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ABSTRACT

In this paper we discuss some properties of counting distributions whose
discrete density {pn}%=0 satisfies a recursion in the form

k

(«= 1,2,...)

with pn = 0 for n < 0 and present an algorithm for recursive evaluation of
corresponding compound distributions.

1. INTRODUCTION

Following PANJER (1981) there has grown up an extensive literature on
recursive evaluation of compound distributions. Panjer assumed that the
discrete density {p„}%=<> of the counting distribution satisfied the recursion

Pn = a + Pn-l («= 1,2,...)

for some constants a and b. SUNDT and JEWELL (1981) showed that the only
non-degenerate members of this class are the Poisson, the binomial, and the
negative binomial distributions.

SCHROTER (1990) generalised Panjer's recursive algorithm to the class of
counting distributions satisfying the recursion

Pn a + -
b

n
Pn-l

C

+ —Pn-2
n

(« = 1,2,...)

with p _ i = 0 for some constants a, b, and c, and discussed the properties of
this class. In particular he showed that the convolution of a Poisson distribu-
tion and a distribution from Panjer's class belongs to this extended class.

In the present paper we study the even more general class satisfying the
recursion

(1) Pn =
i=\

a,• + —
n

( « = 1,2, . . . )

' This paper is dedicated to Professor W.S. JEWELL on the occasion of his 60th birthday July 2,
1992.
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62 BJ0RN SUNDT

for some integer k and constants at and bt{i = \, ..., k) with pn = 0 for w < 0.
We see that ^0 > 0 for all distributions in this class.

In Section 2 we introduce some notation and definitions. In Section 3 we
discuss some properties of counting distributions satisfying (1). In Section 4 we
study convolutions of such distributions, and Section 5 is devoted to mixtures
of distributions satisfying (1). In Section 6 we generalise Panjer's recursive
algorithm for compound distributions to counting distributions satisfying (1).
Finally we discuss some possible generalisations in Section 7.

2. DEFINITIONS AND NOTATION

2A. We shall denote a counting distribution with discrete density satisfy-
ing (1) by Rk [a, b] with a = (ax, ..., ak) and b = {b\, ..., bk). Let '*?k denote
the class of such distributions for fixed k. We see that any distribution in-!#k-\
can be considered as a distribution in,9?k with ak = bk = 0. Thus ^ ._ , c.:s?k.
We introduce

•^l =--%k~-'^k-\\ (k = 1, 2, ...)

the class.i?o consists of the degenerate distribution concentrated at zero. We see
that Panjer's class is equal to JPl, and Schroter's class is contained in. J?2.

The definitions of Rk [a, b], ,9Sk, and Jj#k easily extend to k = oo. In that
case (1) can be written as

n i .

(2) Pn = £ U + - Pn-i- ( # 1 = 1 , 2 , . . . )
/-i \ n

The class J?^ consists of all distributions in.-4^ that cannot be expressed as a
distribution in Mj for any finite /

For the rest of the paper we shall for simplicity silently assume that
k>0.

2B. The stop loss transform F of a cumulative distribution F is defined by

= I"™ (y-x)dF(y)= f (l-F(y))dy.
J X J X

2C. We make the convention that 2^ = 0 if q < p.

i=p

3. SOME PROPERTIES OF /£k

3A. Let {pn}%o denote the discrete density of Rk[a, b], and let t// be the
probability generating function of this distribution, that is,
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GO

Y(s) = Z P»s" •
«=o

We have

V'(s) = £ Pnns"~l = £ iw"-1 £
n=l

4- b i

a, + -
Pn-i

k oo

i'=l n = 0

which gives

(3)

With

we obtain

(4)

z
1=1

1 - £ ats'

which together with the initial condition i//(l) = 1 determines the distribution
Rk [a, b] uniquely. We therefore have the following theorem.

Theorem 1. A counting distribution belongs to 3 ^ if and only if the derivative
of the natural logarithm of its probability generating function can be expressed
as the ratio between a polynomial of degree at most k — 1 and a polynomial of
degree at most k with a non-zero constant term.

By multiplying numerator and denominator in (4) by l+qs for an arbitrary
number q and rearranging them, we obtain

P(s)

1 - Z c,s'
1=1

with

c, = (i = l,2,...,k+l)
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a0 = -I b0 = bk+\ = ak+] = 0,

and thus Rk[a, b] = Rk+\ [c, d] with c = ( c , , . . . , ck+l) and d = (*/ , , . . . , <4+i)-
F rom this we conclude that the A>tuples a and b are not uniquely determined
by Rk[a,b] if Rk[a,b}t^°k.

On the other hand, if Rk[a, b] e '//k, then there exists no k' < k such that
p(s) can be written in the form

This means that the numerator and the denominator in (4) do not have any
common factors, and thus the coefficients of these polynomials must be
uniquely determined by p, which implies that they are uniquely determined by
Rk[a,b].

We have now proved the following theorem.

Theorem 2. The ^-tuples a and b are uniquely determined by Rk [a, b] if and
only if Rk [a, b] e,9s>k.

Example 1. The Poisson distribution with discrete density

X"

satisfies the recursion

Po = e ' ,

that is, this distribution is equal to /?, [0, A], and we have p(s) = X. However,
we can also write

X + qXs
P(s) = ,

\+qs
and thus i?, [0, X] = R2 [ ( - q, 0), (X + q, qX)]. Therefore this distribution satis-
fies the recursion

Pn

Pn

— _..

n

X
=

n

i

Pn-\

(« =

(« =

0,

1,

1,...

2 , . . .

Pn =
X + q

-a +
n

Pn-\ + — Pn-2 (n = 1,2, . . . )
n

with /?_! = 0. This example has also been discussed by SCHROTER (1990).
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3B. Let N be a random variable with distribution Rk[a,b]. As p{\) = EN
and p'{\) = V-*r N-EN, we obtain from (4)

k

Z (ia
EN =

- Z «/
1=1

Var N =
1 = 1

i(iat+bd Z

k- z «<•
+

1 = 1

k

I
7 = 1

X"1

1=1

k ,

- Z «.-
1=1 /

- Z «<
1=1

These formulae generalise Proposition 2 in SCHROTER (1990).

3C. The following theorem shows that any distribution on the range
{0, \, ..., k} with positive probability at zero is contained inMk.

Theorem 3. A distribution on the range {0, . . . , k} with positive probability at
zero and discrete density {pn}k

n = Q can be expressed as Rk[a, b] with
a = (a, , . . . , ak) and b = (bu ...,bk) given by

Pi , _ . Pi /• , ,x
a,: = - — bj = 2i~ . (i = 1, . . . , k)

Po Po

Proof. With y/ denoting the probability generating function of the distribu-
tion {pn}k

n = o, we have

z to*1-1 i I-*'-1

ds
L P's'
1 = 0 i = I

EL
Po

and the theorem follows by comparison with (4). Q.E.D.

The distribution in Theorem 3 is not necessarily contained in S^\. For
instance, if it is binomial, then it is contained in ,9?\ regardless of k.

Theorem 3 holds in particular for k = oo. Thus we see that all counting
distributions with positive probability at zero belong

4. CONVOLUTIONS

4A. Let y/y, t//2, and y/ be the probability generating functions of Rk[a, b],
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66 BJ0RN SUNDT

R/[c, d], and their convolution. From (4) we obtain

d d d d
— In y/(s) = — \n[y/l(s)i//2(s)] = — In y/t(s) + — In y/2(s)
ds ds ds ds

i=\

1 - 1 -

l -
;=i

. • = 1

This is the ratio of a polynomial of degree at most k + l—l and a polynomial
of degree at most k + l with a non-zero constant term, and from Theorem 1 we
see that the convolution of Rk[a, b] and Ri[c, d] is contained \n./Pk+l. Thus we
have the following result.

Theorem 4. The convolution of a distribution in.'J?k and a distribution in '^t is
a distribution m

Even if ./^[a, b] ej$?° and /?;[c, rf] £.#,°, we cannot conclude that their con-

volution is a distribution in J^°+/; from the way we constructed — In y/(s),
ds

we see that if the polynomials 1— ]T a,-s' and 1 - £_, CjS1 have a common
; = i / = i

factor of degree q, then the convolution is a distribution in .'j?k+l_q. In
particular, if / = k and c = a, we obtain

In y/(s) =

1 - a,s' 1 -
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ON SOME EXTENSIONS OF PANJER'S CLASS OF COUNTING DISTRIBUTIONS 67

that is, the convolution of Rk [a, b] and Rk [a, d] is Rk [a, e] with
e = (e,, . . . , ek) given by

e, = icii + bi + dj. (i = 1, ...,k)

The following theorem is an obvious generalisation of this result.

Theorem 5. The convolution of the distributions Rk[a, A ^ ] with
a = ( f l , , . . . , a t ) and b(i) = (b\J\ . . . , b[j)) O = l , . . . , m ) is /?*[«, fl with
p = (pi,...,Pk) given by

Corollary 1. The w-fold convolution of Rk[a, b] is Rk[a, fi] with
/?= (/*, , . . . ,&) given by

/?, = (w — 1) iai + wA,. (z = 1, . . . , k)

The following corollary is a simple consequence of Theorem 3 and Corol-

lary 1.

Corollary 2. The m-fold convolution of a distribution on the range {0, . . . , k}
with positive probability at zero and discrete density {pn}

k
n=o is Rk[a, b] with

a = (ax, ..., ak) and b = {bx,..., bk) given by

= - — b (m+\)i— (i = 1 k)
Po ' Po

The recursive algorithm for evaluation of convolutions indicated by Corol-
lary 2, was presented by D E PRIL (1985).

4B. Any counting distribution with positive probability at zero can be
expressed in the form Rx[a, b] for any sequence a = (ax, a2, . . . ) ; if {/>„}*= o is
the discrete density of this distribution, then we can let b = (bx, b2, ...) with
the bn's given by the recursive algorithm

, - ,
bn = —

Po

which is obtained by solving (2) with respect to bn. By combining this result
with Theorem 5, we obtain the following recursive algorithm for evaluating
convolutions of counting distributions with positive probability at zero.

Theorem 6. The discrete density {nn}™=0 of the convolution of m counting
distributions with positive probability at zero and discrete densities respectively

' - '
npn~ A (nai + bi)Pn-i\ ~ nan, (n = 1 ,2 , . . . )
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68 BJ0RN SUNDT

{PnJ)}™=o (j = 1 , . . . , m) can be evaluated recursively by

(5) nn =
i=\

nn_i (n = 1,2, . . . )

(6) n0 =
7 = 1

with

pn = {m-\)nan+ £ A<» (« = 1,2,...)
7=1

F ) ^ l (n = 1, 2, ...; j = 1, ..., m)
nu)Po

This algorithm holds for any sequence (ax,a2, .. •) of real numbers.

The algorithm of Theorem 6 becomes much simpler in the special case
a = 0, and normally one would presumably apply this choice of a. However, in
some applications one might get computer overflow or underflow when
performing the recursions, and we might be able to overcome this problem by
using non-zero values of at for some values of /. For recursive evaluation of
compound distributions when the counting distribution belongs to the Panjer
class, the problem with overflow and underflow has been discussed by PANJER

and WILLMOT (1986).

Let us now look at the special case when the m distributions are identical.
For simplicity we drop the top-scripts in this case, and we put a = 0. Under
these assumptions, (5) and (6) reduce to

n

(7) nn = - X M B - / ( « = 1 , 2 , . . . )
n ;=i

(8) =P

It is remarkable that when we have calculated the 6,'s, then we can easily
evaluate the m-fold convolution of {/»„}"= o f° r a n v m- It is interesting to
compare this algorithm with the algorithm implied by Corollary 2. It seems
that if we want to evaluate the m-fold convolution for one particular value of
m, then the algorithm of Corollary 2 would be preferable. However, if we want
the m-fold convolutions for several values of m, then it might be more efficient
to first calculate the b-s and then use (7) and (8).

The recursive algorithm of Theorem 6 was presented by D E PRIL (1989) with
a = 0. De Pril also deduced a closed-form expression for the bn's. As the
algorithm is rather time-consuming, De Pril introduced a class of approxima-
tions, and he gave upper bounds for the inaccuracy of these approximations.
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ON SOME EXTENSIONS OF PANJER'S CLASS OF COUNTING DISTRIBUTIONS 69

4C. For the rest of Section 4 we shall concentrate on convolutions of
distributions in ^ .

By putting k = 1 in Theorem 5 we obtain the following corollary.

Corollary 3. The convolution of the m distributions R\ [a, b{], ..., Rx [a, bm] is
Rt[a,p] with

7 = 1

The following theorem is proved by SUNDT and JEWELL (1981).

Theorem 7. A distribution R^ [a, b] e.<#\ is binomial if a < 0, Poisson if a = 0,
and negative binomial if a > 0.

Let us apply Corollary 3 to each of the three cases described in Theorem 7.

i) Binomial
Let they'th distribution be binomial with parameters (tj, q), that is, it has
discrete density

P(nJ
tj

n
q"

Then

a =
q

Y-q
and we obtain

b --- (m - 1 ) -

o-«)

1 1

q

-q

q

\-q
*

m

I
7=1

(n = 0, 1,

1),

q
(t -\

\-q '

. . . , t j )

- n — ^
m

V 4.
7 = 1

ii) Poisson
Let the y'th distribution be Poisson with parameter Xj, that is, it has discrete
density

p<» = ^e-k>. (« = 0 ,1 ,2 , . . . )
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Then

a = 0 bj = kj,

and we obtain

kj=

that is, the convolution is Poisson with parameter 2_, V
7 = 1

iii) Negative binomial
Let the y'th distribution be negative binomial with parameters (a,, q), that
is, it has discrete density

/ » i ; ) = ( a ; + " " M ( l - 9 ) " V . (» = 0,1,2,...)

Then

a = ? 6,, = q{a.j-\),

and we obtain

b = {m-\)q+
7=1 \7=1

(
7=1

The results shown above about convolutions in these three classes of
distributions should be well known. However, it seems interesting to consider
them in relation to Corollary 3.
4D. Let us now more generally consider the convolution of the m distributions
/?1[a1 ,6 , ] , . . . , i? 1 [am, fem] .

We have the following result.

Theorem 8. The convolution of the m distributions /?, [a,, b{\,...,/?, \am, bm]
is Rm[a, fi], with a = ( a , , . . . , am) and fi = {fix, ..., 0J given by

i

(9) a, = ( - l ) ' + 1 X E l ah (»= 1. ••-,"«)
l < 7 i < 7 2 < ••• < 7 , < ' « * = 1

m /— 1

(10) fl- = (-l)'+1 X > , S El «A O' = 2,...,m)
r = l l<y,<7'2< ... <7/_, <m k=\
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ON SOME EXTENSIONS OF PANJER'S CLASS OF COUNTING DISTRIBUTIONS 71

(11) Px =

Proof. The probability generating function y/ of the convolution is given by

d
(12) p(s) = —In y,(s) =

d 7=1 1 — OyJ

with the initial condition ^(1) = 1. On the other hand, by Theorem 4 we see
that the convolution is a distribution in ,4?m, which can be written in the form
Rm [a, /?], and thus

j - 1

(13) p(s) =
m

<XjSl

It remains to show that a and fi given by (9)-(ll) satisfy (12) and (13).
We rewrite (12) as

(14) p(s) =

n o-
i=l

We see that (13) and (14) are satisfied if

(15)

(16) 1 - £
;=1 k=\

From (16) we obtain (9), and (15) gives (11) and

m i—\

(17) ft = ( - l ) ' + I £ ( a r + &,) £ FU
r=l \<Ji<j2< ... <j,_,<m k=l

Insertion of (9) in (17) gives (10). This completes the proof of Theorem 8.
Q.E.D.
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We see that the a/s do not depend on the b/s.
In the special case when all the b/s have the same value b, then (10) sim-

plifies to

(18) 0i= -(m-i+VbtXi-i. (i=2,...,m)

In particular, if b = 0, then (11) and (18) give that all the /?,'s are equal to zero
too. In this case the yth distribution is geometric with parameter ay, that is,
negative binomial with parameters (1, a/).

4E. Let us look at the case m — 2. In this case Theorem 8 reduces to the
following corollary.

Corollary 4. The convolution of Rl[al,bl] and R\[a2,b2\ is
R2[(ax + a2, ~a\a2), (bx + b2, -{axb2 + a2bx))\.

Corollary 4 was proved by SCHROTER (1990) in the special case a2 = 0.
Corollary 4 applies in particular when ax = a2 = a; in that case we obtain

that the convolution is R2[(2a, —a2),(bx+b2, -a(bx+b2))]. However, by
Corollary 3 this distribution does not belong \.o.9?\, and it is more convenient
to express it as Rx[a, a + bx + b2].

Example 2. We consider the convolution of a binomial distribution with
parameters (t, q) and a negative binomial distribution with parameters (a, q).
Then

a a
ax = - - ? - bx = _ Z _

\-q \-q

a2 = q b2 =

and by Corollary 4 the convolution is equal to

Ri
1

q2

-q

q2

\-q
q

5. i

t + q

\-q

MIXTURES

•f
t

\-q
i-t-2)

It is natural to ask whether a mixture of a distribution i n , ^ and a distribution
in^i belongs t o ^ m for some finite m when k and / are finite. Unfortunately we
cannot give a general yes or not to this question. There are cases where the
property holds, but there are also cases where it does not. In this section we
shall look at some examples.

We start with a trivial observation. As a finite mixture of counting
distributions on a finite range with positive probability at zero is a counting
distribution on a finite range with positive probability at zero, the property
holds for distributions on finite ranges by Theorem 3.
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Now let {pil)}™=0
 a n d {/>«2)C=o be discrete densities in 3?k resp. J ^ , with

probability generating functions y/{ resp. y/2. Let {/>B}n°=o be the mixture
defined by

Pn = vPn + 0 ~v)Pn , (« = 0, 1, 2, . . . ; 0 < V <

and let (// denote its probability generating function. We have

which implies

(19) / > ( * ) = — I n y(s) = -

ds vy.

We can apply (19) and Theorem 1 to decide whether the mixture belongs \.o.9lm

for some finite m.

Example 3. We look at a mixture between two Poisson distributions with

parameters lx and k2 with Xx =f= k2. Then

y/j(s) = ex'(s~X) y/j(s) = Aye
;"'(j~1), (7 = 1,2)

and insertion in (19) gives

which obviously cannot be written as the ratio between two polynomials. Thus
the mixture does not belong to J^m for any finite m.

Example 4. Let us look at a mixture between two geometric distributions with
parameters qt and q2 with qx =fc q2. Then

Xj, (S) = L y, (S) = — i- . ( 7 = 1 , 2)
1 ( l ) 2

Insertion in (19) and some rearranging gives

vcl\ (
p(s) =

We see that the numerator in this fraction is a polynomial of degree two and
the denominator a polynomial of degree three with a non-zero constant term.
Thus the mixture is contained i n ^ 3 .
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Example 5. We consider a mixture between two negative binomial distribu-
tions with parameters (<xx, q) and (a2, q) with a2 > OLX • Then

l-qs

Insertion in (19) and some rearranging gives

— fiK\]

with a = ail and /? = a2 — at . If y9 is an integer, then the numerator is a
polynomial of degree /? and the denominator a polynomial of degree /?+ 1 with
a non-zero constant term, and thus the mixture belongs t o . ^ + 1 . However, if y?
is not an integer, then the mixture does not belong to S#m for any finite m.

6. COMPOUND DISTRIBUTIONS

6A. Let N be a non-negative integer-valued random variable with distribution
Rk[a, b], and let Y\, Y2, ... be non-negative integer-valued random variables,
mutually independent and identically distributed with common discrete density
/, and independent of N. We denote by {/»n}£L0 the discrete density of N. Let g
denote the discrete density of

that is,

00

g= Z Pnf'.
n = 0

For convenience we introduce q = /(0).

Theorem 9. We can evaluate g(x) recursively by the algorithm

(20) g(x) = 2-,g{x-y)2_,
. V = l 1 = 1

1 = 1

00

(21)
n = 0
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Proof. Formula (21) obviously holds.
n

Let Xn = Z Yi(n = 1,2, ...). For x > 0 we have
/ = I

o& k

k oo

Z
n=\ i=

a, +
b,

1=1 n = i

k oo x

k oo

= V
1=1

= Z Z 1P.M
I = I

x k

/ X

y = 0 1=1

x k

bty

I X
f'\y)

= Z
=o 1=1 i x y=o t=i i x

which gives (20). This completes the proof of Theorem 9. Q.E.D.

As the severities are usually assumed to be strictly positive, we state the
following corollary.

i = l i xj
CO ( x = l , 2 , . . . )

Corollary 5. If q = 0, then

g(x) =
y=\

g(0) =Po-

The recursive algorithm presented by PANJER (1981) is obtained as a special
case of Corollary 5 by letting k = 1. With k = 2 and a2 = 0 we obtain
SCHROTER'S (1990) generalisation.

6B. Let

m = max{j:/(>') > 0}.

As/'*(y) = 0 for all y > mi, (20) can be written
mk k

1

- 1 «,v i = l

7 v

I
( J C = 1,2,...)

and we obtain the following result.
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Theorem 10. The distribution of X is Rmk[c, d] with c = ( q , . . . , cmk) and
d = ( r f , , . . . , ^ ) given by

£ a, y t -
(22) c , = - ! l l _ dy = ' ' t ' , ( j = 1....,#«*)

1 - S *<<?' ! " Z «'«'
/ = I i = l

Let

M = #{y,->0: /<Af}.

If N is the number of claims occurred in an insurance portfolio during a given
period, and Yt is the amount of the rth of these claims, then M is the number of
non-zero claims. The following corollary to Theorem 10 shows that the
distribution of M belongs to the same class as the distribution of N. Analogous
results have been discussed by PANJER and WILLMOT (1984) and SUNDT
(1991b) for the case k = 1.

Corollary 6. The distribution of M is Rk [c, d] with c = (cr, ..., ck) and
d=(du...,dk) given by

<7 y

(y=l,.-., k)

~ Z a^
Proof. We obtain the corollary from Theorem 10 by letting / be the discrete
density fQ defined by

and using that

fo'(y) =
y

Q.E.D.

Corollary 7. If ./V has the distribution Rk [a, b] and m is a positive integer, then
mN has the distribution Rmk [c, d] with c = (cx, ..., cmk) and d = {dx, ..., dmk)
given by

cy = aWm rfy = w^/m ( j = m,2m,..., km)

and Cj, = dy = 0 for all other values of y.
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Proof. We can apply Theorem 10 with the Ŷ 's identically equal to m, that is,
f(y) = Smy (Kronecker delta). Then/'*(j) = S{im)y, and the corollary follows
by insertion in (22). Q.E.D.

6C. For the present subsection we assume that q = 0. Furthermore we
assume that all the 6,'s are equal to zero, like in the case with convolutions of
geometric distributions mentioned at the end of subsection 4D. Then (20)
simplifies to

g(x)= £ g(x-y) X aj'l\y). (x = 1,2,...)
>.= i , = i

In this case we have similar recursions for the corresponding cumulative
distribution and its stop loss transform. Let F and G be the cumulative
distributions corresponding to / and g respectively. Analogous to the deduc-
tion of the corresponding formulae in the special case k = 1 in subsec-
tion 10.4D in SUNDT (1991a) we obtain

x k

(23) G(x) =po+ X G(x-y) £ aj'*(y) (x = 0, 1, ...)

x k

G(x) = £ G(x-y) X a,f(y) (x = 1,2,...)
y=\ (=1

G(0) = E I = E A ^ E 7 .

k

If all the a,-'s are non-negative with ]T a, < 1, then (23) is a renewal equa-
ls l

tion with defective distribution £ a,-F;* (cf. FELLER (1971, Section XI.6)),
1=1

and we can obtain asymptotic expressions for g, G, and G analogous to the
ones deduced for the case k = 1 in SUNDT (1982). By Theorem 10, in our case
the distribution of N is a compound distribution; its counting distribution is
geometric with parameter

k

r = I a,,

and its severity distribution has discrete density {c,j*=i given by

a' c i i\Cj = — . (( = 1 , . . . , k)

r

Thus G is a compound distribution with geometric counting distribution
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with parameter r and compound severity distribution 2_, c,*F'*, and by using

this representation of the G, we can apply the asymptotic results in
SUNDT (1982).

6D. Generalisation of Theorem 9 to cases where the Y?s can also take
negative values, is in most cases rather complicated. However, if there exist
finite numbers y0 and n0 such that Y, > y0 and N < n0 with probability one,
then we can proceed like in Section 6 of SUNDT and JEWELL (1981).

7. GENERALISATIONS

7A. SUNDT and JEWELL (1981) generalised PANJER'S (1981) recursive algo-
rithm to the class of counting distributions with discrete density {pn}%=o
satisfying the recursion

Pn = \a + - /?„_,. (n = m+\,m + 2, ...)

Panjer's class is obtained with m = 0. We make a similar extension of.'£k and
consider the class of counting distributions satisfying the recursion

(24) /»» =
bb \

U + - U , - , - (n = m+l,m + 2,...)
n I

with pn = 0 for n < 0. We obtain the following generalisation of Theorem 9.

Theorem 11. If {/>„}"= o satisfies the recursion (24). then g(x) can be evaluated
by the recursive algorithm

(25) g{x) =
1

atq
l

( * = 1,2,...)

(26) g(0) = Pnq"
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Proof. Formula (26) obviously holds. For x > 0 we have

oo m

S Pnf'(x)= X
n = l n=\ n=m+\ 1=1

ai + ^\pn-if
n'{x),

n

that is,

( 2 7 ) g(x)= JT \Pn-
n = l '='

a, + - U,-,- /"*(*)
I J

Z
1=1 n

Like in the proof of Theorem 9 we obtain

oo k

Pn-ijS I
n = !

a, + -
n

f'iy),

and insertion in (27) and solving for g(x) gives (25). This completes the proof
of Theorem 11. Q.E.D.

7B. A natural question is, could we extend the results shown in Sections 3
and 4 to the classes of counting distributions satisfying (24)? Unfortunately,
possible extensions are not trivial. The deductions in Sections 3 and 4 depended
very much on the simple form of p given by (4); in extended classes we do not
get such a simple form.

To indicate the difficulties, we look at a simple case. Let

Pn=

{n < m)

and let y denote the probability generating function of this distribution.
Analogous to the deduction of (3) we obtain

pnns "'] =

n = m+1
J U + -i UB_,.
/ = I \ ft
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which gives
k

V(s) X fa + bds'-'-yf'is) 1 " E ais'\ + mPmsm-' = 0.
\ /

We see that the presence of the term mpmsm~x makes the situation much more
complicated for m > 0.
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