flux and the parallel momentum input are much bigger than for the case with
the usual neoclassical mean parallel velocity (5.26). Note that, even for the ‘low flow’
neoclassical mean parallel velocity, the parallel momentum input and the particle flux are
non-zero. Interestingly, the neoclassical particle flux and parallel momentum source in the
pedestal for (5.26) are of opposite sign to the case with condition (6.18). The energy flux of
the ‘high flow’ case matches the standard ‘low flow’ neoclassical result close to the inner
boundary but further into the pedestal it grows faster with radius. In the case where we
set the parallel velocity to be (5.26), the energy flux is smaller than the usual neoclassical
result Qneo of (5.27). The prefactor n̄2/

√
T̄ in (6.8) decays in the strong gradient region for

the example profiles of density and temperature, so (6.17) is satisfied, and the energy flux
decays after ū has reached its maximum. This is consistent with our discussion in § 6.2
and the observation that the energy transport in pedestals reaches significant neoclassical
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(a) (b)

FIGURE 13. Energy flux with upper and lower bounds (6.15) in (a) the ‘high flow’ case, and
(b) the ‘low flow’ case.

levels only in the middle of a pedestal and not at the top and bottom (Viezzer et al. 2020).
If instead we had chosen profiles with a stronger temperature gradient such that Ln̄ > 4LT̄ ,
we could have been able to retrieve a growing energy flux throughout the pedestal.

In figure 13 we show the energy fluxes and their respective lower bound (6.13) and upper
bound (6.16). In both cases, the energy flux is close to the upper bound in the flat gradient
region. The lower bound stays close to zero where the particle flux is small.

7. Conclusions

The core is a region of strong turbulent transport. With the transition into a transport
barrier such as the pedestal, turbulence gets quenched and we argue that, in order to keep
up the total flux, the neoclassical fluxes must increase. This assumption is supported by
experiments such as the ones by Viezzer et al. (2018), where it was demonstrated that the
heat diffusivity reaches neoclassical levels in the pedestal. This opens the possibility of
interaction between turbulent and neoclassical transport which we account for by keeping
a source term that represents external particle, momentum and energy injection as well as
interaction with turbulence. A random walk estimate was performed to predict the size of
this source and to show that trapped particles give the main contribution to particle and
energy transport.

We have extended neoclassical theory to transport barriers by choosing gradients to be
of the same size as the poloidal gyroradius and expanded in large aspect ratio and low
collisionality. A new set of variables, the fixed-θ variables, were derived from conserved
quantities and confirmed that particles are trapped for v‖ + u ∼ √

εvt.
A change of variables to fixed-θ variables allowed for a convenient reduction of the drift

kinetic equation, to which a Maxwellian is the solution to lowest order. We have discussed
the trapped–barely passing and freely passing regions in the banana regime. The drift
kinetic equation can be solved for the trapped, barely passing and freely passing regions
by expanding in

√
ε. The phase space region of trapped and barely passing particles is very

narrow for large aspect ratio tokamaks and can be treated as a discontinuity in the freely
passing region. The only information needed from the trapped–barely passing region is
the jump (4.41) and derivative discontinuity condition (4.48). Additionally, one can find
expressions for the poloidal variations of density (4.57) and potential (4.60) which have
been observed previously (Theiler et al. 2014; Churchill et al. 2015; Cruz-Zabala et al.
2022). Particles can get trapped on the high-field side because the poloidally varying part
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of the potential can oppose the magnetic mirror and centrifugal forces. When integrating
over velocity space, it is necessary to keep track of particles trapped on either side.

One can take moments of the freely passing particle equation (4.52) using the jump
and derivative discontinuity condition to find the particle, parallel momentum and energy
conservation equations (5.1), (5.5) and (5.7). From these equations, one can identify
the neoclassical particle flux (5.4) and neoclassical energy flux (5.10). We find that the
poloidally varying potential affects neoclassical fluxes and that the transport is dominated
by trapped particles, which have a parallel velocity close to −u. The fluxes match with the
usual neoclassical results in the appropriate limits. They equally match with the results
for strong density and electric potential gradients derived by Catto et al. (2011) after
we account for the missing orbit squeezing factor in the energy flux calculation, which
was previously pointed out by Shaing & Hsu (2012). In the limit of small mean velocity
gradient and zero poloidal potential, we identify a previously noted discrepancy with
Shaing & Hsu (2012), but are otherwise able to reproduce their results.

The parallel momentum equation proves that a parallel momentum source is required
to get a non-zero neoclassical particle flux. When there is no external parallel momentum
source or sink in the edge (such as impurities or neutral beam injection), this implies that
either turbulence does not decay and carries the particle flux throughout the transport
barrier or that there is a mechanism by which turbulence supplies parallel momentum to
neoclassical transport and the particle flux is indeed partially neoclassical.

For the energy flux, we provided upper and lower bounds in relation to the particle flux
to ensure decaying profiles of temperature and density (see (6.15)). The maximum energy
flux can be achieved for V̄ + ū = 0 and large z̄. We also found that in pedestals a radially
growing radial electric field is needed to obtain a radially growing neoclassical energy flux
that substitutes the decreasing turbulent energy flux.

We compared the high flow case V̄ = −ū with the standard low flow neoclassical mean
parallel velocity (5.26) to find fluxes for the realistic profiles of temperature and density
presented in figure 11, which are similar to those measured by Viezzer et al. (2016). We
showed that for V̄ = −ū the non-zero neoclassical particle flux, the energy flux, the mean
parallel flow, and the poloidal variation exceed the usual neoclassical values in the strong
gradient region. The neoclassical energy flux and especially the neoclassical particle flux
are significantly smaller in the low flow case, but non-zero.
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Appendix A. Orbits
A.1. Freely passing particles

For freely passing particles, we assume that v‖ − v‖f ∼ εvt and ψ − ψf ∼ ερpRBp. The
calculation that follows will prove these estimates correct. Subtracting the right-hand side
of (3.3) from the left-hand side yields

v‖f (v‖ − v‖f )+ μ(B − Bf )+ Ze
m

[
(ψ − ψf )

∂φ

∂ψ

∣∣∣∣
ψf

+ (φθ − φθ f )

]
= 0, (A1)

and rearranging (3.4) gives

ψ − ψf = I
Ωf
(v‖ − v‖f )− I

Ωf
v‖f

(
B
Bf

− 1
)
, (A2)

where I is constant in ψ at least to O(ε2) and hence can be considered a function of ψf
throughout this work. Equations (A1) and (A2) can be combined to solve for v‖ − v‖f and
ψ − ψf . Using the definition for u in (3.9), the deviations of parallel velocity and canonical
angular momentum within the trajectory of one passing particle are

v‖ − v‖f � −(μBf − v‖f uf )
(
B/Bf − 1

)+ Ze
(
φθ − φθ f

)
/m

v‖f + uf
∼ εvt, (A3)

and

ψ − ψf � − I
Ωf

(μBf + v2
‖f )
(
B/Bf − 1

)+ Ze(φθ − φθ f )/m

v‖f + uf
∼ ερpRBp. (A4)

The deviations of parallel velocity and flux function from their values at θf are of O(ε) and
hence consistent with our initial assumption. We can invert expressions (A3) and (A4) to
obtain v‖f and ψf from the particle coordinates at any given θ by interchanging the fixed-θ
and particle variables,

v‖f − v‖ � −(μB − v‖u)
(
Bf /B − 1

)+ Ze
(
φθ f − φθ

)
/m

v‖ + u
∼ εvt, (A5)

ψf − ψ � − I
Ω

(μB + v2
‖)
(
Bf /B − 1

)+ Ze(φθ f − φθ)/m

v‖ + u
∼ ερpRBp. (A6)

A.2. Trapped–barely passing particles
The deviations of v‖ and ψ from v‖f and ψf are larger in the trapped–barely passing region
and thus the Taylor expansion of φ must include the second derivative in order to collect
all terms to O(ε). We assume that v‖ − v‖f ∼ √

εvt and ψ − ψf ∼ √
ερpRBp. Hence, (A1)

becomes

1
2
(v2

‖ − v2
‖f )+ μ(B − Bf )+ Ze

m

[
(ψ − ψf )

∂φ

∂ψ

∣∣∣∣
ψf

+ 1
2
(ψ − ψf )

2 ∂
2φ

∂ψ2

∣∣∣∣
ψf

+ (φθ − φθ f )

]
= 0, (A7)
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which, inserting (A2), reads

1
2
(v2

‖ − v2
‖f )+ (μBf − v‖f uf )

(
B
Bf

− 1
)

+ uf (v‖ − v‖f )

+ 1
2
(Sf − 1)

(
v2

‖ − 2v‖v‖f + v2
‖f

)+ Ze
m
(φθ − φθ f ) = 0, (A8)

where we have used the squeezing factor Sf as introduced in (3.12). Further simplifications
lead to

1
2

Sf

[(
v‖ − v‖f + v‖f + uf

Sf

)2

−
(
v‖f − v‖f + uf

Sf

)2
]

+ (
μBf − v‖f uf

) ( B
Bf

− 1
)

= 1
2
(2 − Sf )v

2
‖f + ufv‖f − Ze

m

(
φθ − φθ f

)
, (A9)

and finally

v‖ − v‖f = −v‖f + uf

Sf

±
√

1
Sf

[
(v‖f + uf )2

Sf
− 2(μBf − v‖f uf )

(
B
Bf

− 1
)

− 2
Ze
m
(φθ − φθ f )

]
. (A10)

It is useful to calculate v‖ + u,

v‖ + u = (v‖ − v‖f )+ (u − uf )+ (v‖f + uf )

� (v‖ − v‖f )+ (v‖f + uf )+ (ψ − ψf )
∂u
∂ψ

∣∣∣∣
ψf

� Sf (v‖ − v‖f )+ (v‖f + uf ). (A11)

With this result, we can write

v‖ − v‖f = −v‖f + uf

Sf
+ v‖ + u

Sf
∼ √

εvt and ψ − ψf = I
Ωf
(v‖ − v‖f ) ∼ √

ερpRBp,

(A12a,b)
where

v‖ + u = ±
√
(v‖f + uf )2 − 2Sf

[
(μBf − ufv‖f )

(
B
Bf

− 1
)

+ Ze
m
(φθ − φθ f )

]
∼ √

εvt.

(A13)

This expression describes the trapped–barely passing boundary and was first derived in
this form by Shaing et al. (1994a). The deviations of the parallel velocity and radial
position are of O(

√
ε) and thus bigger than for passing particles, which is consistent with

our initial assumption.
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The solution in the trapped–barely passing region matches with the solution in the freely
passing region in the limit

(v‖f + uf )
2  2Sf

[
(μBf − ufv‖f )

(
B
Bf

− 1
)

+ Ze
m
(φθ − φθ f )

]
, (A14)

since

v‖ + u � (v‖f + uf )

{
1 − Sf

[
(μBf − ufv‖f )

(
B/Bf − 1

)+ Ze(φθ − φθ f )/m
]

(v‖f + uf )2

}
. (A15)

We can invert relations (A12a,b) to obtain

v‖f − v‖ = −v‖ + u
S

+ v‖f + uf

S
∼ √

εvt and ψf − ψ = I
Ω
(v‖f − v‖) ∼ √

ερpRBp,

(A16a,b)

where

v‖f + uf = ±
√
(v‖ + u)2 − 2S

[
(μB − uv‖)

(
Bf

B
− 1

)
+ Ze

m
(φθ f − φθ)

]
. (A17)

Appendix B. Matching of θ -dependent parts of g0

One can use (4.39) to prove that the θ -dependent parts of the distribution functions in the
freely passing and trapped–barely passing regime match. Following (4.39), the function gt

can be written as

gt = I
ΩS

[
G(ψf ,wf , μ)− w

]DfM(v‖ = −u)+ O(εfM), (B1)

where G − w ∼ √
εvt. We neglected the distinction between ψ and ψf in the Maxwellian

and in D and thus terms of order εfM in deriving (4.39). For barely passing particles, (4.39)
gives G(ψf ,wf , μ) to be

G(ψf ,wf , μ) = G(ψf ,wf = 0, μ)+
∫ wf

wtpb

dw′
f

w′
f

〈w′〉ψ , (B2)

where the trapped–barely passing boundary wtpb ∼ √
εvt is defined in (4.31). For trapped

particles G(ψf ,wf , μ) = G(ψf ,wf = 0, μ).
We proceed to calculate the θ -dependent piece of gt when gt is written as a function of

ψ and w instead of ψf and wf . We calculate the θ -dependent piece in the overlap region
between the trapped–barely passing and the freely passing regions. We show that gt is
independent of θ to lowest order in ε, and we calculate the next order θ -dependent piece,
which is of order (εvt/w)fM. Note that we can calculate this small correction despite the
fact that we neglect terms small in ε throughout the article because its size is large by a
factor of 1/w and εfM � (εvt/w)fM � √

εfM in this region. We start by expanding (B1)
around ψ and w

gt � I
ΩS

[
(ψf − ψ)

∂G
∂ψ

+ (wf − w)
∂G
∂w

+ G(ψ,w, μ)− w
]
DfM(v‖ = −u)+ O(εfM).

(B3)
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Equation (4.39) shows that, for |w| → ∞, w � 〈w〉ψ and G(ψf ,wf , μ)− w becomes a
bounded function of order

√
εvt that only depends on ψf and μ. Hence, G(ψ,w, μ) �

〈G(ψ,w, μ)〉ψ and the θ -dependent piece in the overlap region between the trapped–barely
passing and the freely passing regions becomes

gt − 〈gt〉ψ � I
ΩS

[(
ψf − ψ − 〈ψf − ψ〉ψ

) ∂G
∂ψ

+ (v‖f − v‖ − 〈v‖f − v‖〉ψ

+ uf − u − 〈uf − u〉ψ)∂G
∂w

]
DfM(v‖ = −u)+ O(εfM). (B4)

We have argued above (B4) that G = w + O(
√
εvt) and thus ∂G/∂ψ ∼ √

εvt/(RBpρp) and
∂G/∂w � 1. We arrive at

gt − 〈gt〉ψ � I
ΩS

(
v‖f − v‖ − 〈v‖f − v‖〉ψ + uf − u − 〈uf − u〉ψ

)DfM(v‖ = −u)

+ O(εvt). (B5)

For |wf | → ∞ we can use (A17) to write

wf − w � ±
√

w2 − 2S
[
(μB + u2)

(
Bf

B
− 1

)
+ Ze

m
(φθ f − φθ)

]
− w

� −S
[
(μB + u2)

(
Bf /B − 1

)+ Ze(φθ f − φθ)/m
]

w
, (B6)

which simplifies equation (B5) to

gt − 〈gt〉ψ |wf |→∞−−−−→ − Ir
ΩR

cos θ
u2 + μB − ZeRφc/(mr)

w
DfM(v‖ = −u) ∼ ε

vt

w
fM. (B7)

Thus, gt − 〈gt〉ψ is indeed of order ε(vt/w)fM  εfM and it matches with fMf − fM − 〈 fMf −
fM〉ψ in (4.53) for small w, as desired.

In general, for barely passing particles one can write

gt
0 − 〈gt

0〉ψ = I
ΩS

(
G − 〈G〉ψ

)DfM. (B8)

This function is odd in w since

G � G(ψ,wf = 0, μ)+
∫ wf

wtpb

dw′
f

w′
f

〈w′〉ψ , (B9)

giving

G − 〈G〉ψ �
∫ wf

wtpb

dw′
f

w′
f

〈w′〉ψ −
〈∫ wf

wtpb

dw′
f

w′
f

〈w′〉ψ

〉
ψ

, (B10)

which is odd in wf and hence in w.
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Appendix C. Transit average of the collision operator

The higher-order collision operator in fixed-θ variables is given in (4.42). To calculate
the derivative discontinuity condition, one has to solve (4.21) and thus take the transit
average of the collision operator.

We proceed to show that the transit average of (4.42) leads to (4.45). The drift kinetic
equation in fixed-θ variables can be written as

θ̇
∂f
∂θ

+ ψ̇f
∂f
∂ψf

+ v̇‖f
∂f
∂v‖f

+ μ̇
∂f
∂μ

+ ϕ̇
∂f
∂ϕ

= C[ f , f ], (C1)

where the dotted quantities obey phase space conservation

∂

∂ψf

(J ψ̇f
)+ ∂

∂θ

(J θ̇)+ ∂

∂v‖f

(J v̇‖f
)+ ∂

∂μ
(J μ̇)+ ∂

∂ϕ
(J ϕ̇) = 0. (C2)

From the definition of ψf and v‖f , it follows that ψ̇f = 0 and v̇‖f = 0. Furthermore,
conservation of magnetic moment gives μ̇ = 0. The gyrophase can be defined to higher
order such that both ϕ̇ and J are independent of gyrophase to all orders (Parra & Catto
2008). Hence, (C2) reduces to

∂

∂θ

(J θ̇) = 0. (C3)

We find that J θ̇ is independent of θ .
Equation (C3) can be used to take the transit average of (4.42), noting that〈

1
J

∂

∂wf
[J (· · · )]

〉
τ

= 1
τ

∫
dθ
θ̇J

∂

∂wf
[J (· · · )] = 1

τ θ̇J
∂

∂wf

[
θ̇J

∫
dθ
θ̇
(· · · )

]

= 1
τ θ̇J

∂

∂wf

[
τ θ̇J 〈(· · · )〉τ

] � 1
wf τ

∂

∂wf

[
wf τ 〈(· · · )〉τ

]
, (C4)

where we used (4.43) as well as θ̇ � w/qR in the last step.
Taking the transit average inside the derivatives via (C4) and using (4.44a,b) in (4.42)

yields (4.45).

Appendix D. Integration over the distribution function

The integration of the distribution function (4.39) for the jump and derivative
discontinuity condition requires the calculation of terms such as〈∫ ∞

−∞
dwf

∂gt
0

∂wf

〉
ψ

∝
∫

barely passing
dwf

(
wf

〈w〉ψ −
〈wf

w

〉
ψ

)
−
〈∫

trapped
dwf

wf

w

〉
ψ

. (D1)

In (4.60) we show that φθ = φc cos θ in the banana regime, and using (3.6) and (A13), we
get

w
wf

�
√

1 − 2Sf (cos θf − cos θ)
[
(μBf + u2

f )
r
R

− Ze
m
φc

]
. (D2)

For θf = 0, this can be written as

w
wf

�
√

1 − κ2 sin2
(
θ

2

)
, (D3)
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where

κ2 = r
R

4Sf
[
μBf + u2

f − ZeRφc/(mr)
]

w2
f

. (D4)

As a result

〈w〉ψ
wf

= 2
π

E(κ), (D5)

with E(κ) = ∫ π/2
0 dα

√
1 − κ2 sin2 α the elliptic integral of the second kind. With these

definitions, trapped particles are characterised by 1 < κ < ∞, and barely passing particles
are defined by 0 < κ < 1, which is in agreement with (3.13). Thus the integration in (D1)
over the barely passing region is from 0 to 1 and over the trapped region is from 1 to
∞. However, this calculation only holds for κ2 > 0, which is not always true. In fact,
κ2 > 0 does not capture all trapped particles but only particles that are trapped on the
low-field side for Sf > 0. If φc is strong enough, it can overcome the centrifugal force and
accumulate particles on the inboard side. Particles trapped on the high-field side will only
exist for φc > mu2

f r/(ZeR). For Sf < 0, these particles are captured in our definition for
κ2 in (D4). If we set v‖f and ψf to be the particle velocity and position at θf = 0, trapped
particles on the high-field side that satisfy

μ <
ZeφcR
mBf r

− u2
f

Bf
, (D6)

for Sf > 0, as well as trapped particles trapped on the low-field side for Sf < 0 are being
missed out. For these particles, κ2 in (D4) would go negative. Thus, one must also consider
the choice θf = π, for which (D3) turns into

w
wf

�
√

1 − κ2 cos2

(
θ

2

)
, (D7)

and κ2 is defined as

κ2 = r
R

4Sf
[
ZeRφc/(mr)− (μBf + u2

f )
]

w2
f

. (D8)

Using the substitution α = π/2 − θ/2 in (D7), one arrives at the same expression for
〈w〉ψ/wf as in (D5) but with κ2 as defined in (D8).

D.1. Jump condition
The integration for the particles that are trapped on the low- (high-) field side for Sf > 0
(Sf < 0) yields

〈∫
trapped

dwf
wf

w

〉
ψ

= 〈2|w|〉ψ |κ=1 = 8
π

√
Sf

[
(μBf + u2)

r
R

− Ze
m
φc

]
, (D9)
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where the factor of 2 comes from including both possible signs of w. For the integration
over the barely passing region, we make a change of variables from wf to κ using that

dκ
dwf

= ±
√

4Sf
[
(μBf + u2

f )r/R − Zeφc/m
]

w2
f

= ± κ2√
4Sf

[
(μBf + u2

f )r/R − Zeφc/m
] ,

(D10)
so that the integral can be written as∫

barely passing
dwf

(
wf

〈w〉ψ −
〈wf

w

〉
ψ

)

= 4

√
Sf

[
(μBf + u2

f )
r
R

− Ze
m
φc

] ∫ 1

0

dκ
κ2

(
π

2E(κ)
− 2

π
K(κ)

)
, (D11)

with the elliptic function of the first kind

K(κ) =
∫ π/2

0

dα√
1 − κ2 sin2 α

. (D12)

Again, one factor of two comes from keeping track of both signs of w. For particles
obeying relation (D6), the same calculations can be carried out and combining the two
results (D9) and (D11) for particles trapped on either side and Sf of either sign yields

〈∫ ∞

−∞
dwf

∂gt
0

∂wf

〉
ψ

= −2.758
I

SΩ

√∣∣∣∣S
[
(μB + u2)

r
R

− Ze
m
φc

]∣∣∣∣DfM(v‖ = −u). (D13)

We note that the magnetic field Bf is different at θf = 0 and θf = π, but the difference
is small in ε as shown in § 3. At this point, we have dropped the subscript f because the
difference is small in epsilon.

D.2. Derivative discontinuity condition
In order to calculate the derivative discontinuity condition, one has to calculate integrals
of the form ∫ ∞

−∞
dwf wf τ

〈
w
wf

∂gt
0

∂wf

〉
τ

, (D14)

and ∫ ∞

−∞
dwf wf τ

〈(
w
wf

− 1
)

w
wf

∂gt
0

∂wf

〉
τ

. (D15)

For barely passing particles, (4.33) is applicable, so〈
w2

w2
f

∂gt
0

∂wf

〉
τ

= 2πqR
τwf

〈
I
ΩS

(
w

〈w〉ψ − 1
)
DfM(v‖ = −u)

〉
ψ

= 0, (D16)

and ∫
barely passing

dwf wf τ

〈
w
wf

∂gt
0

∂wf

〉
τ

=
∫

barely passing
dwf 2πqR

〈
∂gt

0

∂wf

〉
ψ

. (D17)

This integral was calculated in (D11).
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For trapped particles 〈
w2

w2
f

∂gt
0

∂wf

〉
τ

= 0, (D18)

because ∂gt
0/∂wf is odd in w and it follows from (4.6) that transit averages over functions

that are odd in w are zero for trapped particles. The remaining term is∫
trapped

dwf wf τ

〈
w
wf

∂gt
0

∂wf

〉
τ

=
〈∫

trapped
dwf 2πqR

∂gt
0

∂wf

〉
ψ

. (D19)

This integral was calculated in (D9). Summing the contributions from barely passing
particles (D17) and trapped particles (D19), we arrive at the expression for the derivative
discontinuity condition in (4.49).

Appendix E. Poloidal variation of the density

The poloidal variation of the density follows from the θ -dependent part of gp. In order
to find the poloidally varying part of the density in (4.54), we need to calculate the integral∫

dμ
[

PV
∫

dv‖ 2πB(gp − 〈gp〉ψ)
]

= −2πB
∫

dμ

{
PV

∫
dv‖

Ir
ΩR

(
v2

‖ + μB
)

cos θ − ZeRφθ/(mr)

v‖ + u

[
∂

∂ψ
ln p

+ m(v‖ − V‖)
T

(
∂V‖
∂ψ

− Ω

I

)
+
(

m(v‖ − V‖)2

2T
+ mμB

T
− 5

2

)
∂

∂ψ
ln T

]
fM

− r
R

cos θ
m
T

[
v‖(v‖ − V‖)+ μB

]
fM

}
. (E1)

To calculate this integral, we first define

I = PV
∫

dv‖
fM

v‖ + u
= PV

∫
dξ

fM

ξ + y
, (E2)

where ξ ≡ v‖ − V‖ and y ≡ u + V‖. The first derivative of I with respect to y is

∂I
∂y

= −PV
∫

dξ
fM

(ξ + y)2
= PV

∫
dξ

∂

∂ξ

(
1

ξ + y

)
fM

= PV
∫

dξ
ξ

ξ + y
m
T

fM = m
T

∫
dξ fM − PV

∫
dξ

y
ξ + y

m
T

fM

= n
2π

(m
T

)2
exp

(
−mμB

T

)
− m

T
yI, (E3)

which gives

∂

∂y

[
I exp

(
my2

2T

)]
= n

2π

(m
T

)2
exp

(
−mμB

T

)
exp

(
my2

2T

)
. (E4)
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For y = 0

I( y = 0) = PV
∫

dξ
fM

ξ
= 0, (E5)

which can be used as a boundary condition. Thus, the solution for I is

I = n
2π

(m
T

)2
exp

(
−mμB

T

)
exp

(
−my2

2T

)∫ y

0
dt exp

(
mt2

2T

)

≡ 2n
π

( m
2T

)3/2
exp

(
−mμB

T

)
J, (E6)

where J is given in (4.58).
Furthermore, we find that

PV
∫

dξ
ξ

ξ + y
fM =

∫
dξ fM − (V‖ + u)I = n

2π

m
T

exp
(

−mμB
T

)
− (V‖ + u)I (E7)

PV
∫

dξ
ξ 2

ξ + y
fM = −(V‖ + u)

n
2π

m
T

exp
(

−mμB
T

)
+ (V‖ + u)2I (E8)

PV
∫

dξ
ξ 3

ξ + y
fM = n

2π
exp

(
−mμB

T

)[
1 + (V‖ + u)2

m
T

]
− (V‖ + u)3I (E9)

PV
∫

dξ
ξ 4

ξ + y
fM = −(V‖ + u)

n
2π

exp
(

−mμB
T

)[
1 + (V‖ + u)2

m
T

]
+ (V‖ + u)4I.

(E10)

Expressions (E6)–(E10) can be used to calculate nθ in (4.57).

Appendix F. Derivation of transport equations

In this section we show the derivation of the moment equations (5.1), (5.5) and (5.7) in
more detail. A conventional moment approach (Parra & Catto 2008) is not useful when
u ∼ vt and |S − 1| ∼ 1, as radial scale lengths must be of the order of the poloidal ion
gyroradius.

F.1. Particle conservation
For particle conservation, one can start by integrating (4.52) over velocity space

∫
d3vf 〈C(l)

p [g]〉τ −
∫

d3vfλ

〈
∇v ·

[
fM

∫
Vtbp

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

= −
∫

d3vf 〈Σ〉τ , (F1)
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where the passing collision operator of (4.51) in the fixed-θ variables is

〈C(l)
p [g]〉τ � 1

wf τ

∂

∂wf

[
fMwf τ

〈
w
wf

b̂ · M · ∇v

(
gp

fM

)〉
τ

]

+ 1
wf τ

∂

∂μ

[
fMwf τ

〈
v⊥
B

· M · ∇v

(
gp

fM

)〉
τ

]

+ 1
wf τ

∂

∂ψf

[
fMwf τ

I
ΩS

〈(
w
wf

− 1
)

b̂ · M · ∇v

(
gp

fM

)〉
τ

]

− λ
{〈

1
wf τ

∂

∂wf

[
fMwf τ

w
wf

b̂ ·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]〉
τ

+
〈

1
wf τ

∂

∂μ

[
fMwf τ

v⊥
B

·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]〉
τ

+
〈

1
wf τ

∂

∂ψf

[
fMwf τ

I
ΩS

(
w
wf

− 1
)

b̂ ·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)]〉
τ

}
. (F2)

In the passing region, (w/wf − 1) is small in ε and therefore the terms including the
derivatives in ψf are negligible. One can change from transit averages to flux surface
averages using (4.33). The simplified collision operator becomes

〈C(l)
p [g]〉τ = ∂

∂wf

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]
+ ∂

∂μ

[
fM

〈
v⊥
B

· M · ∇v

(
gp

fM

)〉
ψ

]

− λ
{
∂

∂wf

[
fM

〈
b̂ ·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)〉
ψ

]

+ ∂

∂μ

[
fM

〈
v⊥
B

·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)〉
ψ

]}
. (F3)

Integrating (F3) over velocity space gives the first term in (F1). The integration over
μ cancels the respective derivative terms in (F3) and the integration in wf cancels the
respective derivative acting on the Maxwellian in the third term in (F3). The only term
left is ∫

d3vf 〈C(l)
p [g]〉τ =

∫
dμ
∫

dwf 2πB
∂

∂wf

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]
, (F4)

where we have used that d3vf � dμdwf 2πB. The derivative is acting on the passing
particle distribution function, which has a discontinuity at wf = 0. We arrive at∫

d3vf 〈C(l)
p [g]〉τ = −

∫
dμ 2πBΔ

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]
, (F5)

where the integrand on the right-hand side is given by (4.49). For the second term in (F1),
one can follow the same steps and write the velocity divergence in terms of the fixed-θ
variables. As the derivatives are not acting on the trapped distribution function but on the
Maxwellian, there is no discontinuity and the integration cancels all terms in it.
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Next, the derivative discontinuity condition in (4.49) is substituted into (F5). The
integration cancels the derivative in μ and we find

∫
dμ 2πB

∂

∂ψf

[
I
ΩS

M‖�gp

]
=
∫

d3vf 〈Σ〉τ , (F6)

for the particle equation. With the definition of the parallel friction force in (5.2) we arrive
at (5.1).

F.2. Parallel momentum conservation
One can follow the same procedure for the derivation of the parallel momentum and energy
equations. For parallel momentum conservation, we multiply (4.52) by mv‖f and integrate
over velocity space

∫
d3vf mv‖f 〈C(l)

p [g]〉τ

−
∫

d3vf mv‖fλ

〈
∇v ·

[
fM

∫
Vtbp

d3v′f ′
M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

= −
∫

d3vf mv‖f 〈Σ〉τ .
(F7)

For the first term, one can use the expression in (F3). Again, the integrals over μ cancel
the derivatives in μ, and the only remaining terms are

∫
d3vf mv‖f 〈C(l)

p [g]〉τ =
∫

dμ
∫

dwf 2πBmv‖f
∂

∂wf

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]

− λ
∫

dμ
∫

dwf 2πBmv‖f
∂

∂wf

[
fM

〈
b̂ ·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)〉
ψ

]
. (F8)

Integrating by parts leaves us with

∫
d3vf mv‖f 〈C(l)

p [g]〉τ =
∫

dμ 2πBmuΔ

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]

−
∫

dμ
∫

dwf 2πBm

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]

− λ
∫

dμ
∫

dwf 2πBm

[
fM

〈
b̂ ·
∫

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)〉
ψ

]
, (F9)

where we have used that v‖f � −uf � −u in the trapped–barely passing region. The
integrand of the first integral in (F9) is given by (4.49). The last two terms in (F9) can
be seen to cancel by recalling the definition of M in (4.18). The only term that we are left
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with is

∫
d3vf mv‖f 〈C(l)

p [g]〉τ =
∫

dμ 2πBmuΔ

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]
. (F10)

Substituting the derivative discontinuity condition (4.49), we find

∫
d3vf mv‖f 〈C(l)

p [g]〉τ =
∫

dμ 2πBmu
∂

∂ψf

[
I
ΩS

M‖�gp

]
. (F11)

Taking the derivative with respect to ψf outside of the integral and using (5.2), one
arrives at

−
∫

d3vf mv‖f 〈Σ〉τ = − ∂

∂ψf

(
I
Ω

uF‖

)
+ (S − 1)F‖. (F12)

The second term in (F7) can be integrated by parts to find, upon using (4.23) with w � wf

−
∫

d3vf mv‖fλ

〈
∇v ·

[
fM

∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

=
∫

dμ
∫

dwf 2πBmλb̂ ·
〈[

fM

∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
ψ

� 2πBm
∫

dμ
∫

dwf fMM‖

〈
∂(gt

0/fM)

∂wf

〉
ψ

= −SF‖. (F13)

Combining (F12) and (F13) gives the parallel momentum equation in the form of (5.5).

F.3. Energy conservation
The energy equation requires a multiplication of (4.52) by mv2

f /2 and integration over
velocity space

∫
d3vf

mv2
f

2
〈C(l)

p [g]〉τ

−
∫

d3vf
mv2

f

2
λ

〈
∇v ·

[
fM

∫
Vtbp

d3v′ f ′
M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

= −
∫

d3vf
mv2

f

2
〈Σ〉τ .
(F14)

Once again we can use (F3) for the first term in (F14) and integrate by parts to arrive at

∫
d3vf

mv2
f

2
〈C(l)

p [g]〉τ = −
∫

dμ
(

mu2

2
+ mμB

)
2πBΔ

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]

−
∫

dμ
∫

dwf 2πmBv‖f fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ
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−
∫

dϕ
∫

dμ
∫

dwf mB2fM

〈
v⊥
B

· M · ∇v

(
gp

fM

)〉
ψ

+ λ
∫

dϕ
∫

dμ
∫

dwf mB(v‖f b̂ + v⊥) ·
[

fM

〈∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gp′

f ′
M

)〉
ψ

]
.

(F15)

We kept the integration over gyrophase in the last two terms of (F15) because they
seemingly depend on gyrophase via v⊥. However, this dependence cancels, because we
can use that

(v‖f b̂ + v⊥) · ∇ω∇ωω = v · ∇ω∇ωω = v′ · ∇ω∇ωω, (F16)

and integrate over d3vf to get M . We are left with∫
d3vf

mv2
f

2
〈C(l)

p [g]〉τ = −
∫

dμ
(

mu2

2
+ mμB

)
2πBΔ

[
fM

〈
b̂ · M · ∇v

(
gp

fM

)〉
ψ

]
.

(F17)

The derivative discontinuity condition (4.49) can be used to yield∫
d3vf

mv2
f

2
〈C(l)

p [g]〉τ =
∫

dμ
∫

dwf 2πmB2μ
∂

∂μ
(2μM⊥�gp)

−
∫

dμ 2πBm
u2 + 2μB

2
∂

∂ψf

(
I
ΩS

M‖�gp

)
. (F18)

We can integrate by parts in the first term and take the derivative with respect to ψf out of
the integral and find∫

d3vf
mv2

f

2
〈C(l)

p [g]〉τ = −
∫

dμ 4πmB2μM⊥�gp − (S − 1)uF‖ − ∂

∂ψf

(
I
Ω
Θ

)
, (F19)

where we introduced the heat viscous force Θ defined in (5.8).
The second term in (F14) can be integrated by parts to give

−
∫

d3vf
mv2

f

2
λ

〈
∇v ·

[
fM

∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

=
∫

dϕ
∫

dμ
∫

dwf Bmλ
(
v‖f b̂ + v⊥

)
·
[

fM

〈∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)〉
ψ

]
.

(F20)

The integrations over v and v′ can be swapped using relation (F16), which then gives M .
As a result

−
∫

d3vf
mv2

f

2
λ

〈
∇v ·

[
fM

∫
d3v′ f ′

M∇ω∇ωω · ∇v′

(
gt′

0

f ′
M

)]〉
τ

=
∫

dμ
∫

dwf 2πBmfM

〈
vf · M · ∇v

(
gt

0

fM

)〉
ψ

= uSF‖ +
∫

dμ 4πmB2μM⊥�gp. (F21)
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The two terms containing M⊥ cancel when substituting (F19) and (F21) into (F14), which
leaves us with energy equation (5.7).

Appendix G. Comparison with previous work
G.1. Small temperature gradient limit

Equations (5.12) and (5.16) can reproduce the results for the ion energy flux in the banana
limit derived by Catto et al. (2013) when taking the limit of small temperature gradient,
small particle flux, small mean velocity and small mean velocity gradient. To lowest order,
(5.12) gives

∂

∂ψ
ln n + mΩu

IT
= 0. (G1)

To next order,

Γ = −1.102

√
R
r

νIqp
|S|3/2mΩ2

[(
∂

∂ψ
ln T − mu

T
∂V‖
∂ψ

)
G1(ȳ, z̄)− 1.17

1
T
∂T
∂ψ

G2(ȳ, z̄)
]
.

(G2)

Similarly, the energy flux reduces to

Q = mu2

2
Γ − 1.463

√
R
r

qIνp
|S|3/2Ω2

T
m

[(
∂

∂ψ
ln T − mu

T
∂V‖
∂ψ

)
H1(ȳ, z̄)

−0.25
1
T
∂T
∂ψ

H2(ȳ, z̄)
]
. (G3)

We can solve (G2) for T−1(∂T/∂ψ)− (mu/T)(∂V‖/∂ψ) and substitute this into (G3)

Q =
(

mu2

2
+ 1.33T

H1

G1

)
Γ − 1.71

√
R
r

qIνp
|S|3/2Ω2m

∂T
∂ψ

�Q̄, (G4)

where �Q̄ was defined in (5.22). Furthermore, Catto et al. (2013) assumed Γ = 0 and
no poloidally varying potential. Neglecting the poloidal potential variation is consistent
with our model as it follows from (4.60) that for small temperature gradient, V‖ � vt and
Γ = 0, the electric potential φc = 0 and hence z̄ = 2ū2, where ū = u/vt. We impose these
restrictions on (G4) in order to get an energy flux consistent with the energy flux of Catto,
and find

Q = −1.71

√
R
r

qIνp
|S|3/2Ω2m

�Q̄
∂T
∂ψ

. (G5)

The energy flux in Catto et al. (2013) is

Q = −1.35

√
R
r

qIνp
|S|1/2Ω2m

L(ū2)
∂T
∂ψ

, (G6)
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where

L = 1.53 e−ū2

∫ ∞

0
dμ̄ (μ̄+ 2ū2)3/2(μ̄+ 2ū2 − σ)(μ̄+ ū2)−3/2{μ̄ [Ξ(x)− Ψ (x)]

+ 2ū2Ψ (x)} exp(−μ̄), (G7)

σ =

∫ ∞

0
dμ̄ e−μ̄(μ̄+ 2ū2)3/2

[
μ̄ν⊥(x)+ 2ū2ν‖(x)

]
∫ ∞

0
dμ̄ e−μ̄(μ̄+ 2ū2)1/2

[
μ̄ν⊥(x)+ 2ū2ν‖(x)

] , (G8)

and μ̄ = mμ/(BT) � x2 − ū2. One can write

σ =

∫ ∞

|ū|
dx (x2 + ū2)k(x, ū)∫ ∞

|ū|
dx k(x, ū)

, (G9)

and

L(ū2) = 6.12
∫ ∞

|ū|
dx
(
x4 + 2x2ū2 + ū4 − σ(x2 + ū2)

)
k(x, ū) = 1.27�Q̄. (G10)

Finally, the energy flux of Catto et al. (2013) is

Q = −1.71

√
R
r

qIνp
|S|1/2Ω2m

�Q̄
∂T
∂ψ

. (G11)

The energy fluxes in (G5) and (G11) differ by a factor of 1/S. However, when the energy
flux was calculated in (38) in Catto et al. (2013) and previously in Catto et al. (2011), this
factor had been missed as already pointed out by Shaing & Hsu (2012). The energy flux
can be obtained from the lowest-order moment Iv2

f wf /B of the drift kinetic equation (4.2)〈∫
d3vf

wf I
B
v2

f
w
qR
∂f
∂θ

∣∣∣∣
v‖f ,ψf

〉
ψ

=
〈∫

d3vf
wf I
B
v2

f C[ f , f ]
〉
ψ

. (G12)

One can integrate the left-hand side by parts in θ to find〈∫
d3vf

wf I
B
v2

f
w
qR
∂f
∂θ

∣∣∣∣
v‖f ,ψf

〉
ψ

= −
〈∫

d3vf
wf I
B

v2
f

qR
∂w
∂θ

∣∣∣∣∣
v‖f ,ψf

f

〉
ψ

. (G13)

Using (A13) for

∂w
∂θ

∣∣∣∣
v‖f ,ψf

= −Sf

w

[(
μBf + u2

f

) r
R

sin θ + Ze
m
∂φθ

∂θ

]
� S

w
Ω

I
qRvd · ∇ψ, (G14)

we find the squeezing factor that was lost in Catto et al. (2013). The collision operator
conserves energy, so wf on the right-hand side can be reduced to v‖f and we arrive at

−
〈

ZeS
mc

∫
d3vf

wf

w
v2

f f vd · ∇ψ
〉
ψ

=
〈∫

d3vf
v‖f I
B
v2

f C[ f , f ]
〉
ψ

. (G15)
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The energy flux in Catto et al. (2013) is defined as

Q = IqR
r

〈∫
d3v

mv2

2
f vd · ∇ψ

〉
ψ

. (G16)

We can combine (G15) and (G16), and use that in the trapped region d3v � d3vf wf /w and
that the collision operator conserves momentum to arrive at

Q = −1
S

mcI2qRT
Zer

〈∫
d3v

B

(
mv2

2T
− 5

2

)
v‖C[ f , f ]

〉
ψ

, (G17)

where we changed back to particle variables again and dropped the subscript f . With (G17)
instead of (48) in Catto et al. (2013), the additional squeezing factor that we get is retrieved
and the result of (G11) is corrected to agree with (G5).

G.2. Small mean parallel velocity gradient
We take the limit of small mean parallel velocity gradient and vanishing particle flux
Γ = 0. In this limit we can compare our equations for particle flux (5.12) and energy flux
(5.16) with those presented in Shaing & Hsu (2012).

We start by noting that the poloidal variation of the potential was neglected in Shaing
& Hsu (2012). However, taking the limit of small mean parallel velocity gradient in (4.60)
does not give φc = 0 so the contribution from φθ should have been kept.

The first necessary step is to relate the functions G1, G2, H1, H2 with the functions μ1i,
μ2i and μ3i used in Shaing & Hsu (2012). Restricting our results to the case where S > 0,
we find that

G1 = 0.90

√
R
r

S3/2

ν
μ1i, H1 = 0.68

√
R
r

S3/2

ν

[
μ2i −

(
ȳ2 − 5

2

)
μ1i

]
, (G18a,b)

G2 = −0.77

√
R
r

S3/2

ν
μ2i, H2 = −2.74

√
R
r

S3/2

ν

[
μ3i −

(
ȳ2 − 5

2

)
μ2i

]
, (G19a,b)

if we make the replacement

x
(

1 − 3
ȳ2

x2

)2 (
1 + ȳ2

x2

)−3/2

−→
√

|x2 + z̄ − ȳ2|, (G20)

in the definition of μji for j = 1, 2, 3 in (52) in Shaing & Hsu (2012). Note, that we use
x and ȳ as defined in our calculation in § 5 and not as in Shaing & Hsu (2012). The
discrepancy is caused by a combination of two effects. The poloidal variation of the
electric field has been neglected reducing z̄ to z̄ = mū2/T . Second, the trapped particle
distribution function in (4.38) is different from the one in Shaing & Hsu (2012). Our
expressions (4.39) and (4.38) almost match with the result in (40) in (Shaing et al. 1994a),
which is

∂gt
0

∂wf
= − I

ΩS
v2 − 3(u + V‖)2

v2 + (u + V‖)2

(
wf

w
− H

wf

〈w〉ψ

)
DfM(v‖ = −u), (G21)

where H = 0 for trapped particles and H = 1 for barely passing particles. Equations
(4.39) and (4.38) differ from (G21) by a factor of (v2 − 3(u + V‖)2)/(v2 + (u + V‖)2).
This discrepancy was already pointed out in the appendix of Catto et al. (2013). This
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discrepancy can be traced back to the moment approach used in Shaing & Hsu (2012) for
which one assumes that

v‖b̂ · ∇(v‖B)− v‖B2b̂ · ∇
(v‖

B

)
= 2v2

‖ b̂ · ∇B (G22)

is small. However, this assumption only holds for v‖ ∼ √
εvt, which is true only for weak

radial electric fields in conventional neoclassical theory. In the case where the potential
gradient is large such that u ∼ v‖ ∼ vt, the trapped–barely passing region is shifted to
w ∼ √

εvt but v‖ ∼ vt and (G22) cannot be neglected.
Once we correct for this discrepancy and make the substitution (G20), we can compare

terms in the parallel viscous force 〈B · ∇ · πSH〉 and heat viscous force 〈B · ∇ · ΘSH〉 in
(45) and (46) of Shaing & Hsu (2012) with our forces F‖ and Θ . We find

〈B · ∇ · πSH〉 = BF‖, (G23)

and

〈B · ∇ · ΘSH〉 = −BΘ + B
(

mV‖(2u + V‖)
2T

− 5
2

)
F‖. (G24)

Shaing & Hsu (2012) state that F‖ = 0, so that these expressions reduce to

0 = 〈B · ∇ · πSH〉, (G25)

and the heat viscous force is related to the energy flux by

Q = − qTR
mΩBr

〈B · ∇ · ΘSH〉. (G26)

Note that setting F‖ = 0 is necessary to match the energy flux Q.
Explicitly, (5.4) for Γ = 0 and Ω/(Ivt)(∂V/∂ψ) � 1 reduces to[

∂

∂ψ
ln p + mΩ(u + V‖)

IT

]
G1 = 1.17

∂T
∂ψ

G2, (G27)

which can be rewritten using (G18a,b) and (G19a,b),

V‖ + u
B

= − IcT
Z2eB2

(
∂

∂ψ
ln p + μ2i

μ1i

∂

∂ψ
ln T

)
, (G28)

and is the same as (65) in Shaing & Hsu (2012). Similarly, the energy flux (5.8)
simplifies to

Q = −1.71

√
R
r

pqνI
mΩ2S3/2

�Q̄
∂T
∂ψ

, (G29)

where we have substituted (G27) into (5.8). We can now compare these expressions with
corresponding (65) and (67) in Shaing & Hsu (2012). The energy flux (G29) can be written
as

Q = −pmq
c2IR

Z2e2B2r
μ3i

(
1 − μ2

2i

μ1iμ3i

)
∂T
∂ψ

, (G30)

which is the same as (67) in Shaing & Hsu (2012). Hence, the particle flux equation and
energy flux equation give the same result as the one in Shaing & Hsu (2012) in the limit
Ω/(Ivt)(∂V/∂ψ) � 1 and Γ = 0 if the factors in μji are corrected as indicated in (G20).
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a1 0.5951 b1 1.0000 c1 1.2648
a2 0.3965 b2 −0.0459 c2 −0.2798
a3 −1.2929 b3 0.0038 c3 1.3578
a4 9.3942 b4 −0.0007 c4 9.0470
a5 −0.0075 — — c5 −0.0871

TABLE 1. Numerical values for the parameters of the functions in (H1)–(H3).

Appendix H. Pedestal profiles

The realistic pedestal profiles of density, ion and electron temperature that we use to
calculate example fluxes in § 6.3 are shown in figure 11. The profiles are based on those
measured by Viezzer et al. (2016). The functions we use are

n̄ = a1 + a2 tanh[a3(ψ̄ − a4)] + a5ψ̄, (H1)

T̄ = b1 + b2ψ̄ + b3ψ̄
2 + b4ψ̄

3, (H2)

and
T̄e = c1 + c2 tanh[c3(ψ̄ − c4)] + c5ψ̄, (H3)

where the numerical parameters are given in table 1.
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